Модели жизненного цикла программного продукта
Принципы объектно-ориентированного проектирования. Этапы разработки программного обеспечения. Тестирование и передача системы в эксплуатацию. Модели традиционного представления о жизненном цикле. Параллельное выполнение итераций и построение каскадов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.01.2015 |
Размер файла | 452,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Шадринский государственный педагогический институт
РЕФЕРАТ
дисциплина - Автоматизированные системы управления
тема: Модели жизненного цикла программного продукта
Выполнил:
студент 643 группы
факультет - Технологии и предпринимательства
Попова А.А.
Проверил:
г. Шадринск, 2015
Содержание
Введение
1. Модели традиционного представления о жизненном цикле
1.1 Общепринятая модель
1.2 Классическая итерационная модель
1.3 Каскадная модель
1.4 Модель фазы-функции
2. Объектно-ориентированные модели жизненного цикла
2.1. Принципы объектно-ориентированного проектирования
2.2. Модификация модели фазы-функции
2.3. Параллельное выполнение итераций
2.4. Моделирование итеративного наращивания возможностей системы
Литература
Введение
Понятие жизненного цикла программного обеспечения появилось, когда программистское сообщество осознало необходимость перехода от кустарных ремесленнических методов разработки программ к технологичному промышленному их производству.
Как обычно происходит в подобных ситуациях, программисты попытались перенести опыт других индустриальных производств в свою сферу. В частности, было заимствовано понятие жизненного цикла.
Аналогия жизненного цикла программного обеспечения с техническими системами имеет более глубокие корни, чем это может показаться на первый взгляд. Программы не подвержены физическому износу, но в ходе их эксплуатации обнаруживаются ошибки (неисправности), требующие исправления.
Ошибки возникают также от изменения условий использования программы. Последнее же является принципиальным свойством программного обеспечения, иначе оно теряет свой смысл. Поэтому правомерно говорить о старении программ, хотя не о физическом старении, а о моральном.
Необходимость внесения изменений в действующие программы, как из-за обнаруживаемых ошибок, так и по причине развития требований приводит по сути дела к тому, что разработка программного обеспечения продолжается после передачи его пользователю и в течение всего времени жизни программ.
Деятельность, связанная с решением довольно многочисленных задач такой продолжающейся разработки, получила название сопровождения программного обеспечения (рис. 1).
Рис. 1. Разработка, использование и сопровождение программного обеспечения
Исторически развитие концепций жизненного цикла связано с поиском для него адекватных моделей. Как и всякая другая, модель жизненного цикла является абстракцией реального процесса, в которой опущены детали, несущественные с точки зрения назначения модели. Различие назначений применения моделей определяет их разнообразие.
Основные причины, из-за которых нужно изучать вопросы моделирования жизненного цикла программного обеспечения, можно сформулировать следующим образом.
Во-первых, это знание даже для непрофессионального программиста помогает понять, на что можно рассчитывать при заказе или приобретении программного обеспечения и что нереально требовать от него. В частности, неудобные моменты работы с программой, ее ошибки и недоработки обычно устраняются в ходе продолжающейся разработки, и есть основания ожидать, что последующие версии будут лучше. Однако кардинальные изменения концепций программы -- задача другого проекта, который совсем необязательно будет во всех отношениях лучше данной системы.
Во-вторых, модели жизненного цикла -- основа знания технологий программирования и инструментария, поддерживающего их. Программист всегда применяет в своей работе инструменты, но квалифицированный программист знает, где, когда и как их применять. Именно в этом помогают понятия моделирования жизненного цикла: любая технология базируется на определенных представлениях о жизненном цикле, выстраивает свои методы и инструменты вокруг фаз и этапов жизненного цикла.
В-третьих, общие знания того, как развивается программный проект, дают наиболее надежные ориентиры для его планирования, позволяют экономнее расходовать ресурсы, добиваться более высокого качества управления. Все это относится к сфере профессиональных обязанностей руководителя программного проекта.
В настоящей работе модели жизненного цикла представлены в таком виде, позволяющем рассматривать их, абстрагируясь от специфики разработки конкретных программных систем. Описываются традиционные модели и их развитие, приспособленное к потребностям объектно-ориентированного проектирования.
1. Модели традиционного представления о жизненном цикле
1.1 Общепринятая модель
Вероятно, самым распространенным мотивом обращения к понятию жизненного цикла является потребность в систематизации работ в соответствии с технологическим процессом. Этому назначению хорошо соответствует так называемая общепринятая модель жизненного цикла.
Фазы разбиваются на ряд этапов (рис. 2).
Рис. 2. Общепринятая модель жизненного цикла программного обеспечения
Разработка начинается с идентификации потребности в новом приложении, а заканчивается передачей продукта разработки в эксплуатацию.
Первым этапом фазы разработки является постановка задачи и определение требований. Определение требований включает описание общего контекста задачи, ожидаемых функций системы и ее ограничений. На этом этапе заказчик, совместно с разработчиками, принимают решение о создании системы. Особенно существен этот этап для нетрадиционных приложений.
В случае положительного решения начинается этап спецификации системы в соответствии с требованиями. Разработчики программного обеспечения пытаются осмыслить выдвигаемые заказчиком требования и зафиксировать их в виде спецификаций системы.
Важно подчеркнуть, что назначение этих спецификаций -- описывать внешнее поведение разрабатываемой системы, а не ее внутреннюю организацию, т.е. отвечать на вопрос, что она должна делать, а не как это будет реализовано.
Здесь говорится о назначении, а не о форме спецификаций, поскольку на практике при отсутствии подходящего языка спецификаций, к сожалению, нередко приходится прибегать к описанию «что» посредством «как».
Прежде чем приступать к созданию проекта по спецификациям, они должны быть тщательно проверены на соответствие исходным целям, полноту, совместимость (непротиворечивость) и однозначность.
Проблемы языка спецификаций не в том, что нельзя (или трудно) строго и четко описать, что требуется в проекте.
В большей степени они связаны с необходимостью добиваться и поддерживать соответствие описания «что» нечетким, неточным и часто противоречивым требованиям со стороны внешних по отношению к проекту людей.
Нет оснований полагать, что эти люди будут знакомы с «самым хорошим языком спецификаций», что они будут заботиться о корректности своих требований. Задача этапа спецификаций в том и состоит, чтобы описание программы выстроить в виде логически выверенной системы, понятной как для заказчика данной разработки, будущих пользователей, так и для исполнителей проекта.
Разработка проектных решений, отвечающих на вопрос, как должна быть реализована система, чтобы она могла удовлетворять специфицированным требованиям, выполняется на этапе проектирования. Поскольку сложность системы в целом может быть очень большой, главной задачей этого этапа является последовательная декомпозиция системы до уровня очевидно реализуемых модулей или процедур.
На следующем этапе реализации, или кодирования каждый из этих модулей программируется на наиболее подходящем для данного приложения языке. С точки зрения автоматизации этот этап традиционно является наиболее развитым.
В рассматриваемой модели фаза разработки заканчивается этапом тестирования (автономного и комплексного) и передачей системы в эксплуатацию.
Фаза эксплуатации и сопровождения включает в себя всю деятельность по обеспечению нормального функционирования программных систем, в том числе фиксирование вскрытых во время исполнения программ ошибок, поиск их причин и исправление, повышение эксплуатационных характеристик системы, адаптацию системы к окружающей среде, а также, при необходимости, и более существенные работы по совершенствованию системы. Все это дает право говорить об эволюции системы.
В связи с этим, фаза эксплуатации и сопровождения разбивается на два этапа: собственно сопровождение и развитие . В ряде случаев на данную фазу приходится большая часть средств, расходуемых в процессе жизненного цикла программного обеспечения.
Понятно, что внимание программистов к тем или иным этапам разработки зависит от конкретного проекта. Часто разработчику нет необходимости проходить через все этапы, например, если создается небольшая хорошо понятная программа с ясно поставленной целью. Проблемы сопровождения, плохо понимаемые разработчиками небольших программ для личного пользования, являются в то же время очень важными для больших систем.
Такова краткая характеристика общепринятой модели. В литературе встречается много вариантов, развивающих ее в сторону детализации и добавления промежуточных фаз, этапов, стадий и отдельных работ (например, по документированию и технологической подготовке проектов) в зависимости от особенностей программных проектов или предпочтений разработчиков.
1.2 Классическая итерационная модель
Общепринятая модель жизненного цикла является идеальной, так как только очень простые задачи проходят все этапы без каких-либо итераций -- возвратов на предыдущие шаги технологического процесса.
При программировании, например, может обнаружиться, что реализация некоторой функции очень громоздка, неэффективна и вступает в противоречие с требуемой от системы производительностью.
В этом случае требуется перепроектирование, а может быть, и переделка спецификаций.
При разработке больших нетрадиционных систем необходимость в итерациях возникает регулярно на любом этапе жизненного цикла как из-за допущенных на предыдущих шагах ошибок и неточностей, так и из-за изменений внешних требований к условиям эксплуатации системы.
Таковы мотивы классической итерационной модели жизненного цикла (рис. 3).
Рис. 3. Классическая итерационная модель
Стрелки, ведущие вверх, обозначают возвраты к предыдущим этапам, квалифицируемые как требование повторить этап для исправления обнаруженной ошибки. В этой связи может показаться странным переход от этапа « Эксплуатация и сопровождение» к этапу «Тестирование и отладка». Дело в том, что рекламации, предъявляемые в ходе эксплуатации системы, часто даются в такой форме, которая нуждается в их перепроверке. Чтобы понять, о каких ошибках идет речь в рекламации, разработчикам полезно предварительно воспроизвести пользовательскую ситуацию у себя, т.е. выполнить действия, которые обычно относят к тестированию.
Классическая итерационная модель абсолютизирует возможность возвратов на предыдущие этапы. Однако это обстоятельство отражает существенный непреодолимый аспект программных разработок, не опирающихся на объектно-ориентированное проектирование: стремление заранее предвидеть все ситуации использования системы и невозможность в подавляющем большинстве случаев достичь этого. Все традиционные технологии программирования направлены лишь на то, чтобы минимизировать возвраты. Но суть от этого не меняется: при возврате всегда приходится повторять построение того, что уже считалось готовым.
Иное положение с объектно-ориентированными технологиями. Отказ от завершенности фаз и этапов, вместо чего предлагается распределять наращивание функциональности и интерфейсных возможностей по итерациям, позволяет ослабить требование переделки старого при возвратах. По существу, классическая схема остается верной, но только в рамках одной итерации и с одной важной поправкой: все полезное, что было сделано ранее, сохраняется. Понятно, что для программной системы в целом новый подход требует и новых моделей жизненного цикла, отражающих его особенности, отмеченные ранее. Об этом будет идти речь после изучения основных вариантов традиционных моделей жизненного цикла.
1.3 Каскадная модель
Некоторой более строгой разновидностью классической модели является так называемая каскадная модель, которую можно рассматривать в качестве показательного примера того, какими методами можно минимизировать возвраты.
Характерные черты каскадной модели:
· завершение каждого этапа (они почти те же, что и в классической модели) проверкой полученных результатов с целью устранить как можно большее число проблем, связанных с разработкой изделия;
· циклическое повторение пройденных этапов (как в классической модели).
Мотивация каскадной модели связана с так называемым управлением качеством программного обеспечения. В связи с ней уточняются понятия этапов, некоторые из них структурируются (спецификация требований и реализация).
На рис. 4 приведена схема каскадной модели, построенная как модификация классической итерационной модели. В каждом блоке, обозначающем этап, указано действие, которым этап завершается (наименования этих действий отмечены серым фоном). Из рисунка видно, что в этой модели тестирование не выделяется в качестве отдельного этапа, а считается лишь порогом, через который нужно перейти, чтобы завершить этап, точно так же, как и другие подобные действия.
Рис. 4. Каскадная модель
В соответствии с каскадной моделью завершение этапа определения системных требований включает фиксацию их в виде специальных документов, называемых обзорами того, что от системы требуется (описание функций), а спецификация требований к программам -- подтверждением выполнения зафиксированных в обзорах функций в планируемых к реализации программах.
Кроме того, подтверждение предполагается и на первом этапе, т.е. после определения требований. Это отражает тот факт, что полученные требования необходимо согласовывать с заказчиком.
Результат проектирования верифицируется, т.е. проверяется, что принятая структура системы и реализационные механизмы обеспечивают выполнимость специфицированных функций.
Реализация контролируется путем тестирования компонент, а после интеграции компонент в систему и комплексной отладки проводится аттестация, т.е. проверка-фиксация фактически реализованных функций системы, описание ограничений реализации и т.п.
В ходе эксплуатации и сопровождения изделия устанавливается, насколько хорошо система соответствует пользовательским запросам, т.е. осуществляется переаттестация.
Каждая из указанных проверок может отослать разработчиков системы к повторению любого из ранее пройденных этапов, что иллюстрируется стрелками на рис. 4.
В то же время, каскадная модель разработана в ответ на требование практики разработки программных проектов, в которых за счет преодоления проверочных барьеров достигается минимизация возвратов к пройденным этапам. Такая минимизация возможна не только в плане количества откатов по схеме: за счет ужесточения проверок разработчики пытаются ликвидировать прямые возвраты через несколько этапов.
Соответствующая схема, называемая строгой каскадной моделью, представлена на рис. 5.
Рис. 5. Строгая каскадная модель
Поучительно проследить, как в строгой каскадной модели исправляются ошибки ранних этапов. В соответствии с данной схемой разработчики любого этапа в качестве исходных материалов для своей деятельности, т.е. задания на разработку, получают результаты предыдущего этапа, прошедшие соответствующую проверку (в идеале исполнители этапа могут вовсе не знать о более ранних этапах). При проведении работ этапа может быть выяснено, что задание невыполнимо по одной из следующих причин:
· оно противоречиво, т.е. содержит несовместные или невыполнимые требования;
· не выработаны критерии для выбора одного из возможных вариантов решения.
Обе ситуации квалифицируются как ошибки задания, т.е. как ошибки предыдущего этапа. Для исправления обнаруженных ошибок работы предыдущего этапа возобновляются. В результате ошибки либо ликвидируются, либо констатируется невозможность их непосредственного исправления. В первом случае работы этапа, вызвавшего возврат, возобновляются с откорректированным заданием. Второй случай квалифицируется как ошибка более раннего этапа.
Строгая каскадная модель фиксирует два важных момента жизненного цикла:
· точное разделение работ, заданий и ответственности разработчиков этапов и тех, кто, проверяя работы, инициирует переход к следующему этапу;
· малые циклы между соседними этапами, в результате которых достигается компромиссное задание.
Первый момент -- это шаг к осознанию фактического разделения труда, из которого вполне осуществимо явное выделение технологических и организационных функций, выполняемых на каждом этапе. В результате появляется возможность постановки задачи автоматизированной поддержки этих функций. Второй момент можно трактовать как совместное выполнение работ соседних этапов, т.е. их перекрытие. Продуктивность явного включения их в качестве элементов модели жизненного цикла демонстрируется в следующем разделе.
1.4 Модель фазы-функции
Чрезвычайно важным мотивом развития моделей жизненного цикла программного обеспечения является потребность в подходящем средстве для комплексного управления проектом. По существу, это утверждение указывает на то, что модель должна служить основой организации взаимоотношений между разработчиками, и, таким образом, одной из ее целей является поддержка функций менеджера. Это приводит к необходимости наложения на модель контрольных точек и функций, задающих организационно-временные рамки проекта.
Наиболее последовательно такое дополнение классической схемы реализовано в модели Гантера в виде матрицы «фазы-функции». Уже из упоминания о матрице следует, что модель Гантера имеет два измерения:
· фазовое, отражающее этапы выполнения проекта и сопутствующие им события;
· функциональное, показывающее, какие организационные функции выполняются в ходе развития проекта и какова их интенсивность на каждом из этапов.
В модели Гантера отражено то, что выполнение функции на одном этапе может продолжаться и на следующем. На рис. 6 представлено фазовое измерение модели. Жирной чертой (с разрывом и стрелкой, обозначающей временное направление) изображен процесс разработки 2. Контрольные точки и наименования событий указаны под этой чертой.
Рис. 6. Фазовое измерение модели фазы-функции
В данной модели жизненный цикл распадается на следующие перекрывающие друг друга фазы (этапы):
· исследования -- этап начинается, когда необходимость разработки признана руководством проекта (контрольная точка 0), и заключается в том, что для проекта обосновываются требуемые ресурсы (контрольная точка 1) и формулируются требования к разрабатываемому изделию (контрольная точка 2);
· анализ осуществимости -- начинается на фазе исследования, когда определены исполнители проекта (контрольная точка 1), и завершается утверждением требований (контрольная точка 3);
· конструирование -- этап начинается обычно на фазе анализа осуществимости, как только документально зафиксированы предварительные цели проекта (контрольная точка 2), и заканчивается утверждением проектных решений в виде официальной спецификации на разработку (контрольная точка 5);
· программирование -- начинается на фазе конструирования, когда становятся доступными основные спецификации на отдельные компоненты изделия (контрольная точка 4), но не ранее утверждения соглашения о требованиях (контрольная точка 3). Совмещение данной фазы с заключительным этапом конструирования обеспечивает оперативную проверку проектных решений и некоторых ключевых вопросов разработки. Цель этапа -- реализация программ компонентов с последующей сборкой изделия. Он завершается, когда разработчики заканчивают документирование, отладку и компоновку и передают изделие службе, выполняющей независимую оценку результатов работы (независимые испытания начались -- контрольная точка 7);
· оценка -- фаза является буферной зоной между началом испытаний и практическим использованием изделия. Она начинается, как только проведены внутренние (силами разработчиков) испытания изделия (контрольная точка 6) и заканчивается, когда подтверждается готовность изделия к эксплуатации (контрольная точка 9);
· использование -- начинается в ходе передачи изделия на распространение и продолжается, пока изделие находится в действии и интенсивно эксплуатируется. Этап связан с внедрением, обучением, настройкой и сопровождением, возможно, с модернизацией изделия. Он заканчивается, когда разработчики прекращают систематическую деятельность по сопровождению и поддержке данного программного изделия (контрольная точка 10).
На протяжении фаз жизненного цикла разработчики выполняют следующие технологические (организационные) функции (классы функций):
· планирование,
· разработка,
· обслуживание,
· выпуск документации,
· испытания,
· поддержка,
· сопровождение.
Перечисленные функции на разных этапах имеют различное содержание, требуют различной интенсивности, но, что особенно важно для модели, совмещаются при реализации проекта. Это функциональное измерение модели, наложение которого на фазовое измерение дает изображение матрицы фаз--функций в целом (см. рис. 7, на котором интенсивность выполняемых функций отражается густотой закраски клеток матрицы).
Состав организационных функций и их интенсивность могут меняться от проекта к проекту в зависимости от его особенностей, от того, что руководство проекта считает главным или второстепенным. Иногда бывает важно разграничить планирование и контроль (по Гантеру контрольные функции явно не выделяются).
При объектно-ориентированном проектировании роль моделирования возрастает настолько, что его целесообразно перевести из разряда методов проектирования в явно выделенную технологическую функцию, о чем речь впереди.
Модель учитывает соотношение технологических функций и фаз жизненного цикла, чем она выгодно отличается от простых (или ограниченных?) ранее рассмотренных «идеальных» моделей. По-видимому, простота-ограниченность «идеальных» моделей есть следствие отождествления выделяемых этапов с технологической операцией, преобладающей при их выполнении.
Рис. 7. Матрица фазы--функции модели Гантера
Если попытаться развить модель Гантера с целью учета итеративности, то, очевидно, придется предусмотреть расщепление линии жизненного цикла, как это представлено на рис. 8.
Но это влечет и расщепление матрицы интенсивностей выполняемых функций: было бы необоснованно считать, что интенсивности при возвратах сохраняются.
В целом, по мере продвижения разработки к своему завершению, они должны уменьшаться. Таким образом, матрица интенсивностей приобретает новое измерение, отражающее итеративный характер развития проекта.
Итеративность неизбежна при разработке сложных программных изделий, а потому ее планирование целесообразно.
Однако рассматривая традиционные подходы к развитию проектов, можно заметить, что они не пытаются использовать итеративность в качестве метода проектирования и стремятся лишь к минимизации возвратов.
Рис. 8. Учет итеративности в модели фазы--функции (фазовое измерение, показаны лишь некоторые возвраты).
2. Объектно-ориентированные модели жизненного цикла
В технологическом плане отношение к итеративности развития проекта коренным образом отличает объектно-ориентированный подход от всех последовательных методологий. Для традиционных подходов итерация -- это исправление ошибок, т.е. процесс, который с трудом поддается технологическим нормам и регламентам. При объектно-ориентированном подходе итерации никогда не отменяют результаты друг друга, а всегда только дополняют и развивают их.
2.1 Принципы объектно-ориентированного проектирования
Принципиальные моменты, в которых объектно-ориентированный подход к развитию проектов стоит сопоставить с традиционными последовательными методологиями, сводятся к следующему:
· Итеративность развития.
Начиная с фазы анализа и до завершения реализации, процесс объектно-ориентированного проектирования в противоположность последовательному развитию строится как серия итераций, которой возможно предшествует определенный период последовательного изучения предметной области и задач проекта в целом (этапы определения требований и начального планирования).
· Наращивание функциональности в соответствии со сценариями.
Наращивание функциональности проектируемого изделия представляется как развитие сценариев, которые соответствуют описаниям (диаграммам) взаимодействия объектов и отражают отдельные стороны функционирования. Эти описания предписывают развитие на этапе программирования операционной базы проекта: она вырабатывается исходя из сценариев уровня проектирования (конструирования). Полная функциональность состоит из функциональностей всех сценариев. Таким образом, данная стратегия довольно близка классическому методу пошаговой детализации, при использовании которого функциональность наращивается путем уточнения (доопределения) модулей нижнего уровня. Однако в отличие от этого метода итеративное наращивание требует, чтобы в результате каждой итерации изделие получало полностью готовую функциональность, планируемую реализуемым сценарием. Последующие итерации добавляют уже другую функциональность, которая планируется другим сценарием.
· Ничто не делается однократно.
Последовательный подход предполагает, что анализ завершен перед конструированием, завершение которого предшествует программированию. Перекрытие этапов (см. п. 1.4) ослабляет это предположение, но принципиально ситуацию не меняет. В большинстве объектно-ориентированных проектов анализ никогда не завершается в течение всего развития проекта, а процесс конструирования сопровождает разработку в ходе всего ее жизненного цикла.
· Оперирование на размножающихся фазах подобно.
Как в начале проектирования, на последующих итерациях анализ предшествует конструированию, за которым следует программирование, тестирование и другие виды работ.
При объектно-ориентированном проектировании в ходе итеративного наращивания обыкновенно выполняются вполне традиционные этапы:
· Определение требований, или планирование итерации, -- фиксируется, что должно быть выполнено на данной итерации в виде описания области, для которой планируется разработать функциональность на данной итерации, и что для этого нужно. Обычно этот этап включает отбор сценариев, которые должны быть реализованы на данной итерации.
· Анализ -- исследуются условия выполнения планируемых требований, проверяется полнота отобранных сценариев с точки зрения реализации требуемой функциональности.
· Моделирование пользовательского интерфейса -- коль скоро итерация должна обеспечивать функционально законченную реализацию, требуется определить правила взаимодействий, необходимые для активизации требуемых функций. Модель интерфейса представляет пользовательское представление поведения объектов данной итерации.
· Конструирование -- обычная декомпозиция проекта, проводимая в объектно-ориентированном стиле. Конструирование включает построение или наращивание иерархии системы классов, описание событий и определение реакции на них и т.д. В ходе конструирования определяются объекты, реализуемые и/или доопределяемые на данной итерации, и набор функций (методов объектов), которые обеспечивают решение задачи данной итерации.
· Реализация (программирование) -- программное воплощение решений, принятых для данной итерации. Необходимым компонентом реализации здесь считается автономная проверка соответствия составляемых модулей их спецификациям (в частности, должно быть обеспечено требуемое поведение объектов).
· Тестирование -- этап комплексной проверки результатов, полученных на данной итерации.
· Оценка результатов итерации -- этап включает работу, связанную с рассмотрением полученных результатов в контексте проекта в целом. В частности, должно быть выяснено, какие задачи проекта можно решать с учетом результатов итерации, на какие ранее поставленные вопросы получены ответы, какие новые вопросы возникают в новых условиях.
2.2 Модификация модели фазы-функции
Традиционность этапов объектно-ориентированного развития проекта в рамках одной итерации позволяет ставить задачу моделирования процесса итеративного наращивания как модификацию существующих моделей жизненного цикла. В настоящем разделе такая модификация осуществляется для модели фазы-функции Гантера.
В сравнении с моделью Гантера фазовое измерение жизненного цикла при объектно-ориентированном проектировании почти не изменяется: появляется лишь один дополнительный этап: «Моделирование пользовательского интерфейса», который в старой схеме можно рассматривать как часть этапов анализа и/или конструирования. Однако это весьма существенное дополнение, характеризующее подход в целом. Главный мотив явного рассмотрения моделирования в жизненном цикле при объектно-ориентированном развитии проектов связан со следующими двумя особенностями:
· Распределение реализуемых требований по итерациям.
Совокупность сценариев, реализуемых на очередной итерации, и набор ранее реализованных сценариев всегда образуют законченную, хотя и неполную версию системы , предлагаемую пользователям. По разным причинам, в том числе для исключения двусмысленностей в понимании, необходимо представление планируемого для реализации в виде моделей, согласующих взгляд на систему со стороны пользователей (а также заказчиков и других заинтересованных лиц) с точкой зрения разработчиков. Эти модели появляются в ходе этапа анализа, что отражается в их названии: модели уровня анализа.
· Особый стиль наращивания возможностей системы и ее развития.
Представление системы как набора взаимосвязанных различными отношениями классов -- основа декомпозиции проекта при объектно-ориентированном подходе. Каждая новая итерация расширяет этот набор путем добавления новых классов, вступающих в определенные отношения с ранее построенной системой классов. Выполнить такое расширение корректно без абстрагирования от деталей реализации существующего, а если учитывать перспективу, то и без такого же абстрактного представления добавляемых классов практически невозможно. Иными словами, требуется построение моделей уровня конструирования, которые задают реализационное представление проектируемой системы.
В приведенном выше перечне этапов жизненного цикла итерации при объектно-ориентированном подходе явно выделено моделирование уровня анализа, которое сводится к построению модельного представлению сценариев. Но это только один аспект проектного моделирования. Как было только, что показано, другой, не менее существенный аспект моделирования, проявляется при конструировании. Наконец, есть еще третий аспект моделирования, связанный с предъявлением каждой версии программного изделия пользователю, представление которого о системе, разумеется, не имеет отношения к моделям уровня конструирования и лишь косвенно связано с моделями уровня анализа. Таким образом, если следовать гантеровскому стилю описания жизненного цикла, то правильнее будет выделять не этап моделирования (как это, следуя уже сложившейся традиции, чаще всего делают), а технологическую функцию моделирования , пронизывающую весь процесс разработки проекта.
В новой схеме жизненного цикла появляется строго регламентированное расщепление, единственное для всей последовательности работ (рис. 9). Но этот маршрут отражает не корректировку ошибочно принимаемых решений, а вполне запланированный акт, фиксирующий то, что в ходе выполнения итераций происходит наращивание возможностей изделия.
Следует отметить еще одну модификацию схемы Гантера, отраженную на рисунке. В рамках этапа оценки выделен специальный вложенный этап Пополнение базового окружения проекта, смысл которого сводится к планированию и реализации переиспользования программного обеспечения. Любой объектно-ориентированный проект развивается исходя из некоторой уже существующей среды классов и других компонентов. Это базовое окружение проекта интенсивно используется и, в свою очередь, пополняется средствами, возникающими в результате итеративного наращивания. Полезность сохранения таких средств, для текущего проекта и для последующих разработок очевидна. В этой связи целесообразно в рамках выполнения этапа оценки производить дополнительную работу, направленную на сохранение полезного в депозитарии проектов.
По вполне понятным причинам в объектно-ориентированном проектировании несколько изменяется содержание ряда этапов, что нашло свое отражение в количестве и наименованиях событий на рисунке.
Рис. 9. Фазовое измерение модели жизненного цикла при объектно-ориентированном развитии проекта
Обсуждая модель жизненного цикла при объектно-ориентированном развитии проекта, необходимо указать на работы, которые выходят за рамки стандартизованного итерационного процесса. Это начальная фаза проекта, которая выполняется на старте в ходе исследований и анализа осуществимости, и фаза завершения проекта (итерации ), с выполнением которой работы над проектом (над итерацией) заканчиваются.
Смысл работ начальной фазы -- общее планирование развития проекта. Помимо традиционного содержания, вкладываемого в этапы определения требований к проекту в целом, они должны стать основой разработки еще в двух отношениях:
· требуется определить ближайшую задачу и перспективные задачи проекта. Первая из них -- задача первой итерации, в ходе которой, в частности, готовится первый рабочий продукт, предъявляемый заказчику. С точки зрения развития проекта, решение ближайшей задачи должно обеспечить осуществимость последующего итеративного наращивания возможностей системы (об этом разговор еще предстоит). От качества этих двух результатов зависит судьба проекта в целом. Перспективные задачи -- это планируемое развитие, которое допускает корректировку в дальнейшем;
· требуется выбрать критерии оценки результатов итераций. Эти критерии могут варьироваться в зависимости от направленности проекта, прикладной области и других обстоятельств.
Фаза завершения проекта (итерации) охватывает часть жизненного цикла, которая отражает деятельность разработчиков, связанную с рабочими продуктами итерации после получения результатов. Она вполне аналогична традиционной фазе эксплуатации и сопровождения, однако есть и отличия, обусловленные тем, что объектно-ориентированный проект обычно имеет дело с иерархиями версий системы, отражающими наращивание возможностей. Данная фаза перекрывается с этапом оценки.
Традиционные работы фазы завершения включают в себя:
· поставку, или пакетирование изделия для потребителя (контрольная точка 9 на рис. 9);
· сопровождение программного продукта (по причине разнообразия вариантов организации этих работ они редко описываются структурно, т.е. с разбиением на этапы);
· этап окончания работ (контрольные точки 11, 12): оповещение о прекращении сопровождения и сворачивание деятельности по поддержке версии (версий) 3.
Как уже говорилось, для объектно-ориентированного проектирования существенными являются работы, связанные с переиспользованием рабочих продуктов. До фазы завершения переиспользование обычно рассматривается для текущего проекта (этап пополнения базового окружения). После того, как приложение (рабочий продукт итерации) используется некоторое время, и оно может рассматриваться как готовое, в рамках данной фазы осуществляется:
· выделение общих (т.е. непривязанных к проекту) переиспользуемых компонентов (обычно эти работы связываются с событием передачи системы на распространение -- контрольная точка 10).
Одним из существенных моментов объектно-ориентированного проектирования является отказ от традиционного постулата о том, что все требования к системе сформулированы заранее.
Следовательно, при моделировании жизненного цикла вообще и его фазы завершения в частности нужно учитывать обработку потока внешних требований на всех этапах. Этому вопросу еще будет уделено внимание, а пока можно считать (как чаще всего и бывает), что требования, поступающие на фазе завершения итерации, рассматриваются как относящиеся к следующим итерациям, т.е. к следующим версиям системы.
В таком случае завершение итерации означает сопровождение программного изделия, а затем окончание работ с данной версией. Пожелания к развитию проекта в этот период учитываются как требования к последующим (возможно, еще не начатым) итерациям.
Окончание проекта рассматривается как отказ от сопровождения всех версий системы.
Стоит сопоставить это положение с традиционными подходами к проектированию, когда учет пожеланий к системе в процессе ее эксплуатации чаще всего означает одно: организацию нового проекта (быть может, специального), цель которого -- учет новых требований.
Несколько слов о функциональном измерении в модифицированной для объектно-ориентированного подхода матрице фазы-функции.
Как было показано выше, целесообразно список технологических функций расширить за счет моделирования. Соответственно, следует определить в матрице Гантера строку интенсивностей для этой функции.
В предположении о сохранении распределения интенсивностей других функций (рис. 7) распределение интенсивности для модифицированной модели жизненного цикла можно задать так, как это сделано на рис. 10, который показывает новый вид модели целиком (на рисунке контрольные точки жизненного цикла указаны своими номерами без пояснений).
Представленные распределения интенсивностей нельзя абсолютизировать. Наивно было бы предполагать стабильность интенсивностей технологических функций по итерациям.
Следовательно, весь цикл развития проекта в матричном, двумерном представлении модифицированной гантеровской модели изобразить не удастся: оно не может показать изменение интенсивностей технологических функций при переходе от одной итерации к другой.
По этой причине предлагается распределение интенсивностей технологических функций рассматривать как «среднестатистическую» интегральную по итерациям тенденцию.
Практическая полезность рассмотрения функционального измерения -- не в конкретном распределении интенсивностей технологических функций в реальных проектах, а в том, что оно заставляет руководство проекта думать о расстановке сил в коллективе разработчиков и вообще о правильном распределении кадровых ресурсов проекта.
Рис. 10. Модель фазы--функции, модифицирования для объектно-ориентированного развития проекта.
2.3 Параллельное выполнение итераций
Любой программный проект, заслуживающий привлечения менеджера для поддержки разработки, -- это процесс, развиваемый коллективно. Следовательно, уместно ставить вопрос, как должна отражаться в модели жизненного цикла одновременность деятельности исполнителей коллектива. По вполне понятным причинам, это является одним из мотивов разработки моделей.
В модели, следующей гантеровской схеме фазы -- функции, это качество процесса разработки программного изделия отражено с помощью функционального измерения, показывающего, какие технологические функции выполняются одновременно.
В рамках объектно-ориентированного подхода явно выделяется еще один вид технологического параллелизма: одновременная разработка нескольких итераций разными группами исполнителей (словосочетание «разные группы» не надо понимать буквально -- по существу, это групповые роли, и конкретная группа исполнителей вполне может одновременно отвечать за разработку сразу нескольких итераций).
Технологический параллелизм означает принципиальную осуществимость одновременной разработки нескольких итераций. Однако это не означает разрешения механического их слияния, поскольку итерации зависят одна от другой.
К примеру, невозможно наращивание еще не построенной системы классов, нельзя использовать функцию с неизвестными условиями ее корректного выполнения. Говоря о совмещении работ, нужно всегда знать подобные и другие виды зависимостей. Следует различать следующие области:
· область недопустимого совмещения -- когда выполнение одной работы непосредственно зависит от результатов другой работы;
· область возможного совмещения -- когда зависимость ослаблена тем, что ожидаемые результаты предшествующей работы хорошо описаны (например, построены и проверены модели этапов конструирования, хотя программирование еще не выполнено);
· область рационального совмещения -- когда зависимость работ фактически тем или иным способом экранирована (предшествующая работа выполнена, хотя, быть может, не до конца проверена, составлен и проверяется протокол взаимодействия работ и др.).
Одновременность выполнения разных итераций можно представить в виде схем, показанных на рис. 11.
На рис. 11 а) приведена расшифровка этапов итераций. По сравнению с общей моделью (рис. 10), здесь представлено более мелкое дробление этапов: явно выделены планирование, которое для начальной итерации является частью общего этапа анализа осуществимости, и тестирование как перекрывающаяся часть общих этапов программирования и оценки.
Рис. 11 б) демонстрирует три одновременно выполняемые итерации: вторая начинается в ходе выполнения программирования первой итерации с таким расчетом, чтобы ее этап программирования начался после окончания тестирования первой итерации.
Планирование третьей итерации начинается одновременно с этапом программирования второй итерации.
программный итерация каскад
Рис. 11. Распараллеливание выполнения итераций проекта
Рис. 11 в) показывает области недопустимого, возможного и рационального совмещений, а также область последовательного выполнения двух итераций. Недопустимость совмещения означает, что для планирования очередной итерации нет достаточно полной информации, как следствие, оно не может быть выполнено эффективно.
В ходе конструирования наступает момент, когда такая информация появляется, следовательно, появляется возможность активизации работ над новой итерацией.
Определение области рационального совмещения работ двух итераций отражает то, что было бы неразумно начинать этап программирования новой итерации, когда рабочий продукт предыдущей итерации не протестирован (совмещение, изображенное на рис. 11 б) удовлетворяет этому условию).
Область последовательного выполнения указывает на то время, которое соответствует началу следующей итерации после завершения работ над предыдущей (совмещения нет).
Определение перечисленных областей повышает гибкость распределения времени выполнения проекта. Тем не менее, планируя работы, лучше не рассчитывать на совмещения итераций, а оставлять эту возможность как резерв временного ресурса проекта.
Таким образом, оказывается, что итеративность объектно-ориентированного проектирования обладает дополнительной устойчивостью к рискам невыполнения проектного задания.
2.4 Моделирование итеративного наращивания возможностей системы
В предыдущих моделях жизненного цикла объектно-ориентированного программного обеспечения не был наглядно выделен важный аспект подхода: постепенное наращивание возможностей системы по мере развития проекта.
Для его отражения можно предложить представление жизненного цикла в виде спирали развития, которая показана на рис.12 4.
Рис. 12. Спираль развития объектно-ориентированного проекта
На рисунке горизонтальные отрезки с пометками, имеющими тот же смысл, что и в предыдущей модели, -- это итерации. Они помещены в пространство предоставляемых в зависимости от времени возможностей системы. Линии, параллельные временной оси, отображают уровни пользовательских возможностей, реализуемых на итерациях (римскими цифрами справа указаны номера итераций).
Стрелки-переходы между итерациями учитывают условия совмещения работ, о которых шла речь выше. Этой моделью подчеркивается тот факт объектно-ориентированного развития проектов, что возможности, предоставляемые очередной итерацией, никогда не отменяют уровня, достигнутого на предшествующих итерациях.
Постепенное наращивание возможностей системы по мере развития проекта часто изображают в виде спирали, раскручивающейся на плоскости от центра, как это показано на рис. 13.
В соответствии с этой простой (грубой) моделью развитие проекта описывается как постепенный охват все более расширяющейся области плоскости по мере перехода проекта от этапа к этапу и от итерации к итерации. По существу, данная модель делает акцент на том, что объектно-ориентированное развитие приводит к постепенному расширению прикладной области, для которой используются конструируемые рабочие продукты.
Рис. 13. Модель расширения охвата прикладной области объектно-ориентированной системой
Про объектно-ориентированное развитие проектов часто говорят, что оно предполагает, что традиционные этапы жизненного цикла разработки программной системы никогда не кончаются. Модель раскручивающейся спирали наглядно показывает смысл этого тезиса.
В данной модели можно усмотреть еще один аспект конструирования программных систем -- типичную схему развития коллектива разработчиков, который, начиная от первого своего проекта, постепенно пополняет накапливаемый багаж переиспользуемых в разных системах компонентов.
В отличие от предыдущих моделей, обе спиралевидные модели никак не отражают тот факт, что у проекта есть фаза завершения. Как следствие, они предполагают, что все модификации какой-либо версии программной системы, которые требуются после ее выпуска, будут относиться к одной из следующих версий. На практике очень часто это положение нарушается: приходится поддерживать (и в частности, модифицировать) сразу несколько версий системы.
Литература
1. Брукс Ф.П. Как проектируются и создаются программные комплексы. -- М.: Мир, 2010.
2. Брукс Ф.П. Мифический человеко-месяц, или как создаются программные системы. -- СПб: Символ-Плюс, 2007.
3. Гантер Р. Методы управления проектированием программного обеспечения. -- М.: Мир, 2009.
4. Липаев В.В. и др. Технология проектирования комплексов программ АСУ. -- М.: Радио и связь, 2010.
5. Боэм Б.У. Инженерное проектирование программного обеспечения. -- М.: Радио и связь, 2009.
6. Буч Г. Объектно-ориентированное проектирование с примерами применения. -- М.: Конкорд, 2010.
7. Буч Г., Рамбо Д., Джекобсон А. Язык UML. Руководство пользователя. -- М.: ДМК, 2010.
8. Новоженов Ю.В. и др. Объектно-ориентированные CASE -средства // СУБД. -- 2011, № 5-6. С. 119-125
9. Вендров А.М. CASE -технологии. Современные методы и средства проектирования информационных систем. -- М.: Финансы и статистика, 2010.
10. Ричардс и др. Oracle ® 7.3. Энциклопедия пользователя. -- Киев: «ДиаСофт», 2007.
Размещено на Allbest.ru
...Подобные документы
Требования к технологии проектирования программного обеспечения (ПО). Состав и описание стадий полного жизненного цикла ПО. Классификация моделей жизненного цикла ПО, их особенности. Методологии разработки ПО, приёмы экстремальный программирование.
презентация [874,4 K], добавлен 19.09.2016Понятие технологии разработки программного обеспечения и модели жизненного цикла. Сущность объектно-ориентированного подхода. Строительные блоки, общие механизмы языка моделирования UML, диаграммы классов, состояний, взаимодействий и компонентов.
курсовая работа [262,5 K], добавлен 10.07.2014Общая характеристика основных моделей жизненного цикла: каскадная, инкрементная, спиральная. Стадия как часть процесса создания программного обеспечения, ограниченная определенными временными рамками и заканчивающаяся выпуском конкретного продукта.
презентация [159,1 K], добавлен 27.12.2013Понятие и этапы жизненного цикла программного обеспечения как некоторых событий, которые происходят с системой компьютера в процессе ее создания, внедрения и сопровождения. Модели данного процесса: каскадная, спиральная, их отличительные особенности.
доклад [33,5 K], добавлен 06.04.2015Понятие технологии разработки программы. Основа проектирования программного обеспечения. Модели жизненного цикла, возникшие исторически в ходе развития теории проектирования программного обеспечения. Спиральная (spiral), каскадная и итерационная модели.
презентация [1,0 M], добавлен 11.05.2015Особенности основных, вспомогательных и организационных процессов жизненного цикла автоматизированных информационных систем. Основные методологии проектирования АИС на основе CASE-технологий. Определение модели жизненного цикла программного продукта.
курсовая работа [1,8 M], добавлен 20.11.2010Основные области проектирования информационных систем: базы данных, программы (выполнение к запросам данных), топология сети, конфигурации аппаратных средств. Модели жизненного цикла программного обеспечения. Этапы проектирования информационной системы.
реферат [36,1 K], добавлен 29.04.2010Исследование объектно-ориентированного подхода к проектированию программного обеспечения будильника. Модель программного обеспечения. Взаимодействие между пользователями и системой. Диаграммы и генерация программного кода при помощи средств Rational Rose.
курсовая работа [355,8 K], добавлен 26.09.2014Характеристика программных средств, использованных при разработке сайта. Параметры аппаратных средств для демонстрации ПП. Особенности архитектуры программного обеспечения. Анализ модели жизненного цикла программного продукта. Построение Gant-диаграммы.
курсовая работа [886,9 K], добавлен 30.05.2015Жизненный цикл программного обеспечения. Основные этапы разработки информационной системы (ИС), методики ее внедрения. Модели жизненного цикла ИС, традиционные и альтернативные модели ее создания. Разработка стратегии автоматизации. Проекты создания ИС.
презентация [105,5 K], добавлен 27.04.2013Схемы взаимодействия между заказчиком и разработчиком программного обеспечения. Качество программного обеспечения и определение основных критериев его оценка на современном этапе, особенности управления на стадиях жизненного цикла, анализ достаточности.
презентация [114,7 K], добавлен 14.08.2013Особенности объектно-ориентированного проектирования. Основные понятия объектно-ориентированного подхода. Основы языка UML, варианты его использования. Диаграммы классов и взаимодействия. Разработка диаграммы прецедентов (вариантов использования).
курсовая работа [1,1 M], добавлен 13.05.2014Тестирование и отладка программного обеспечения: понятие, принципы, этапы, цели и задачи. Тестирование методом сандвича как компромисс между восходящим и нисходящим подходами. Сущность метода "белого и черного ящика", отладки программного обеспечения.
курсовая работа [36,9 K], добавлен 21.07.2012Технологии разработки программного обеспечения. Процедура постановки задачи, определения требований. Последовательность действий логической, разветвленной и циклической структуры. Терминология программирования. Этапы создания программного продукта.
презентация [793,8 K], добавлен 15.11.2010Общий календарный план выполнения этапов проекта программного обеспечения. Последовательность разработки согласно классической каскадной модели. Изображение хода работ по спиральной модели согласно Боему. Технические требования на продукт, WBS-структура.
лабораторная работа [614,1 K], добавлен 17.01.2014Технико-экономические показатели разработки. Функциональные модели информационной системы и ее объектно-ориентированное проектирование. Анализ вариантов использования. Тестирование программного продукта, а также исследование технической документации.
курсовая работа [175,2 K], добавлен 14.09.2015Анализ существующего программного обеспечения. Этапы создания проекта. Концептуальное, логическое и физическое проектирование базы данных. Структура программного продукта. Руководство программиста и оператора. Тестирование программного продукта.
курсовая работа [586,4 K], добавлен 26.06.2015Тестирование как составляющая часть процесса отладки программного обеспечения, его роль для обеспечения качества продукта. Обнаружение ошибок в программах, выявление причин их возникновения. Подходы к формулированию критериев полноты тестирования.
курсовая работа [1,6 M], добавлен 20.12.2012Описание проектного решения стратегической системы, этапы объектно-ориентированного анализа и проектирования. Описание связей между объектами. Программная реализация, построение модели состояний объекта. Руководство пользователя и описание программы.
курсовая работа [388,8 K], добавлен 17.11.2011Процессы Oracle CDM. Стадии и этапы выполнения работ по созданию автоматизированной системы (АС). Основные модели жизненного цикла ПО. Требования к содержанию документов. Основная проблема спирального цикла. Работы, выполняемые при разработке проекта.
презентация [194,1 K], добавлен 14.10.2013