Локальные и глобальные сети
Особенности устройства и технологии локальной и глобальной сети. Базовая модель взаимодействия открытых систем OSI. Многоуровневый коммуникационный подход к взаимодействию между устройствами в сети. Специфика упаковки данных и функций в единый компонент.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 17.03.2015 |
Размер файла | 149,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Устройства локальных сетей
Существуют два вида архитектуры сети: одноранговая (Peer-to-peer) и клиент/ сервер (Client/Server), На данный момент архитектура клиент/сервер практически вытеснила одноранговую/Если используется одноранговая сеть, то все компьютеры, входящие в нее, имеют одинаковые права. Соответственно, любой компьютер может выступать в роли сервера, предоставляющего доступ к своим ресурсам, или клиента, использующего ресурсы других серверов, В сети, построенной на архитектуре клиент/сервер, существует несколько основных компьютеров -- серверов. Остальные компьютеры, которые входят в сеть, носят название клиентов, или рабочих станций.
Сервер -- это компьютер, который обслуживает другие компьютеры в сети. Существуют разнообразные виды серверов, отличающиеся друг от друга услугами, которые они предоставляют; серверы баз данных, файловые серверы, принт-серверы, почтовые серверы, веб-серверы и т. д. Одноранговая архитектура получила распространение в небольших офисах или в домашних локальных сетях, В большинстве случаев, чтобы создать такую сеть, вам понадобится пара компьютеров, которые снабжены сетевыми картами, и кабель. В качестве кабеля используют витую пару четвертой или пятой категории. Витая пара получила такое название потому, что пары проводов внутри кабеля перекручены (это позволяет избежать помех и внешнего влияния). Все еще можно встретить достаточно старые сети, которые используют коаксиальный кабель. Такие сети морально устарели, а скорость передачи информации в них не превышает 10 Мбит/с.
После того как сеть будет создана, а компьютеры соединены между собой, нужно настроить все необходимые параметры программно. Прежде всего убедитесь, что на соединяемых компьютерах были установлены операционные системы с поддержкой работы в сети (Linux, FreeBSD, Windows)Все компьютеры в одноранговой сети объединяются в рабочие группы, которые имеют свои имена (идентификаторы).
В случае использования архитектуры сети клиент/сервер управление доступом осуществляется на уровне пользователей. У администратора появляется возможность разрешить доступ к ресурсу только некоторым пользователям. Предположим, что вы делаете свой принтер доступным для пользователей сети. Если вы не хотите, чтобы кто угодно печатал на вашем принтере, то следует установить пароль для работы с этим ресурсом. При одноранговой сети любой пользователь, который узнает ваш пароль, сможет получить доступ к вашему принтеру. В сети клиент/ сервер вы можете ограничить использование принтера для некоторых пользователей вне зависимости от того, знают они пароль или нет.Чтобы получить доступ к ресурсу в локальной сети, построенной на архитектуре клиент/сервер, пользователь обязан ввести имя пользователя (Login -- логин) и пароль (Password). Следует отметить, что имя пользователя является открытой информацией, а пароль - конфиденциальной.
Процесс проверки имени пользователя называется идентификацией. Процесс проверки соответствия введенного пароля имени пользователя -- аутентификацией. Вместе идентификация и аутентификация составляют процесс авторизации. Часто термин «аутентификация»- используется в широком смысле: для обозначения проверки подлинности,
Из всего сказанного можно сделать вывод о том, что единственное преимущество одноранговой архитектуры -- это ее простота и невысокая стоимость. Сети клиент/сервер обеспечивают более высокий уровень быстродействия и защиты.
Достаточно часто один и тот же сервер может выполнять функции нескольких серверов, например файлового и веб-сервера. Естественно, общее количество функций, которые будет выполнять сервер, зависит от нагрузки и его возможностей. Чем выше мощность сервера, тем больше клиентов он сможет обслужить и тем большее количество услуг предоставить. Поэтому в качестве сервера практически всегда назначают мощный компьютер с большим объемом памяти и быстрым процессором (как правило, для решения серьезных задач используются многопроцессорные системы)
2. Устройства глобальных сетей
Сеть состоит из некоммутируемых (выделенных) каналов связи, которые соединяют коммутаторы между собой. Они являются центрами коммутации пакетов. Коммутаторы устанавливаются в пунктах, где требуются ответвление или слияние потоков данных.
WAN - глобальная сеть
S - коммутатор
К - компьютер
R - маршрутизатор
MUX - мультиплексор
PBX - офисная АТС
UNI - интерфейс "пользователь-сеть"
NNI - интерфейс "сеть-сеть"
Оконечными узлами глобальной сети являются: ПК, локальные сети, маршрутизаторы, мультиплексоры.
Они являются устройствами, называемыми оконечное оборудование данных. Эти устройства вырабатывают данные.
Локальная сеть отделена от глобальной маршрутизатором или шлюзом и для глобальной сети представляется единым устройством ООД. Мультиплексор "голос-данные" совмещает в рамках одной сети 2 трафика.
Конечные узлы сети должны чередовать данные по каналу связи определенного стандарта, то есть каждое устройство ООД необходимо оснастить устройством типа аппаратура передачи данных (АПД), которая обеспечит необходимый протокол физического уровня данного канала.
Устройства ООД и АПД размещаются на территории абонента.
Устройства типа АПД бывают 3-х типов:
1) Модемы для работы с выделенными или коммутируемыми аналоговыми каналами.
2) Устройства для работы с цифровыми выделенными каналами технологии TDM.
3) Терминальные адаптеры для работы с цифровыми каналами сети ISDM.
Технологии глобальных сетей определяют 2 типа интерфейса: "пользователь-сеть" и "сеть-сеть".
Интерфейс UNI всегда глубоко детализирован для обеспечения подключения к сети оборудования доступа от разных производителей.
Интерфейс NNI можно не стандартизировать, так как взаимодействия крупных сетей обеспечиваются на индивидуальной основе.
Глобальные сети работают на основе технологии коммутации пакетов, кадров, ячеек.
Обычно глобальная сеть принадлежит компании, которая предоставляет службы сети в аренду.
Предприятия самостоятельно создают сеть, арендуя выделенные и коммутируемые каналы. При отсутствии такой сети предприятие самостоятельно создает сеть.
На арендованных каналах можно построить сеть с промежуточной коммутацией на основе какой-либо технологии: Х.25; Frame Relay; АТМ, или соединять арендованными каналами непосредственно маршрутизаторы или шлюзы локальных сетей.
Глобальные сети делятся на магистральные сети и сети доступа.
Магистральные сети используются для создания одноранговых связей между крупными локальными сетями. Сеть должна обеспечивать высокую пропускную способность и быть постоянно доступной, поэтому она дорогая.
Сети доступа необходимы для связи отдельных абонентов и локальных сетей.
Основные требования: наличие широко разветвленной структуры, чтобы пользователь мог работать, как дома, так и в командировки.
Стоимость удаленного доступа должна быть умеренной, требования к пропускной способности невысокие (несколько Кб/сек).
3. Базовая модель OSI
Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообщений. Похожие механизмы используются для передачи сообщений от отправителя к получателю.
Для того чтобы привести в движение процесс передачи информации через линии связи, необходимы машины с одинаковым кодированием данных и непосредственное соединение между ними. Для единого представления данных в линиях связи, по которым передается информация, сформирована Международная организация по стандартизации (англ. ISO - International Standards Organization).
ISO предназначена для разработки модели международного коммуникационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного пояснения разделим ее на семь уровней. Международная организация по стандартизации (англ. ISO) разработала базовую модель взаимодействия открытых систем OSI (англ. Open Systems Interconnection) в 1984 году. Эта модель является международным стандартом для передачи данных.
Модель содержит семь отдельных уровней:
Уровень № 1: физический - битовые протоколы передачи информации
Уровень № 2: канальный - формирование кадров, управление доступом к среде
Уровень № 3: сетевой - маршрутизация, управление потоками данных
Уровень № 4: транспортный - обеспечение взаимодействия удаленных процессов
Уровень № 5: сеансовый - поддержка диалога между удаленными процессами
Уровень № 6: представления данных - интерпретация передаваемых данных
Уровень № 7: прикладной - пользовательское управление данными
Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль, в том числе и транспортной среде. Благодаря этому общая задача передачи данных разделяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного уровня с выше- и нижерасположенными называют протоколом. Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.
С учетом вышеизложенного можно вывести следующую уровневую модель с административными функциями, выполняющимися на пользовательском прикладном уровне. Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень. На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень.
4. Многоуровневый коммуникационный подход
Взаимодействие между устройствами в сети является сложной задачей. Для ее решения применяют универсальный прием - декомпозицию, который заключается в разбиении одной сложной задачи на несколько более простых задач-модулей. Декомпозиция состоит из четкого определения функций каждого модуля, который решает отдельную задачу, и интерфейсов между ними. В итоге достигается логическое упрощение задачи, к тому же появляется возможность преобразования отдельных модулей без изменения остальной части системы.
При декомпозиции иногда применяют многоуровневый подход. В этом случае все модули разбивают на уровни, которые образуют иерархию, т. е. имеются вышележащие и нижележащие уровни. Модули, составляющие каждый уровень, сформированы таким образом, что для выполнения своих задач они обращаются с запросами только к тем модулям, которые непосредственно примыкают к нижележащим уровням. Однако результаты работы всех модулей, которые принадлежат некоторому уровню, могут быть переданы только модулям соседнего вышележащего уровня. При данной иерархической декомпозиции задачи необходимо четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс устанавливает набор функций, предоставляемых нижележащим уровнем вышележащему. В итоге иерархической декомпозиции достигается значительная независимость уровней, т. е. возможность их легкой замены.
Средства сетевого взаимодействия тоже могут быть представлены в форме иерархически организованного множества модулей. В этом случае модули нижнего уровня способны, в частности, решать все вопросы, связанные с надежной передачей электрических сигналов между двумя соседними узлами. Модули более высокого уровня создадут транспортировку сообщений в пределах всей сети, используя для этого средства нижележащего уровня. На верхнем уровне работают модули, которые предоставляют пользователям доступ к различным службам, среди которых файловая служба, служба печати и т. п. Однако это только один из множества возможных способов для деления общей задачи организации сетевого взаимодействия на частные, более мелкие подзадачи.
Многоуровневый подход, применяемый к описанию и реализации функций системы, используется не только в отношении сетевых средств. Данная модель действия применяется, например, в локальных файловых системах, если поступивший запрос на доступ к файлу по очереди обрабатывается несколькими программными уровнями, в первую очередь верхним уровнем, осуществляющим последовательный разбор составного символьного названия файла и определение уникального идентификатора файла. Последующий уровень находит по уникальному имени все оставшиеся характеристики файла: адрес, атрибуты доступа и т. п. После этого на более низком уровне производится проверка прав доступа к этому файлу, и затем, после расчета координат области файла, содержащей необходимые данные, выполняется физический обмен с внешним устройством с помощью драйвера диска.
Многоуровневое представление средств сетевого взаимодействия обладает своей спецификой, которая связана с тем, что в обмене сообщениями участвуют две машины, т. е. в этом случае следует организовать согласованную работу двух «иерархий». При передаче сообщений оба участника сетевого обмена должны принять много соглашений. Например, им необходимо согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о способах контроля достоверности и т. п. Таким образом, соглашения должны быть приняты для всех уровней, начиная от самого низкого, которым являются уровни передачи битов, до самого высокого, который выполняет сервис для пользователей сети.
Модули, которые реализуют протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными нормами и с помощью стандартизованных форматов сообщений. Эти правила называют интерфейсом. Интерфейс - это набор сервисов, которые предоставляются данным уровнем соседнему уровню. На самом деле протокол и интерфейс определяют одно и то же понятие, но традиционно в сетях за ними закрепили различные области действия: протоколы назначают правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы определяют модули соседних уровней в одном узле.
Средства любого из уровней должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями.
Иерархически организованный набор протоколов, который достаточен для организации взаимодействия узлов в сети, носит название стеков коммуникационных протоколов.
Коммуникационные протоколы можно выполнить как программно, так и аппаратно. Протоколы нижних уровней чаще всего реализуются комбинацией программных и аппаратных средств, а протоколы верхних уровней - обычно чисто программными средствами.
Программный модуль, который реализует некоторый протокол, часто для краткости также именуют протоколом. В данном случае соотношение между протоколом - формально определенной процедурой и протоколом - программным модулем, который выполняет эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.
Один и тот же алгоритм можно запрограммировать с разной степенью эффективности. Аналогично и протокол может обладать несколькими программными средствами реализации. Исходя из этого при сравнении протоколов необходимо учитывать не только логику их работы, но и качество программных решений. Кроме того, на эффективность взаимодействия устройств в сети оказывает влияние качество всей совокупности протоколов, которые составляют стек, в частности, насколько рационально распределены функции между протоколами различных уровней и насколько хорошо определены интерфейсы между ними.
Протоколы организуются не только компьютерами, но и другими сетевыми устройствами, например концентраторами, мостами, коммутаторами, маршрутизаторами и т. д. В общем случае связь компьютеров в сети выполняется не напрямую, а через различные коммуникационные устройства. В зависимости от вида устройства в нем необходимы определенные встроенные средства, которые реализуют тот или иной набор протоколов.
Уровни OSI
Уровень № 1. Физический (англ. physical).
Определяет механический и электрический интерфейс с физическим носителем (т.е. коаксиальным кабелем или витой парой). Под этот уровень подходят физические устройства, управляющие передающим данные электрическим напряжением.
Уровень № 2. Канальный (англ. data link).
Организует биты в «кадры», физический уровень передает их в виде электрических импульсов. На этом уровне происходит отслеживание и исправление ошибок. Довольно часто уровень передачи данных (т.е. канальный уровень) подразделяется еще на два слоя, которые позволяют сгладить различие между физическими сетями, используемыми для соединений в локальных и глобальных сетях. Деление происходит на два подуровня: MAC (англ. Media Access Control - Управление передающей средой) и LLC (англ. Logical Link Control - Управление логической связью). Подуровень MAC предоставляет сетевым картам совместные доступ к физическому уровню. Уровень MAC напрямую связан с сетевой картой и отвечает за безошибочную передачу данных между двумя сетевыми картами. Подуровень LLC управляет передачей данных и определяет точки логического интерфейса (англ. Service Access Points - точки доступа к службам), которые другие компьютеры могут использовать для передачи информации из подуровня LLC в высшие уровни OSI.
Уровень № 3. Сетевой (англ. network).
Использует предоставляемые нижележащим уровнем услуги связи для того, чтобы организовать передачу данных по сети. Сетевой уровень устанавливает правила связи компьютеров через многочисленные сегменты сети, включая «упаковку» сообщений в пакеты, снабженные адресами. Этот уровень отвечает за надежность передачи данных, основной его функцией является предоставление возможностей передачи данных для вышележащего транспортного уровня. Стандартными протоколами этого слоя являются CNLS, CONS, IP и IPX.
Уровень № 4. Транспортный (англ. transport).
Отвечает за надежность обработки данных, вне зависимости от нижележащих уровней. Этот уровень управляет потоком данных в сети и контролем соединения между конечными адресами. К стандартным протоколам этого уровня относятся Transport Class 0, Class 1 и 4, относящиеся к модели OSI, TCP и SPX.
Уровень № 5. Сеансовый (англ. session).
Выполняет функцию посредника между верхними уровнями, которые ориентированы на работу с приложениями, и нижними уровнями, ориентированными на коммуникации в реальном времени. Сеансовый уровень предоставляет возможности для управления и контроля данных в множестве одновременных соединений, контролируя диалог связанных по сети приложений. Этот уровень обеспечивает возможности запуска, приостановки, инициализации и перезапуска сети.
Уровень № 6. Представления данных (англ. presentation).
Определяет форму, которую принимают данные при обмене между рабочими станциями. На компьютере-отправителе ПО этого уровня конвертирует данные из формата уровня приложений в промежуточный, распознаваемый остальными уровнями формат. На компьютере-получателе этот уровень совершает обратное преобразование данных. Уровень представления также управляет средствами защиты сети от несанкционированного доступа, предоставляя такие услуги, как кодирование данных. Кроме того, этот уровень устанавливает правила передачи данных и занимается сжатием передаваемой информации для повышения пропускной способности сети.
Уровень № 7. Прикладной (англ. application).
Предоставляет конечным пользователям возможность пользоваться сетью. На этом уровне производятся высокоуровневые действия, управляемые компонентами локальной операционной системы.
В отличие от остальных уровней модели OSI, этот уровень напрямую доступен конечным пользователям. В его функции входят передача данных, обработка сообщений, управление структурой каталогов, удаленное выполнение программ и эмуляция терминал.
Для передачи информации по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний: «0» и «1»).
Передаваемые алфавитно-цифровые знаки представляются с помощью битовых комбинаций. Битовые комбинации располагают в определенной кодовой таблице, содержащей 4-, 5-, 6-, 7- или 8-битовые коды.
5. Инкапсуляция данных
локальный глобальный сеть
В информатике инкапсуляцией (лат. en capsula) называется упаковка данных и/или функций в единый компонент.
Инкапсуляция, наследование и полиморфизм (в форме ad hoc полиморфизма или полиморфизма подтипов) являются тремя столпами объектно-ориентированного программирования, реализуя в нём принцип абстракции данных (не путать с абстрактными типами данных, реализации которых предоставляют возможность инкапсуляции, но имеют иную природу).
В объектно-ориентированных языках инкапсуляция, как правило, реализуется посредством механизма классов. Некоторые исследователи классифицируют инкапсуляцию как понятие, присущее исключительно объектно-ориентированному программированию, и необходимое для управления сокрытием, но существуют и другие механизмы, рассматривающие эти понятия независимо. Например, применение средств инкапсуляции для многих задач оказывается ненужным в языках, использующих лексическую область видимости, которая обеспечивает полное сокрытие компонентов. Примерами таких языков служат Scheme и Standard ML.
В общем случае, в разных языках программирования термин «инкапсуляция» относится к одной из или обеим одновременно следующим нотациям:
- языковая конструкция, позволяющая связать данные с методами, предназначенными для обработки этих данных;
- механизм языка, позволяющий ограничить доступ одних компонентов программы к другим.
6. Технологии локальных сетей
Технология локальных сетей определяют все компоненты, которые нужны для осуществления обмена информацией. Технологии локальных сетей состоят из топологии, средств передачи данных, алгоритма управления и методов кодирования информации. Для каждой из перечисленных составляющих имеются соответствующие стандарты. Эти стандарты издаются организацией IEEE и они известны под именем IEEE 802.
Стандарты подразделяются на части. Части от 802.3 до 802.5 описывют основные технологии локальных сетей. Различными стандартами Ethernet технологии являются:
802.3 - Ethernet, 10BASE
802.3u - Fast Ethernet (100 Mbit/s), 100BASE
802.3z - Gigabit Ethernet через фибероптические и коаксиальные кабеля
802.3ab - Gigabit Ethernet через витые пары, 1000BASE
802.3ae - 10-Gigabit Ethernet, 10GBASE
Стандарт 802.3 описывает Ethernet'i сети, которые используют алгоритм управления каналом известный под именем CSMA/CD (Carrier sense multiple access with collision detection), стандарт 802.4 описывает локальные сети с методом доступа Token Bus, а стандарт 802.5 разработан на основании технологии Token Ring. У сетей описанных в стандарте 802.3 может быть шинная топология или топология звезды. В стандарте 802.3 основным методом доступа является CSMA/CD. CSMA/CD протокол является очень простым и эффективным, что гарантируют высокие производительность и скорость обмена данными. Простота и эффективность протокола привела к широкому использованию стандарта 802.3 в локальных сетях.
Ethernet была первой технологией использующей дл управления доступом CSMA/CD протоколы. Ethernet дстигла большого успеха благодаря высокой производительности и невысокой цене техники. IEEE 802.3 стандарт является обобщением Etherneti технологии. Он описывает весь класс систем, исползующих метод доступа CSMA/CD. В основу протокола CSMA/CD положены две концепции:
- избегание конфликтов, если общая среда передачи уже занята ещё ло начала передачи
- котролировать возможные конфликты и разрешать их, разбивая передачу на отдельные периоды времени.
Если рабочее устройство решает передавать данные, то оно проверяет для начала занята ли среда передачи. Если среда занята, то оно ожидает до тех пор пока среда не освободится, иначе начинает передачу данных. Если две (или более) рабочие станции воспринимают, что канал свободен и делают попытку передачи данных одновременно, то возникает конфликт. Рабочие станции способны обнаруживать конфликты и в этом случае они приостанавливают попытку передачи на некоторое время и ждут прежде, чем сделать новую попытку.
Другая возможность управления доступа к среде передачи - эстафетная передача, передача маркера (Token Passing), осуществляемый в среде передачи данных с кольцевой архитектурой. При этом от станции к станции передаётся специальный сигнал (маркер). Станция может начать передачу сразу после поступления к ней маркера и должна передать маркер дальше в течение короткого интервала времени. Только та станция может осуществлять передачу, у которой в настоящий момент находится маркер. Надо учитывать, что максимальное время ожидания оценивается чилом станций в кольце.
При этом порядок расположения станций в сети является лишь логическим. Кольцо само назначает для станции её соседей и это не значит, что тот же порядок отвечает физическому расположению станций.
7. Сеть Ethernet и стандарт IEEE 802.3
Понимание, как работают локальные сети, включая фрэймовые компоненты, адресацию Ethernet, операционные характеристики - очень важно для изучения сетевых технологий. Эта лекция описывает базовые операции сети Ethernet и передачу по ней фрэймов.
Ethernet был разработан в 1970-ом году компаниями Digital Equipment Corporation (DEC), Intel, и Xerox, и был назван DIX Ethernet. Позже он был назван «тонкий» Ethernet из-за использования тонкого коаксиального кабеля, скорость передачи была 10 Mbps. Стандарт Ethernet был доработан в 80-х годах для увеличения пропускной способности, новая версия была названа Ethernet-II. Институт электрического и электронного проектирования(IEEE) - организация, определяющая сетевые стандарты. Стандарты IEEE - преобладающие и наиболее известные LAN-стандарты в мире на сегодняшний день. Когда, в середине 80-х, IEEE определила новые стандарты для Ethernet для публичного использования, тогда этот стандарт назвали Ethernet 802.3.Он был основан на методе CSMA/CD - множественный доступ с контролем несущей и обнаружением коллизий. Этот метод будет описан ниже. Стандарт Ethernet 802.3 описывает физический уровень модели OSI и часть 2-го уровня (MAC-адресация). Сегодня этот стандарт часто называют Ethernet.
Адреса Ethernet
Каждый компьютер, независимо от того, подключен он к сети или нет, имеет уникальный физический адрес. Не существует двух одинаковых физических адресов. Физический адрес (или МАС-адрес) зашит на плате сетевого адаптера. Таким образом, в сети именно плата сетевого адаптера подключает устройство к среде передачи данных. МАК-адреса представляются группой шестнадцатеричных чисел, сгруппированными по два или по четыре, например: 00:00:0c:43:2e:08 or 0000.0c43.2e08 Каждая плата сетевого адаптера, который работает на канальном уровне эталонной модели OSI, имеет свой уникальный МАС-адрес. В сети, когда одно устройство хочет переслать данные другому устройству, оно может установить канал связи с этим другим устройством, воспользовавшись его МАС-адресом. Отправляемые источником данные содержат МАС-адрес пункта назначения. По мере продвижения пакета в среде передачи данных сетевые адаптеры каждого из устройств в сети сравнивают МАС-адрес пункта назначения, имеющийся в пакете данных, со своим собственным физическим адресом. Если адреса не совпадают, сетевой адаптер игнорирует этот пакет, и данные продолжают движение к следующему устройству. Если же адреса совпадают, то сетевой адаптер делает копию пакета данных и размещает ее на канальном уровне компьютера. После этого исходный пакет данных продолжает движение по сети, и каждый следующий сетевой адаптер проводит аналогичную процедуру сравнения. МАК адрес состоит из двух основных частей:
24-bit Уникальный Идентификатор Организации (OUI): Эта часть МАК-адреса определяет производителя устройства, присвоение OUI регулирует организация IEEE. Кроме того, в OUI содержатся несколько групп битов:
Широковещательный бит: Показывает, что фрэйм направлен всем оконечным устройствам сети.
Бит локальных изменений адреса: Обычно комбинация OUI и 24-битный адрес станции абсолютно уникальны, однако если адрес был вручную изменён, этот бит должен быть установлен.
Идентификатор, присвоенный организации: 22 оставшихся бита.
24-bit Назначенный производителем уникальный номер.
Стандарты Ethernet
Ethernet стандарты локальных сетей описывают передачу сигналов по кабелям одновременно на физическом и канальном уровнях модели OSI. IEEE делит канальный уровень модели OSI на 2 отдельных подуровня:
Логическое управление соединением(LLC): Переходит в сетевой уровень
MAC: Соединяется с физическим уровнем
Подуровень логическим управлением соединением LLC
IEEE выделила подуровень LLC, чтобы позволить части канального уровня функционировать независимо от существующих технологий. Этот уровень обеспечивает сервис для протоколов сетевого уровня, находящихся выше, когда происходит обмен данными между МАК-подуровнем и физическим уровнем. Подуровень LLC принимает участие в процессе инкапсуляции. Заголовок LLC говорит, при получении кадра, канальному уровню что делать с пакетом.
МАК
Подуровень МАК взаимодействует с физическим уровнем. Стандарт IEEE 802.3 определяет МАК-адрес как уникальный идентификатор различных устройств канального уровня. Подуровень МАК содержит также таблицу МАК-адресов(физических адресов) устройств. Каждое устройство должно иметь уникальный МАК-адрес для того, чтобы нормально функционировать в сети.
8. Основные характеристики технологии
Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:
· повысить битовую скорость передачи данных до 100 Мбит/с;
· повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;
· максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.
Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.
В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru - «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.
В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.
Реконфигурация колец FDDI при отказе
В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей. Технология FDDI дополняет механизмы обнаружения отказов технологии Token Ring механизмами реконфигурации пути передачи данных в сети, основанными на наличии резервных связей, обеспечиваемых вторым кольцом.
Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring.
Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной, как в сети Token Ring. Это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля. Эти изменения в методе доступа касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по-прежнему остается фиксированной величиной. Механизм приоритетов кадров, аналогичный принятому в технологии Token Ring, в технологии FDDI отсутствует. Разработчики технологии решили, что деление трафика на 8 уровней приоритетов избыточно и достаточно разделить трафик на два класса - асинхронный и синхронный, последний из которых обслуживается всегда, даже при перегрузках кольца.
В остальном пересылка кадров между станциями кольца на уровне MAC полностью соответствует технологии Token Ring. Станции FDDI применяют алгоритм раннего освобождения маркера, как и сети Token Ring со скоростью 16 Мбит/с.
Адреса уровня MAC имеют стандартный для технологий IEEE 802 формат. Формат кадра FDDI близок к формату кадра Token Ring, основные отличия заключаются в отсутствии полей приоритетов. Признаки распознавания адреса, копирования кадра и ошибки позволяют сохранить имеющиеся в сетях Token Ring процедуры обработки кадров станцией-отправителем, промежуточными станциями и станцией-получателем.
FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDI используется протокол подуровня управления каналом данных LLC, определенный в стандарте IEEE 802.2. Таким образом, несмотря на то что технология FDDI была разработана и стандартизована институтом ANSI, а не комитетом IEEE, она полностью вписывается в структуру стандартов 802.
Структура протоколов технологии FDDI
Отличительной особенностью технологии FDDI является уровень управления станцией - Station Management (SMT). Именно уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью.
Отказоустойчивость сетей FDDI обеспечивается протоколами и других уровней: с помощью физического уровня устраняются отказы сети по физическим причинам, например из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например потеря нужного внутреннего пути передачи маркера и кадров данных между портами концентратора
9. Сети Token Ring
Станции на локальной вычислительной сети (LAN) Token Ring логически организованы в кольцевую топологию с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркера совместно использован ARCNET, маркерной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet. Максимальный размер полезного блока данных (MTU) 4464 байта.
Сфера применения
В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркера являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет, прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах.
Применяется как более дешёвая технология, получила распространение везде, где есть ответственные приложения, для которых важна не столько скорость, сколько надёжная доставка информации. В настоящее время Ethernet по надёжности не уступает Token Ring и существенно выше по производительности.
Размещено на Allbest.ru
...Подобные документы
Эволюция памяти компьютеров на основе оптических носителей. Организация записи данных на компакт-диски. Локальные компьютерные сети. Формат кадра технологии Ethernet. Многоуровневая модель взаимодействия открытых систем ISO/OSI. Прикладные протоколы.
курсовая работа [988,0 K], добавлен 02.12.2012Применение сетевых технологий в управленческой деятельности. Понятие компьютерной сети. Концепция открытых информационных систем. Преимущества объединения компьютерных сетей. Локальные вычислительные сети. Глобальные сети. Международная сеть INTERNET.
курсовая работа [38,1 K], добавлен 16.04.2012История развития локальных сетей. Структура и модель взаимодействия открытых систем OSI. Сравнительная характеристика видов топологии сети. Схема организации и функции биллинговых систем. Возможности операционных систем при организации локальной сети.
дипломная работа [4,3 M], добавлен 05.06.2011Историческая справка о глобальной информационной сети Internet. Основные типы конечных узлов глобальной сети: отдельные компьютеры, локальные сети, маршрутизаторы и мультиплексоры. Физическая структуризация сети. Навигация и передача данных в интернете.
контрольная работа [31,5 K], добавлен 27.10.2013Аппаратные и программные средства, на базе которых возможно построение локальной сети. Локальные и глобальные сети. Одноранговые и многоранговые сети. Топологии объединения группы компьютеров в локальную сеть. Используемые технологии локальных сетей.
курсовая работа [587,7 K], добавлен 12.05.2008Виды компьютерных сетей. Преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети. Базовая модель OSI. IP-адресация и передача данных. Сетевые устройства и средства коммуникаций.
курсовая работа [2,1 M], добавлен 04.05.2014Выбор и обоснование технологии построения ЛВС. Анализ среды передачи данных. Выбор и обоснование аппаратного обеспечения сети, коммуникационные устройства. Расчет пропускной способности сети Fast Ethernet. Программное обеспечение управления сетью.
курсовая работа [1,2 M], добавлен 04.03.2014Принцип построения компьютерных сетей: локальные вычислительные сети и глобальные компьютерные сети Internet, FidoNet, FREEnet и другие в деле ускорения передачи информационных сообщений. LAN и WAN сети, права доступа к данным и коммутация компьютеров.
курсовая работа [316,0 K], добавлен 18.12.2009Активные и пассивные устройства физического уровня. Основные схемы взаимодействия устройств. Архитектура физического уровня. Базовая эталонная модель взаимодействия открытых систем. Параметры сред передачи данных. Характеристики сетевых концентраторов.
курсовая работа [525,8 K], добавлен 02.02.2014Классификация локальной вычислительной сети. Типы топологий локальной вычислительной сети. Модель взаимодействия систем OSI. Сетевые устройства и средства коммуникаций. Виды сетевых кабелей. Конфигурация компьютеров-серверов, техники рабочих станций.
курсовая работа [1,3 M], добавлен 05.01.2013Общие сведения о вычислительных сетях, история их появления. Локальные и глобальные сети. Пакет как основная единица информации вычислительной сети. Главные способы переключения соединений. Методы организации передачи данных между компьютерами.
презентация [611,9 K], добавлен 25.11.2012Понятие информационной технологии. Обобщенная структура компьютерной сети. Разработка программы, позволяющей передавать звук по локальной сети и по глобальной сети Интернет в реальном времени. Создание собственной Интернет-радиостанции с помощью Delphi.
курсовая работа [376,0 K], добавлен 02.07.2010Сравнительный анализ топологий сети. Описательная сущность эталонной модели взаимосвязи открытых систем (OSI) и сетевых протоколов. Разработка структурно-функциональной схемы локальной сети, расчет производительности каналов и подбор оборудования.
курсовая работа [1,1 M], добавлен 16.11.2010Этапы развития компьютерной техники во второй половине XX века. Понятие и различные конфигурации локальных сетей, цели их использования. Особенности глобальной сети, интегрированные приложения для работы в Интернете. Обеспечение безопасности данных.
презентация [380,8 K], добавлен 08.11.2012Локальные вычислительные сети. Пропускная способность сети. Определение загруженности сети. Выбор физической среды передачи данных. Распределение адресного пространства. Проверочный расчет времени двойного оборота. Пассивное сетевое оборудование.
курсовая работа [2,9 M], добавлен 17.02.2012Требования к локальной сети. Основные типы сетей. Аппаратное обеспечение сети. Выбор регистрирующего устройства. Технологический процесс проводки сети. Расчет максимально допустимого расстояния между наиболее удаленными станциями локальной сети.
дипломная работа [2,8 M], добавлен 13.08.2016Особенности проектирования локальной сети для учебного учреждения на основе технологии Ethernet, с помощью одного сервера. Описание технологии работы сети и режимов работы оборудования. Этапы монтажа сети, установки и настройки программного обеспечения.
курсовая работа [1,9 M], добавлен 16.02.2010Структура локальной компьютерной сети организации. Расчет стоимости построения локальной сети. Локальная сеть организации, спроектированная по технологии. Построение локальной сети Ethernet организации. Схема локальной сети 10Base-T.
курсовая работа [126,7 K], добавлен 30.06.2007Понятие сети ЭВМ и программного обеспечения компьютерных сетей. Локальные, корпоративные и глобальные вычислительные сети. Технологии сетевых многопользовательских приложений. Сетевые ОС NetWare фирмы Novell. Назначение службы доменных имен DNS.
учебное пособие [292,6 K], добавлен 20.01.2012Схема соединения компьютеров в локальной сети: линейная шина, звезда, кольцо. Аппаратное обеспечение: адаптер для передачи и према информации. Создание всемирной компьютерной сети Интернет. Базовые и прикладные протоколы. Способы подключения к интернету.
презентация [153,4 K], добавлен 27.04.2015