История создания и развития ЭВМ. Поколения ЭВМ

Изучение особенностей возникновения первых вычислительных машин. Рассмотрение роли создания дифференциального анализатора в развитии разработки компьютера. Характеристика аспектов прогресса операционных систем. Рассмотрение основных поколений ЭВМ.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 17.03.2015
Размер файла 40,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство сельского хозяйства Российской Федерации

ФГБОУ ВПО

Государственный аграрный университет Северного Зауралья

Институт Экономики и финансов

Кафедра Экономико-математических методов и вычислительной техники

РЕФЕРАТ

по теме:

История создания и развития ЭВМ. Поколения ЭВМ

Тюмень, 2014 г

Введение

История счётных устройств насчитывает много веков. Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. Для облегчения счета люди стали использовать пальцы сначала одной руки, затем обеих, а в некоторых племенах и пальцы ног.

Раннему развитию письменного счета препятствовала сложность арифметических действий при существовавших в то время перемножениях чисел. Кроме того, писать умели немногие и отсутствовал учебный материал для письма - пергамент начал производиться примерно со II века до н.э., папирус был слишком дорог, а глиняные таблички неудобны в использовании. Эти обстоятельства объясняют появление специального счетного прибора - абака. Он представлял собой доску с желобками, в которых по позиционному принципу размещали какие-нибудь предметы - камешки, косточки. Позднее, около 500 г. н.э., абак был усовершенствован и на свет появились счёты - устройство, состоящее из набора костяшек, нанизанных на стержни. На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с XV века получил распространение "дощаный счет", который почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.

В конце XV века Леонардо да Винчи (1452-1519) создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Но рукописи да Винчи обнаружили лишь в 1967г., поэтому биография механических устройств ведется от суммирующей машины Паскаля. По его чертежам в наши дни американская фирма по производству компьютеров в целях рекламы построила работоспособную машину.

1. Первые вычислительные машины

вычислительный компьютер анализатор

В 1623 г. Вильгельм Шиккард - профессор Тюбинского университета описал устройство "часов для счета". Это была первая механическая машина, которая могла только складывать и вычитать. В наше время по его описанию построена ее модель.

В 1642 г. французский математик Блез Паскаль (1623-1662) сконструировал счетное устройство, чтобы облегчить труд своего отца - налогового инспектора. Это устройство позволяло суммировать десятичные числа. Внешне оно представляло собой ящик с многочисленными шестеренками. Основой суммирующей машины стал счетчик-регистратор, или счетная шестерня. Она имела десять выступов, на каждом из которых были нанесены цифры.

Для передачи десятков на шестерне располагался один удлиненный зуб, зацеплявший и поворачивающий промежуточную шестерню, которая передавала вращение шестерне десятков. Дополнительная шестерня была необходима для того, чтобы обе счетные шестерни - единиц и десятков - вращались в одном направлении. Счетная шестерня при помощи храпового механизма (передающего прямое движение и не передающего обратного) соединялись с рычагом. Отклонение рычага на тот или иной угол позволяло вводить в счетчик однозначные числа и суммировать их. В машине Паскаля храповой привод был присоединен ко всем счетным шестерням, что позволяло суммировать и многозначные числа.

В 1673 г. немецкий философ, математик, физик Готфрид Вильгельм Лейбниц (1646-1716) создал "ступенчатый вычислитель" - счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни, при этом использовалась двоичная система счисления. Это был более совершенный прибор, в котором использовалась движущаяся часть (прообраз каретки) и ручка, с помощью которой оператор вращал колесо. Машина являлась прототипом арифмометра, использующегося с 1820 года до 60-х годов ХХ век

В 1804 г. французский изобретатель Жозеф Мари Жаккар (1752-1834) придумал способ автоматического контроля за нитью при работе на ткацком станке. Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Переходя к новому рисунку, оператор просто заменял одну колоду перфокарт другой. Создание ткацкого станка, управляемого картами с пробитыми на них отверстиями и соединенными друг с другом в виде ленты, относится к одному из ключевых открытий, обусловивших дальнейшее развитие вычислительной техники.

Чарльз Ксавьер Томас (1785-1870) в 1820г. создал первый механический калькулятор, который мог не только складывать и умножать, но и вычитать и делить. Бурное развитие механических калькуляторов привело к тому, что к 1890 году добавился ряд полезных функций: запоминание промежуточных результатов с использованием их в последующих операциях, печать результата и т.п. Создание недорогих, надежных машин позволило использовать их для коммерческих целей и научных расчетов.

В 1822г. английский математик Чарлз Бэббидж (1792-1871) выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, Разностная машина, работала на паровом двигателе. Она высчитывала таблицы логарифмов методом постоянной дифференциации и заносила результаты на металлическую пластину. Работающая модель, которую он создал в 1822 году, была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.).

Аналитическую машину Бэббиджа построили энтузиасты из Лондонского музея науки. Она состоит из четырех тысяч железных, бронзовых и стальных деталей и весит три тонны. Правда, пользоваться ею очень тяжело - при каждом вычислении приходится несколько сотен (а то и тысяч) раз крутить ручку автомата. Числа записываются (набираются) на дисках, расположенных по вертикали и установленных в положения от 0 до 9. Двигатель приводится в действие последовательностью перфокарт, содержащих инструкции (программу).

Одновременно с английским ученым работала леди Ада Лавлейс (1815-1852). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени. Леди Лавлейс была единственной дочерью Джорджа Гордона Байрона. Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х гг. нашего столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada. С недавнего времени у программистов всего мира появился свой профессиональный праздник. Он так и называется - "День программиста" - и празднуется 10 декабря. Как раз в день рождения Ады Лавлейс. В 1855 г. братья Джорж и Эдвард Шутц из Стокгольма построили первый механический компьютер, используя работы Ч. Бэббиджа. В 1878 г. русский математик и механик Пафнутий Львович Чебышев создает суммирующий аппарат с непрерывной передачей десятков, а в 1881 году - приставку к нему для умножения и деления. 1880г. Вильгодт Теофилович Однер, швед по национальности, живший в Санкт-Петербурге сконструировал арифмометр. Его арифмометры отличались надежностью, средними габаритами и удобством в работе. Над арифмометром Однер начал работать в 1874 году, а в 1890 году он налаживает массовый выпуск арифмометров. Их модификация "Феликс" выпускалась до 50-х годов XX века.

2. Начало XX века

1918 год. Русский ученый М.А. Бонч-Бруевич и английские ученые В. Икклз и Ф. Джордан (1919) независимо друг от друга создали электронное реле, названное англичанами триггером, которое сыграло большую роль в развитии компьютерной техники.

В 1930г. Виннивер Буш (1890-1974) конструирует дифференциальный анализатор. По сути, это первая успешная попытка создать компьютер, способный выполнять громоздкие научные вычисления. Роль Буша в истории компьютерных технологий очень велика, но наиболее часто его имя всплывает в связи с пророческой статьей "As We May Think" (1945), в которой он описывает концепцию гипертекста.

В 1937 году гарвардский математик Говард Эйкен предложил проект создания большой счетной машины. Спонсировал работу президент компании IBM Томас Уотсон, который вложил в нее 500 тыс. $. Проектирование Mark-1 началось в 1939 году, строило этот компьютер нью-йоркское предприятие IBM. Компьютер содержал около 750 тыс. деталей, 3304 реле и более 800 км проводов. В 1946 году Джон фон Нейман предложил ряд новых идей организации ЭВМ, в том числе концепцию хранимой программы, т.е. хранения программы в запоминающем устройстве. В результате реализации идей фон Неймана была создана архитектура ЭВМ, во многих чертах сохранившаяся до настоящего времени.

В 1947 году появилась счётная машина Mark-2, которая представляла собой первую многозадачную машину - наличие нескольких шин позволяло одновременно передавать из одной части компьютера в другую несколько чисел. 23 декабря 1947г. сотрудники Bell Telephone Laboratories Джон Бардин и Уолтер Бремен впервые продемонстрировали свое изобретение, получившее название транзистор. Это устройство спустя десять лет открыло совершенно новые возможности.

В 1948 году академиком С.А. Лебедевым (1890-1974) и Б.И. Рамеевым был предложен первый проект отечественной цифровой электронно-вычислительной машины: сначала МЭСМ - малая электронная счетная машина (1951 год, Киев), затем БЭСМ - быстродействующая электронная счетная машина (1952 год, Москва). Параллельно с ними создавались Стрела, Урал, Минск, Раздан, Наири.

В 1951 году в Англии появились первые серийные компьютеры Ferranti Mark-1 и LEO-1. А через 5 лет фирма Ferranti выпустила ЭВМ Pegasus, в которой впервые нашла воплощение концепция регистров общего назначения. Джей Форрестер запатентовал память на магнитных сердечниках. Впервые такая память применена на машине Whirlwind-1. Она представляла собой два куба с 32х32х17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля четности. В этой машине была впервые использована универсальная неспециализированная шина (взаимосвязи между различными устройствами компьютера становятся гибкими) и в качестве систем ввода-вывода использовались два устройства: электронно-лучевая трубка Вильямса и пишущая машинка с перфолентой (флексорайтер).

В 1952г. началась опытная эксплуатация отечественного компьютера БЭСМ-1. В СССР в 1952-1953 годах А.А. Ляпунов разработал операторный метод программирования (операторное программирование), а в 1953-1954 годах Л.В. Канторович - концепцию крупноблочного программирования. В 1955 году увидел свет первый алгоритмический язык FORTRAN (FORmule TRANslator - переводчик формул). Он использовался для решения научно-технических и инженерных задач и разработан сотрудниками фирмы IBM под руководством Джон Бэкуса. В 1958г. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Semiconductor независимо друг от друга изобретают интегральную схему.

1959 г. Под руководством С.А. Лебедева создана машина БЭСМ-2 производительностью 10 тыс. опер. /с. С ее применением связаны расчеты запусков космических ракет и первых в мире искусственных спутников Земли, а затем машина М-20 - для своего времени одна из самых быстродействующих в мире (20 тыс. опер. /с.).

В 1960 году появился ALGOL (Algoritmic Language - алгоритмический язык), ориентированный на научное применение. В него введено множество новых понятий, например, блочная структура. Этот язык стал концептуальным основанием многих языков программирования. Тринадцать европейских и американских специалистов по программированию в Париже утвердили стандарт языка программирования ALGOL-60.

1963 г. - начало выпуска ЭВМ "Минск-32" с внешней памятью на сменных магнитных дисках. Появились машины второго поколения, построенные на неполупроводниковой элементной базе - на магнитных элементах. Так, в МГУ им. М.В. Ломоносова коллективом под руководством Н.П. Брусенцова была создана машина Сетунь (производившаяся серийно в 1962-1964 годах).

Машина "Сетунь" является малогабаритной машиной, выполненной на магнитных элементах. Это одноадресная машина с фиксированной запятой. В качестве системы счисления в ней используется троичная система с цифрами 0, 1, - 1. "Сетунь" является первой в мире машиной, использующей эту систему счисления.

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора. Фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью. В 1967г. под руководством С.А. Лебедева и В.М. Мельникова в ИТМ и ВТ создана быстродействующая вычислительная машина БЭСМ-6. За ним последовал "Эльбрус" - ЭВМ нового типа, производительностью 10 млн. опер. /с. 1968г. в США фирма "Барроуз" выпустила первую быстродействующую ЭВМ на БИСах (больших интегральных схемах) - В2500 и В3500.

В 1968-1970 годах профессор Никлаус Вирт создал в Цюрихском политехническом университете язык PASCAL, названный в честь Блеза Паскаля - первого конструктора устройства, которое теперь относится к классу цифровых вычислительных машин. PASCAL создавался как язык, который, с одной стороны, был бы хорошо приспособлен для обучения программированию, а с другой - давал бы возможность эффективно решать самые разнообразные задачи на современных ЭВМ.

3. Вторая половина XX века

29 октября 1969 года принято считать днем рождения Сети. В этот день была предпринята самая первая, правда, не вполне удавшаяся, попытка дистанционного подключения к компьютеру, находившемуся в исследовательском центре Стэнфордского университета (SRI), с другого компьютера, который стоял в Калифорнийском университете в Лос-Анджелесе (UCLA). Удаленные друг от друга на расстояние 500 километров, SRI и UCLA стали первыми узлами будущей сети ARPANet.

В 1971г. фирмой Intel (США) создан первый микропроцессор (МП) - программируемое логическое устройство, изготовленное по технологии СБИС. Появился компьютер IBM/370 модель 145 - первый компьютер, в основной памяти которого использовались исключительно интегральные схемы. В свет выходит первый карманный калькулятор Poketronic.

Деннис Ритчи из Bell Lab's разработал язык программирования "С" (Си). Так его назвали потому, что предыдущая версия называлась "В".

В 1968 году в Минске началась работа над первой машиной семейства ЕС. 1971 г. - начало выпуска моделей серии ЕС, ЕС-1020 (20 тыс. оп/сек), так как с 70-х годов прекратился выпуск "Минсков" и пензенских "Уралов". Хотя надо понимать, что ориентация на системы IBM не означала бездумного копирования. Это было просто невозможно, поскольку, несмотря на некоторое потепление отношений с Западом, легальные пути получить машину и программное обеспечение полностью отсутствовали. Разработка моделей "Ряда" шла на основе имевшихся публикаций по принципам архитектуры и операционных систем IBM. Так что все машины ЕС можно в какой-то мере считать оригинальными разработками и все они были запатентованы.

1974 г. Фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами.

В 1975г. Джин Амдал разработал компьютер четвертого поколения на БИС - AMDAL-470 V/6. Гарри Килдалл из фирмы Digital Reseach разработал операционную систему CP/M.

Молодой программист Пол Аллен и студент Гарвардского университета Билл Гейтс реализовали для Альтаира язык Бейсик. Впоследствии они основали фирму Майкрософт (Microsoft), являющуюся сегодня крупнейшим производителем программного обеспечения.

В 1976 г. молодые американцы Стив Джобс и Стив Возняк организовали предприятие по изготовлению персональных компьютеров "Apple" ("Яблоко"), предназначенных для большого круга непрофессиональных пользователей.

В 1980 году появился язык ADA, названный в память об Аде Лавлейс - первой программистки в истории вычислительной техники. Он был создан во Франции по заказу американского министерства обороны как универсальный язык программирования. В него включены такие возможности как системное программирование, параллельность и т.д.

1981 г. Фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.1982 г. Фирма Intel выпустила микропроцессор 80286.

В 1982 году было положено начало знаменитой серии х86. 16-разрядный микропроцессор Intel 80286 на базе 134 тыс. транзисторов по производительности втрое опережал модели конкурентов. Отличительной особенностью этой разработки было то, что здесь впервые реализован принцип программной совместимости с процессорами следующих поколений за счет встроенных средств управления памятью.

В 1982 году Питер Нортон случайно стер нужный файл с жесткого диска своего персонального компьютера. Восстановление файла оказалось сложным и кропотливым делом. Однако сложившаяся ситуация привела к тому, что Нортон создал программу, являющуюся прообразом сегодняшних утилит.

1984 г. Корпорация Apple Computer выпустила компьютер Macintosh - первую модель знаменитого впоследствии семейства Macintosh c удобной для пользователя операционной системой, развитыми графическими возможностями, намного превосходящими в то время те, которыми обладали стандартные IBM-совместимые ПК с MS-DOS. Эти компьютеры быстро приобрели миллионы поклонников и стали вычислительной платформой для целых отраслей, таких например, как издательское дело и образование.

Sony и Philips разрабатывают стандарт CD-ROM-стандарт записи компакт-дисков. Также разработаны стандарты MIDI и DNS. Фирма IBM выпустила персональный компьютер IBM PC/AT.

1985 г. фирма Intel выпустила 32-битный микропроцессор 80386, состоящий из 250 тыс. транзисторов. Фирма Microsoft выпустила первую версию графической операционной среды Windows. В тот же год произошло появление нового языка программирования "C++".

В 1986 году в СССР начинается выпуск одной из самых популярных машин линии СМ, микроЭВМ СМ 1810, которая тоже могла выступать в роли персонального компьютера. Стоит упомянуть те персональные компьютеры, которые в середине 80-х годов выпускала отечественная промышленность. По уровню возможностей их делили на бытовые и профессиональные. К классу бытовых относилась выпускавшаяся в Зеленограде "Электроника БК-0010" (БК - бытовой компьютер), которая в качестве дисплея использовала обычный телевизор и обеспечивала всего 64 Кбайт ОЗУ. А другая разработка Министерства электронной промышленности, "Электроника-85", была оснащена специальным дисплеем и 4 Мбайт оперативной памяти. К классу профессиональных относилась и машина под названием "Искра-226".

Конец 80-х - конец эпохи советского компьютеростроения. Время расцвета отечественных школ по разработке ЭВМ уже позади. Однако их 40-летняя история имела достойный, хотя и несколько грустный финал. В 1989 году завершается работа над двумя последними советскими суперЭВМ - введена в опытную эксплуатацию "Электроника СС БИС" и закончена разработка "Эльбруса 3-1". Обе машины - плод творческих усилий крупнейших советских инженеров, учеников Сергея Алексеевича Лебедева.

В 1989 г. Intel выпускает очередной чип - 80486. Это первый процессор с количеством транзисторов, превышающим 1 млн. Microsoft выпустила текстовый процессор WORD. Разработан формат графических файлов GIF.

В марте 1989 г. Тим Бернерс-Ли предложил концепцию новой распределенной информационной системы, которую назвал World Wide Web. Гипертекстовая технология должна была позволить легко "перепрыгивать": из одного документа в другой. В 1990 году эти предложения были приняты, и проект стартовал. Тим Бернерс-Ли разработал язык HTML (Hypertext Markup Language - язык разметки гипертекста; основной формат Web-документов) и прототип Всемирной паутины. В 1991г. фирма Microsoft выпустила ОС Windows 3.1. Разработан графический формат JPEG. В 1992г. появилась первая бесплатная операционная система с большими возможностями - Linux. Финский студент Линус Торвальдс (автор этой системы) решил поэкспериментировать с командами процессора Intel 386 и то, что получилось, выложил в Internet. Сотни программистов из разных стран мира стали дописывать и переделывать программу. Она превратилась в полнофункциональную работающую операционную систему. История умалчивает о том, кто решил назвать ее Linux, но как появилось это название - вполне понятно. "Linu" или "Lin" от имени создателя и "х" или "ux" - от UNIX, т.к. новая ОС была очень на нее похожа, только работала теперь и на компьютерах с архитектурой х86.

4. Последний этап

В 1993г. фирма Intel выпустила 64-разрядный микропроцессор Pentium, который состоял из 3,1 млн. транзисторов и мог выполнять 112 млн. операций в секунду. Появился формат сжатия видео MPEG. В 1996 г. фирма Microsoft выпустила Internet Explorer 3. 0 - достаточно серьезного конкурента Netscape Navigator. В 1998 г. браузер Internet Explorer становится частью операционной системы Windows 98. Представители Microsoft утверждают, что удалить браузер из ОС невозможно.

17 февраля 2000 г. выпущена окончательная версия Windows 2000 (также называемая Win2k, W2k или Windows NT 5. 0) - это операционная система семейства Windows NT компании Microsoft, предназначенная для работы на компьютерах с 32-битными процессорами (с архитектурой совместимой с Intel IA-32).

Июнь 2000г. - Компания IBM создала новый суперкомпьютер серии RS/6000 SP - ASCI White (Accelerated Strategic Computing Initiative White Partnership) - первый компьютер, производительность которого превышает 10 TFLOPS. Пиковая производительность суперкомпьютера - 12,3 TFLOPS; компьютер способен постоянно работать на скорости 3 TFLOPS.

25 октября 2001 года - Windows XP (кодовое название при разработке - Whistler; внутренняя версия - Windows NT 5. 1) - операционная система семейства Windows NT от компании Microsoft. Она является развитием Windows 2000 Professional. Название XP происходит от англ. experience (опыт).

24 апреля 2003 г. - Windows Server 2003 (кодовое название при разработке - Whistler Server, внутренняя версия - Windows NT 5. 2) - это операционная система семейства Windows NT от компании Microsoft, предназначенная для работы на серверах.

30 ноября 2006 - Windows Vista (имеющая кодовое название Longhorn) - операционная система семейства Microsoft Windows NT, линейки операционных систем, используемых на пользовательских персональных компьютерах, а также Office 2007.

В 2008 г. - Windows Server 2008 (кодовое имя "Longhorn Server") - новая версия серверной операционной системы от Microsoft. Эта версия должна стать заменой Windows Server 2003 как представитель операционных систем поколения Vista (NT 6. x).

5. Поколения ЭВМ

Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением.

Первое поколение ЭВМ

Первое поколение (1945-1958) ЭВМ было построено на электронных лампах - диодах и триодах. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Применение вакуумно-ламповой технологии, использование систем памяти на ртутных линиях задержки, магнитных барабанах, электронно-лучевых трубках (трубках Вильямса), делало их работу весьма ненадёжной. Кроме этого, такие ЭВМ имели большой вес и занимали по площади значительные территории, иногда целые здания. Для ввода-вывода данных использовались перфоленты и перфокарты, магнитные ленты и печатающие устройства.

Была реализована концепция хранимой программы. Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм, быстродействие они имели от 10 до 20 тыс. оп. /сек.

Машины этого поколения: ENIAC (США), МЭСМ (СССР), БЭСМ-1, М-1, М-2, М-З, "Стрела", "Минск-1", "Урал-1", "Урал-2", "Урал-3", M-20, "Сетунь", БЭСМ-2, "Раздан", IBM - 701, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина "Стрела" состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2-3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины "М-2" (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.

Второе поколение ЭВМ

ЭВМ 2-го поколения были разработаны в 1959-1967 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Компьютеры стали более надежными, быстродействие их повысилось, потребление энергии уменьшилось, уменьшились габаритные размеры машин.

С появлением памяти на магнитных сердечниках цикл ее работы уменьшился до десятков микросекунд. Главный принцип структуры - централизация. Появились высокопроизводительные устройства для работы с магнитными лентами, устройства памяти на магнитных дисках. Кроме этого, появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Быстродействие машин 2-го поколения уже достигала 100-5000 тыс. оп. /сек.

Примеры машин второго поколения: БЭСМ-6, БЭСМ-4, Минск-22 - предназначены для решения научно-технических и планово-экономических задач; Минск-32 (СССР), ЭВМ М-40, - 50 - для систем противоракетной обороны; Урал - 11, - 14, - 16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических задач.

Третье поколение ЭВМ

В ЭВМ третьего поколения (1968-1973 гг.) использовались интегральные схемы. Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ.

Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной.

Компьютеры проектировались на основе интегральных схем малой степени интеграции (МИС - 10-100 компонентов на кристалл) и средней степени интеграции (СИС - 10-1000 компонентов на кристалл). Появилась идея, которая и была реализована, проектирования семейства компьютеров с одной и той же архитектурой, в основу которой положено главным образом программное обеспечение. В конце 60-х появились мини-компьютеры. В 1971 году появился первый микропроцессор. Быстродействие компьютеров 3-го поколения достигло порядка 1 млн. оп. /сек.

В эти годы производство компьютеров приобретает промышленный размах. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Странами СЭВ были выпущены ЭВМ единой серии "ЕС ЭВМ": ЕС-1022, ЕС-1030, ЕС-1033, ЕС-1046, ЕС-1061, ЕС-1066 и др. К ЭВМ этого поколения также относится "IВМ-370", "Электроника-100/25", "Электроника-79", "СМ-3", "СМ-4" и др.

Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). В 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение ЭВМ

В компьютерах четвертого поколения (1974-1982 гг.), использование больших интегральных схем (БИС - 1000-100000 компонентов на кристалл) и сверхбольших интегральных схем (СБИС - 100000-10000000 компонентов на кристалл), увеличило их быстродействие до десятков и сотен млн. оп. /сек.

Началом данного поколения считают 1975 год - фирма Amdahl Corp. выпустила шесть компьютеров AMDAHL 470 V/6, в которых были применены БИС в качестве элементной базы. Стали использоваться быстродействующие системы памяти на интегральных схемах - МОП ЗУПВ емкостью в несколько мегабайт. В случае выключения машины данные, содержащиеся в МОП ЗУПВ, сохраняются путем автоматического переноса на диск. При включении машины запуск системы осуществляется при помощи хранимой в ПЗУ (постоянное запоминающее устройство) программы самозагрузки, обеспечивающей выгрузку операционной системы и резидентного программного обеспечения в МОП ЗУПВ.

Развитие ЭВМ 4-го поколения пошло по 2 направлениям: 1-ое направление - создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, "Эльбрус-1", "Эльбрус-2" и др. Многопроцессорные вычислительные комплексы (МВК)"Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли.

2-ое направление - дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются компьютеры фирмы Apple, IBM - PC (XT, AT, PS /2), отечественные "Искра", "Электроника", "Мазовия", "Агат", "ЕС-1840", "ЕС-1841" и др. Начиная с этого поколения ЭВМ стали называть компьютерами. Программное обеспечение дополняется базами и банками.

Пятое поколение ЭВМ

ЭВМ пятого поколения - это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

На современном этапе

Потребность в более быстрых, дешевых и универсальных процессорах вынуждает производителей постоянно наращивать число транзисторов в них. Однако этот процесс не бесконечен. Поддерживать экспоненциальный рост этого числа, предсказанный Гордоном Муром в 1973 году, становится все труднее. Специалисты утверждают, что этот закон перестанет действовать, как только затворы транзисторов, регулирующие потоки информации в чипе, станут соизмеримыми с длиной волны электрона (в кремнии, на котором сейчас строится производство, это порядка 10 нанометров). И произойдет это где-то между 2010 и 2020 годами. По мере приближения к физическому пределу архитектура компьютеров становится все более изощренной, возрастает стоимость проектирования, изготовления и тестирования чипов. Таким образом, этап эволюционного развития рано или позно сменится революционными изменениями.

В результате гонки наращивания производительности возникает множество проблем. Наиболее острая из них - перегрев в сверхплотной упаковке, вызванный существенно меньшей площадью теплоотдачи. Концентрация энергии в современных микропроцессорах чрезвычайно высока. Нынешние стратегии рассеяния образующегося тепла, такие как снижение питающего напряжения или избирательная активация только нужных частей в микроцепях малоэффективны, если не применять активного охлаждения.

С уменьшением размеров транзисторов стали тоньше и изолирующие слои, а значит, снизилась и их надежность, поскольку электроны могут проникать через тонкие изоляторы (туннельный эффект). Данную проблему можно решить снижением управляющего напряжения, но лишь до определенных пределов.

На сегодняшний день основное условие повышения производительности процессоров - методы параллелизма. Как известно, микропроцессор обрабатывает последовательность инструкций (команд), составляющих ту или иную программу. Если организовать параллельное (то есть одновременное) выполнение инструкций, общая производительность существенно вырастет. Решается проблема параллелизма методами конвейеризации вычислений, применением суперскалярной архитектуры и предсказанием ветвлений. Многоядерная архитектура. Эта архитектура подразумевает интегрирование нескольких простых микропроцессорных ядер на одном чипе. Каждое ядро выполняет свой поток инструкций. Каждое микропроцессорное ядро значительно проще, чем ядро многопотокового процессора, что упрощает проектирование и тестирование чипа. Но между тем усугубляется проблема доступа к памяти, необходима замена компиляторов.

Многопотоковый процессор. Данные процессоры по архитектуре напоминают трассирующие: весь чип делится на процессорные элементы, напоминающие суперскалярный микропроцессор. В отличие от трассирующего процессора, здесь каждый элемент обрабатывает инструкции различных потоков в течение одного такта, чем достигается параллелизм на уровне потоков. Разумеется, каждый поток имеет свой программный счетчик и набор регистров.

"Плиточная" архитектура. Сторонники считают, что ПО должно компилироваться прямо в "железе", так как это даст максимальный параллелизм. Такой подход требует достаточно сложных компиляторов, которые пока еще не созданы. Процессор в данном случае состоит из множества "плиток" (tiles), каждая из которых имеет собственное ОЗУ и связана с другими "плитками" в своеобразную решетку, узлы которой можно включать и отключать. Очередность выполнения инструкций задается ПО.

Многоэтажная архитектура. Здесь речь идет не о логической, а о физической структуре. Идея состоит в том, что чипы должны содержать вертикальные "штабеля" микроцепей, изготовленных по технологии тонкопленочных транзисторов, заимствованной из производства TFT-дисплеев. При этом относительно длинные горизонтальные межсоединения превращаются в короткие вертикальные, что снижает задержку сигнала и увеличивает производительность процессора. Идея "трехмерных" чипов уже реализована в виде работающих образцов восьмиэтажных микросхем памяти. Вполне возможно, что она приемлема и для микропроцессоров, и в недалеком будущем все микрочипы будут наращиваться не только горизонтально, но и вертикально.

Источники информации

1. Информатика: базовый курс. Под. ред. Симоновича С.В. - СПб.: Питер, 2001.

2. Могилёв А.В., Пак Н.И., Хеннер Е.К. «Практикум по информатике»

3. Платонов Ю. М. «IBM PC»

4. "Информационные технологии. Учебное пособие". Под ред. А.К. Волкова. Москва. Издательство "ИНФРА-М". 2001 г.

5. "Информатика: Учебник" Под ред. проф. Н.В. Макаровой. Москва. Издательство "Финансы и статистика". 2005 г.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие, устройство и применение абака. Особенности механических вычислительных машин: линейка Уатта, машина Паскаля, арифмометр, аналитическая машина Бэббиджа. Обзор первых четырех поколений ЭВМ. Сущность машин пятого поколения, пример и параметры.

    презентация [611,1 K], добавлен 22.12.2011

  • Периодизация развития электронных вычислительных машин. Счетные машины Паскаля и Лейбница. Описаний эволюционного развития отечественных и зарубежных пяти поколений электронных вычислительных машин. Сущность внедрения виртуальных средств мультимедиа.

    доклад [23,6 K], добавлен 20.12.2008

  • Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат [37,7 K], добавлен 01.04.2014

  • Краткая характеристика четырех основных поколений ЭВМ. Появление и сущность термина "компьютер". Описание основных представителей компьютеров разных поколений. Интенсивные разработки ЭВМ V поколения. Сущность современного персонального компьютера.

    презентация [149,6 K], добавлен 18.10.2010

  • Прорыв на рынок Windows как графической оболочки MS-DOS. Рассмотрение интерфейса, функций, системных требований и отличительных особенностей поколений операционных систем Windows: 9x, NT, NET, Vista. Анализ мобильности и безопасности последней версии ОС.

    реферат [1,4 M], добавлен 16.01.2010

  • Рассмотрение понятия персонального компьютера, в частности истории его развития, принципов функционирования, структуры, строения и видов. Особенности этапов развития поколений ЭВМ. Виды современных мультимедиа-технологий и их значение в жизни человека.

    дипломная работа [131,1 K], добавлен 23.04.2011

  • Общая характеристика преимуществ взаимодействующих процессов: модульность, ускорение вычислений. Знакомство с основами современных операционных систем. Анализ особенностей использования общего почтового ящика, рассмотрение способов создания и удаления.

    презентация [1,6 M], добавлен 24.01.2014

  • История развития вычислительных машин. История развития IBM. Первые электронно-вычислительные машины. IBM-совместимые компьютеры. Как из яблока сделать макинтош. История создания первого персонального компьютера "Макинтош" (Macintosh).

    реферат [25,4 K], добавлен 09.10.2006

  • Изучение характеристик и режимов работы ВТА 2000-30. Составление блок-схемы алгоритма программы. Рассмотрение особенностей интерфейса вычислительных систем. Описание кодов символьных и функциональных клавиш, полученных при выполнении практической работы.

    отчет по практике [26,6 K], добавлен 04.04.2015

  • Описание этапов создания первых компьютеров: схема, операции и функции, принцип действия. От простого к сложному: история разработки нового поколения Intel-процессоров. Особенности устройства, архитектура и анализ различных модификаций микропроцессоров.

    учебное пособие [473,6 K], добавлен 19.05.2009

  • Исследование эволюции операционных систем для персонального компьютера компании Microsoft. Характеристика основных функциональных особенностей Windows XP, Windows Vista и Linux. Достоинства и недостатки операционных систем, произведенных компанией Apple.

    реферат [36,8 K], добавлен 10.04.2018

  • Рассмотрение основных понятий, единиц измерения и языка информатики. Изучение двоичной арифметики, логических элементов, алгоритмизации. Анализ базовой конфигурации компьютера, его программного обеспечения (системное, прикладное) и операционных систем.

    контрольная работа [629,1 K], добавлен 11.02.2010

  • Электронная вычислительная машина "БЭСМ-1" как первая ЭВМ в СССР. Особенности организации первых ЭВМ. Развитие аналоговых вычислительных машин. Отличительные черты управляющих машин. История разработки семейства ЕС ЭВМ и отечественных суперкомпьютеров.

    презентация [1,6 M], добавлен 01.06.2015

  • Особенности нагревания первых электронно-вычислительных машин, первые попытки их охлаждения. История появления водного охлаждения компьютерного процессора. Сущность оверклокерских систем охлаждения для экстремального разгона комплектующих компьютера.

    презентация [947,7 K], добавлен 20.12.2009

  • История появления первых операционных систем, мультипрограммные операционные системы для мэйнфреймов. Первые локальные и глобальные сети. Развитие операционных систем в 80-е годы. Построение двумерных графиков в MathCAD, решение систем уравнений.

    контрольная работа [559,1 K], добавлен 11.06.2014

  • Рассмотрение исторических предпосылок создания компьютера. Описание роли информационных технологий в современном обществе. Изучение проблемы сужения познавательных процессов человека, снижения гибкости в решении задач при постоянной работе с машинами.

    статья [14,9 K], добавлен 13.04.2015

  • Понятие и основополагающие функции операционных систем, их типовая структура и принцип действия. Краткая история становления и развития операционных систем Windows, их разновидности и общая характеристика, основные требования к аппаратным средствам.

    презентация [3,8 M], добавлен 12.07.2011

  • Ознакомление с основами расширяемого языка разметки Extensible Markup Language. Изучение основных правил создания XML-документа. Рассмотрение набора элементов языка, секций CDATA, директив анализатора, комментариев, спецсимволов, текстовых данных.

    презентация [400,9 K], добавлен 21.12.2014

  • История компьютеризации музыкального обучения. Функциональные возможности компьютера по организации обмена музыкальной информацией. Рассмотрение технологий и средств обработки звуковой информации. Применение технологии создания позиционируемого 3D звука.

    реферат [44,2 K], добавлен 18.12.2017

  • Общая характеристика информационных систем, предназначенных для передачи, преобразования и хранения информации. Изучение форм представления детерминированных сигналов. Энтропия сложных сообщений. Рассмотрение основных элементов вычислительных машин.

    лекция [1,5 M], добавлен 13.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.