Ремонт и организация обслуживания персонального компьютера

Способы определения неисправностей и дефектов компьютера. Понятие быстродействия компьютера, основные характеристики и выбор процессора. Предназначение оперативной и кэш-памяти. Шина данных и ее предназначение. Характеристика компонентов системной платы.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 13.04.2015
Размер файла 818,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· Повышение надёжности сервера достигается резервированием, в том числе с горячими подключением и заменой (англ. Hot-swap) критически важных компонентов:

o при необходимости вводится дублирование процессоров (например, это важно для непрерывности выполнения сервером задачи долговременного расчёта -- в случае отказа одного процессора вычисления не обрываются, а продолжаются, пусть и на меньшей скорости)

o блоков питания,

o жёстких дисков в составе массива RAID и самих контроллеров дисков,

o групп вентиляторов, обеспечивающих охлаждение компонентов сервера.

· В функции аппаратного мониторинга вводят дополнительные каналы для контроля большего количества параметров сервера: датчики температуры контролируют температурные режимы всех процессоров, модулей памяти, температуру в отсеках с установленными жёсткими дисками; электронные счётчики импульсов встроенные в вентиляторы выполняют функции тахометров и позволяют, в зависимости от температуры, регулировать скорость их вращения; постоянный контроль напряжения питания компонентов сервера позволяет сигнализировать об эффективности работы блоков питания; сторожевой таймер не позволяет остаться незамеченным зависанию системы, автоматически производя принудительную перезагрузку сервера.

Серверы (и другое оборудование), которые требуется устанавливать на некоторое стандартное шасси (например, в 19-дюймовые стойки и шкафы), приводятся к стандартным размерам и снабжаются необходимыми крепежными элементами.

Серверы, не требующие высокой производительности и большого количества внешних устройств, зачастую уменьшают в размерах. Часто это уменьшение сопровождается уменьшением ресурсов.

В так называемом «промышленном исполнении», кроме уменьшенных размеров, корпус имеет большую прочность, защищённость от пыли (снабжён сменными фильтрами), влажности и вибрации, а также имеет дизайн кнопок, предотвращающий случайные нажатия.

Конструктивно аппаратные серверы могут исполняться в настольном, напольном, стоечном и потолочном вариантах. Последний вариант обеспечивает наибольшую плотность размещения вычислительных мощностей на единицу площади, а также максимальную масштабируемость. С конца 1990-х всё большую популярность в системах высокой надёжности и масштабируемости получили так называемые блейд-серверы (от англ. blade -- лезвие) -- компактные модульные устройства, позволяющие сократить расходы на электропитание, охлаждение, обслуживание и т. п…

По ресурсам (частота и количество процессоров, количество памяти, количество и производительность жёстких дисков, производительность сетевых адаптеров) серверы специализируются в двух противоположных направлениях -- наращивании ресурсов и их уменьшении.

Наращивание ресурсов преследует целью увеличение емкости (например, специализация для файл-сервера) и производительности сервера. Когда производительность достигает некоторого предела, дальнейшее наращивание продолжают другими методами, например, распараллеливанием задачи между несколькими серверами.Уменьшение ресурсов преследует цели уменьшения размеров и энергопотребления серверов.

Крайней степенью специализации серверов являются, так называемые аппаратные решения (аппаратные роутеры, сетевые дисковые массивы, аппаратные терминалы и т. п.). Аппаратное обеспечение таких решений строится «с нуля» или перерабатывается из существующей компьютерной платформы без учёта совместимости, что делает невозможным использование устройства со стандартным программным обеспечением.

Программное обеспечение в аппаратных решениях загружается в постоянную и/или энергонезависимую память производителем.

Аппаратные решения, как правило, более надёжны в работе, чем обычные серверы, но менее гибки и универсальны. По цене, аппаратные решения могут быть как дешевле, так и дороже серверов, в зависимости от класса оборудования.

Серверы размещаются в специально оборудованных помещениях, называемых дата-центром. Младшие модели серверов могут размещаться в обычных офисных помещениях, и от простых десктопных компьютеров их зачастую отличает лишь автономная работа и подключение к блоку бесперебойного питания повышенной ёмкости. Управление серверами осуществляют квалифицированные специалисты -- системные администраторы.

17. IP-АДРЕС. КЛАССИФИКАЦИЯ

IP-адрес (айпи-адрес, сокращение от англ. Internet Protocol Address) -- уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети. В версии протокола IPv4 IP-адрес имеет длину 4 байта.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA,[1] существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Есть два способа определения того, сколько бит отводится на маску подсети, а сколько -- на IP-адрес.

Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Иногда встречается запись IP-адресов вида 192.168.5.0/24. Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. Для приведённого примера маска подсети будет иметь двоичный вид 11111111 11111111 11111111 00000000 или то же самое в десятичном виде: 255.255.255.0. 24 разряда IP-адреса отводятся под номер сети, а остальные 32-24=8 разрядов полного адреса -- под адреса хостов этой сети, адрес этой сети и широковещательный адрес этой сети. Итого, 192.168.5.0/24 означает диапазон адресов хостов от 192.168.5.1 до 192.168.5.254, а также 192.168.5.0 -- адрес сети и 192.168.5.255 -- широковещательный адрес сети. Для вычисления адреса сети и широковещательного адреса сети используются формулы:

адрес сети = IP.любого_компьютера_этой_сети AND MASK (адрес сети позволяет определить, что компьютеры в одной сети)

широковещательный адрес сети = IP.любого_компьютера_этой_сети OR NOT(MASK) (широковещательный адрес сети воспринимается всеми компьютерами сети как дополнительный свой адрес, то есть пакет на этот адрес получат все хосты сети как адресованные лично им. Если на сетевой интерфейс хоста, который не является маршрутизатором пакетов, попадёт пакет, адресованный не ему, то он будет отброшен).

В некоторых системах адрес сети и широковещательный могут быть поменяны местами (не проверено).

Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.

Статические (статичные) и динамические IP-адреса

IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо если назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.

IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).

Для получения IP-адреса клиент может использовать один из следующих протоколов:

· DHCP (RFC 2131) -- наиболее распространённый протокол настройки сетевых параметров.

· BOOTP (RFC 951) -- простой протокол настройки сетевого адреса, обычно используется для бездисковых станций.

· IPCP (RFC 1332) в рамках протокола PPP (RFC 1661).

· Zeroconf (RFC 3927) -- протокол настройки сетевого адреса, определения имени, поиск служб.

· RARP (RFC 903) Устаревший протокол, использующий обратную логику (из аппаратного адреса -- в логический) популярного и поныне в широковещательных сетях протокола ARP. Не поддерживает распространения информации о длине маски (не поддерживает VLSM).

Частные IP-адреса

Адреса, используемые в локальных сетях, относят к частным. К частным относятся IP-адреса из следующих сетей:

· 10.0.0.0/8

· 172.16.0.0/12

· 192.168.0.0/16

Также для внутреннего использования:

· 127.0.0.0/8

· 169.254.0.0/16 -- используется для автоматической настройки сетевого интерфейса в случае отсутствия DHCP.

Полный список описания сетей для IPv4 представлен в RFC 3330 (заменён RFC 5735).

IP-адреса, доменные имена и сайты

Одно доменное имя может преобразовываться поочерёдно в несколько IP?адресов (для распределения нагрузки).

Одновременно, один IP?адрес может использоваться для тысяч доменных имён с разными сайтами (тогда при доступе они различаются по доменному имени), что вызывает проблемы при идентификации сайтов по IP?адресу в целях цензуры.[2][3][4]

Также, сервер с одним доменным именем может содержать несколько разных сайтов, а части одного сайта могут быть доступны по разным доменным именам (например, для изоляции cookies и скриптов в целях защиты от атак типа межсайтового скриптинга).

18. MAC-АДРЕС. ОСНОВНЫЕ ПОНЯТИЯ

MAC-адрес (от англ. Media Access Control -- управление доступом к среде, также Hardware Address) -- это уникальный идентификатор, присваиваемый каждой единице активного оборудования компьютерных сетей.

При проектировании стандарта Ethernet было предусмотрено, что каждая сетевая карта (равно как и встроенный сетевой интерфейс) должна иметь уникальный шестибайтный номер (MAC-адрес), прошитый в ней при изготовлении. Этот номер используется для идентификации отправителя и получателя кадра, и предполагается, что при появлении в сети нового компьютера (или другого устройства, способного работать в сети) сетевому администратору не придётся настраивать MAC-адрес.

Уникальность MAC-адресов достигается тем, что каждый производитель получает в координирующем комитете IEEE Registration Authority диапазон из шестнадцати миллионов (224) адресов, и по мере исчерпания выделенных адресов может запросить новый диапазон. Поэтому по трём старшим байтам MAC-адреса можно определить производителя. Существуют таблицы, позволяющие определить производителя по MAC-адресу; в частности, они включены в программы типа arpalert.

В широковещательных сетях (таких, как сети на основе Ethernet) MAC-адрес позволяет уникально идентифицировать каждый узел сети и доставлять данные только этому узлу. Таким образом, MAC-адреса формируют основу сетей на канальном уровне, которую используют протоколы более высокого (сетевого) уровня. Для преобразования MAC-адресов в адреса сетевого уровня и обратно применяются специальные протоколы (например, ARP и RARP в сетях IPv4 и NDP в сетях на основе IPv6).

Большинство сетевых протоколов канального уровня используют одно из трёх пространств MAC-адресов, управляемых IEEE: MAC-48, EUI-48 и EUI-64. Адреса в каждом из пространств теоретически должны быть глобально уникальными. Не все протоколы используют MAC-адреса, и не все протоколы, использующие MAC-адреса, нуждаются в подобной уникальности этих адресов.

Адреса вроде MAC-48 наиболее распространены; они используются в таких технологиях, как Ethernet, Token ring, FDDI, WiMAX и др. Они состоят из 48 бит, таким образом, адресное пространство MAC-48 насчитывает 248 (или 281 474 976 710 656) адресов. Согласно подсчётам IEEE, этого запаса адресов хватит по меньшей мере до 2100 года.

EUI-48 от MAC-48 отличается лишь семантически: в то время как MAC-48 используется для сетевого оборудования, EUI-48 применяется для других типов аппаратного и программного обеспечения.

Идентификаторы EUI-64 состоят из 64 бит и используются в FireWire, а также в IPv6 в качестве младших 64 бит сетевого адреса узла.

Структура MAC-адреса

Стандарты IEEE определяют 48-разрядный (6 октетов) MAC-адрес, который разделен на четыре части.

Первые 3 октета (в порядке их передачи по сети; старшие 3 октета, если рассматривать их в традиционной бит-реверсной шестнадцатеричной записи MAC-адресов) содержат 24-битный уникальный идентификатор организации (OUI)[1], или (Код MFG -- Manufacturing, производителя), который производитель получает в IEEE. При этом используются только младшие 22 разряда (бита), 2 старшие имеют специальное назначение:

· первый бит (младший бит первого байта) указывает, для одиночного (0) или группового (1) адресата предназначен кадр

· следующий бит указывает, является ли MAC-адрес глобально (0) или локально (1) администрируемым.

Следующие три октета выбираются изготовителем для каждого экземпляра устройства. За исключением сетей системной сетевой архитектуры SNA.

Таким образом, глобально администрируемый MAC-адрес устройства глобально уникален и обычно «зашит» в аппаратуру.

Администратор сети имеет возможность, вместо использования «зашитого», назначить устройству MAC-адрес по своему усмотрению. Такой локально администрируемый MAC-адрес выбирается произвольно и может не содержать информации об OUI. Признаком локально администрируемого адреса является соответствующий бит первого октета адреса (см. выше).

Для того, чтобы узнать MAC-адрес сетевого устройства используются следующие команды:

· Windows -- ipconfig /all -- более подробно расписывает -- какой MAC-адрес к какому сетевому интерфейсу относится

· Windows -- getmac -- менее подробно расписывает -- какой MAC-адрес к какому сетевому интерфейсу относится

· Linux -- ifconfig -a | grep HWaddr

· FreeBSD -- ifconfig|grep ether

· HP-UX -- /usr/sbin/lanscan

· Mac OS X -- ifconfig, либо в Системных Настройках > Сеть > выбрать подключение > Дополнительно > Ethernet > Идентификатор Ethernet

· QNX4 -- netinfo -l

· QNX6 -- ifconfig или nicinfo

Смена MAC-адреса

Существует распространенное мнение, что MAC-адрес жестко вшит в сетевую карту и сменить его нельзя или можно только с помощью программатора. На самом деле это не так. MAC-адрес легко меняется программным путем, так как значение, указанное через драйвер, имеет более высокий приоритет, чем зашитое в плату. Однако всё же существует оборудование, в котором смену MAC-адреса произвести невозможно иначе, как воспользовавшись программатором. Обычно это телекоммуникационное оборудование, например, приставки для IP-TV (STB).

В некоторых устройствах, оснащённых веб-интерфейсом управления, возможна смена MAC-адреса во время настройки. Так, большинство маршрутизаторов позволяют дублировать MAC-адрес сетевой платы, через которую он подключен к компьютеру.

В Windows смену MAC-адреса можно осуществить встроенными средствами ОС -- в свойствах сетевой платы, во вкладке «Дополнительно» для редактирования доступно свойство «Сетевой адрес» (англ. «Network Address», у некоторых изготовителей сетевых плат это свойство называется «Locally Administered Address»), позволяющее принудительно присвоить нужный MAC-адрес.

В FreeBSD, OpenBSD MAC-адрес меняется одной командой от пользователя root:

# ifconfig re0 ether <mac-address>

В Linux -- такой командой от пользователя root:

# ifconfig ethN hw ether <mac-адрес>

где ethN -- имя сетевого интерфейса.

При этом после перезагрузки ОС смену MAC-адреса нужно произвести заново. Чтобы этого избежать, следует прописать смену МАС-адреса в стартовых конфигурационных файлах сетевых настроек. Например, в случае Debian-based дистрибутива Linux в файл /etc/network/interfaces нужно добавить строку

hwaddress ether <mac-адрес>

в блок конфигурации соответствующего сетевого интерфейса, либо заполнить пункт настроек MAC-адреса для соответствующего сетевого интерфейса в менеджере сетевых настроек графической оболочки.

19. ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ. ФУНКЦИИ. ПРИНЦИП РАБОТЫ

Основными задачами протоколов передачи файлов являются:

обеспечение безошибочной передачи данных;

управление потоком передаваемых данных;

передача вспомогательной информации;

защита соединения.

Перед непосредственной передачей файла необходимо установить соединение на уровне канала данных (уровень 2 модели OSI), передать информацию о имени файла, его размере, дате последней его модификации и т.п., а после передачи -- произвести разъединение канала данных. Все это осуществляется при помощи вспомогательной служебной информации, передаваемой по каналу связи.

Среди протоколов, рассчитанных на отсутствие аппаратной защиты от ошибок, можно выделить широко распространенные протоколы XModem, XModem-CRC, XModem-1 К, YModem, Kermit, ZModem и ряд других.

Если же применяются модемы с аппаратной коррекцией ошибок (поддерживающие протоколы типа MNP или V.42), то предпочтительнее использовать протоколы передачи файлов типа YModem-g и ZModem. В этом случае исключается потеря времени на повторный запрос данных, переданных с ошибками. Протокол Zmodem допускает оба варианта применения.

Протокол XModem

Один из первых протоколов передачи файлов между ПК. Разработан в 1977 году Вардом Христенсеном. Протокол XModem широко использовался в справочных службах, вводился в недорогие связные программы для ПК и фактически стал стандартом для связи между ПК с использовнием модемов.

Последовательность действий, выполняемых при передаче файла с помощью протокола XModem, показана в таблице.

Передающий ПК начинает передачу файла только после приема от принимающего ПК знака NAK (Negative AcKnowledge). Принимающий ПК передает этот знак до тех пор, пока не начнется передача файла. Если передано девять знаков NAK, а передача файла не началась, то процесс должен быть возобновлен вручную.

После приема знака NAK передающий ПК посылает знак начала блока SON (Start Of Header), два номера блока (сам номер и его двоичное дополнение по "единицам"), блок данных из 128 байт и контрольную сумму CS (Check Sum). Блоки нумеруются по модулю 256. Контрольная сумма (1 байт) представляет собой остаток от деления на 255 суммы значений кодов знаков, входящих в блок данных.

Принимающий ПК тоже вычисляет контрольную сумму и сравнивает ее с принятой. Если сравниваемые значения различны или если прошло 10 с и не завершен прием блока, принимающий ПК посылает передатчику знак NAK, означающий запрос на повторную передачу последнего блока. Если блок принят правильно, приемник передает знак ACK, а если следующий блок не поступил в течение 10 с, то передача знака ACK повторяется до тех пор, пока блок не будет правильно принят. После девяти неудачных попыток передачи блока связь прерывается.

Для исключения повторной передачи одного и того же блока из-за потери подтверждающего сообщения в протоколе используется двукратная передача номера. Принимающий ПК контролирует неповторяемость принятого блока, и если блок ошибочно передан повторно, то он сбрасывается. После успешной передачи всех данных передающий ПК посылает знак завершения EOT (End Of Transmission), сообщающий об окончании передачи файла.

Перерыв в передаче блока свыше 1 с считается разрывом связи.

Преимуществами данного протокола по сравнению с другими являются:

его доступность для разработчиков программных средств;

простота реализации на языках высокого уровня;

малый объем приемного буфера (256 байт);

возможность передачи не только символьных (коды ASCII), но и исполняемых файлов (с расширением.COM и.EXE).

Последнее возможно вследствиё того, что конец файла определяется подсчетом переданных байтов и вместо знака файлового маркера (Ctrl-Z) используется специальный сигнал завершения. Эффективность обнаружения ошибок данным протоколом составляет 99,6% - выше, чем при обычной асинхронной проверке четности (95%).

К основным недостаткам этого протокола можно отнести:

низкое быстродействие;

большая вероятность необнаруженных ошибок;

необходимость задания имени файла при приеме;

относительно большой объем передаваемой служебной информации.

Последующие модифакации протокола XModem были направлены на устранение этих и некоторых других его недостанков.

Протокол YModem

Протокол YModem - это протокол XModem-CRC, в котором реализована групповая передача файлов. Его появление было вызвано необходимостью устранения недостатков протокола XModem.

Все программы, реализующие протокол YModem, должны выполнять следующие функции:

передачу имени и пути файла в блоке 0 в виде строки знаков кода ASCII, завершающейся знаком "нуль";

их использование на приемном конце файла в качестве имени и пути принятого файла, если иная реализация не оговорена специально;

применение проверки CRC-16 при приеме знаков С, в противном случае - использование 8-битовой контрольной суммы;

прием любой комбинации из 128- и 1024-байтовых блоков внутри каждого принимаего файла; возможность переключения длины блоков в конце файла (файлов) и/или в случае частых повторных передач;

исключение изменения длины неподтвержденного блока на передающем конце канала;

передачу в конце каждого файла знака EOT до десяти раз, пока не будет принят знак ACK (часть спецификации протокола XModem);

обозначение конца сеанса связи нулевым (пустым) именем пути.

Протокол YModem поддерживается большинством связных программ общего пользования.

Протокол ZModem

Этот протокол, введенный в большинство связных программ, получил сейчас самое широкое применение. Представляя собой фактически развитие протоколов XModem и YModem, протокол ZModem устраняет их недостатки и, будучи совместимым с ними, имеет ряд преимуществ:

высокое быстродействие благодаря использованию "оконного" алгоритма;

динамическая адаптация к качеству канала связи посредством изменения в широких пределах размера блока;

защита управляющей информации, доступа к передаче и защита от имитации управляющих сигналов;

возможность возобновления прерванной передачи файла с того места, на котором произошло прерывание;

повышенная достоверность передачи благодаря использованию 32-разрядной проверочной комбинации;

возможность оптимального применения как в канале с высокой вероятностью ошибок, так и в каналах, работающих практически без ошибок (в которых уже реализован протокол, исправляющий ошибки).

Передача файлов (текстовых и бинарных) - функция, которую наиболее часто применяют пользователи модемов для телефонных каналов. Она осуществляется с помощью протоколов передачи файлов, реализуемых в составе связных программ для модемов.

Телефонные каналы представляют собой черезвычайно неблагоприятную связную среду с большой вероятностью возникновения ошибок из-за различных помех, которые приводят к искажению сигналов. Поэтому основной целью таких протоколов является обеспечение безошибочной передачи данных.

Для этого передаваемые данные разбиваются на блоки (кадры) определенной длины, и в каждый из них включается проверочная комбинация кода, обнаруживающая ошибки. Эта комбинация формируется по определенному правилу (контрольная сумма, алгоритм циклического кода) на базе передаваемых информационных битов блока. На приемном конце канала производится повторное определение проверочной комбинации по аналогичному правилу и сравнение ее кодов с принятой проверочной комбинацией. При совпадении кодов принимающая сторона посылает подтверждение правильного приема блока ("ack" - acknowledgement), а при их несовпадении - запрос на повторную передачу данного блока либо отрицательное извещение ("nak" - nagative acknowledgement).

Другой важной задачей протоколов передачи файлов является управление потоком передаваемых данных. В простейших протоколах очередной блок не передается до тех пор, пока не поступит подтверждение правильного приема предыдущего блока. Но такой метод приводит к потерям времени на ожидание подтверждения, что снижает скорость передачи. Поэтому более совершенные пртоколы предусматривают непрерывную передачу определенного числа блоков до поступления подтверждения (так называемый "метод окна"). При этом методе необходимо использовать память, так как в течение определенного времени нужно хранить некоторое количество блоков.

Кроме того, протоколы передачи файлов обеспечивают передачу вспомогательной информации. Это кодовые последовательности, управляющие установлением соединения и разъединением на уровне канала данных; сведения, включющие имя и дату создания файла или последней его модификации, размер файла и т.п.). Некоторые разновидности протоколов позволяют в одном сеансе передавать не один файл, а группу файлов (batch transmission).

В комплекс функций, выполняемых протоколами передачи файлов, может быть включена также функция защиты соединения. Например, проверка пароля или контроль аутентичности передаваемой информации.

В зависимости от наличия в модеме или связной программе протокола защиты от ошибок протоколы передачи можно разделить на две группы.

Среди протоколов, рассчитанных на отсутствие защиты от ошибок в модеме или связной программе, наиболее широко используются XModem, XModem-CRC, XModem-lk, YModem, ZModem, Kermit.

Если же защита от ошибок реализована, то используются протоколы, исключающие потери времени на повторный запрос блоков, принятых с ошибками. К таким протоколам можно отнести, например, YModem-g и ZModem. Протокол ZModem допускает оба варианта применения.

Распространены специализированные протоколы, предназначенные для определенных служб и сетей, - такие, как SEALink, Telnet, Compuserve Quick B.

Протокол передачи файлов представляет собой набор правил передачи файлов. В его задачи входит:

исправление возникающих при передаче ошибок,

передача и прием определенных кодов, служащих для орнизации связи (handshaking),

выполнение некоторых функций передачи файлов и прекращения передачи.

СЛУЖБА ТЕЛЕОБРАБОТКИ - организационно-техническая структура, представляющая совокупность техники электросвязи и обработки данных, для дистанционной обработки информации.

Целевая функция телеобработки - реализация на расстоянии различных процессов с максимальным приближением к качеству этих процессов, получаемому при непосредственном общении пользователей.

20. ДЛЯ ЧЕГО ПРЕДНАЗНАЧЕН ДОМЕН?

Домен -- это адрес сайта или определенная зона, которая имеет свое имя, не похожее ни на одно другое в системе доменных имен.

Домены бывают разных уровней. Например, домен первого уровня обычный пользователь зарегистрировать никак не сможет, а вот второго уровня -- это запросто. Обычно домены третьего, четвертого и т.д. уровней называют субдоменами. По имени домена можно узнать его определенную принадлежность.

Например:

.com -- коммерческие сайты;

.ru -- преимущественно русские сайты;

.ua -- преимущественно украинские сайты и т.д.

Доменные имена -- это своего рода иерархическая система, позволяющая пользователям быстро ориентироваться в Интернет. Ведь по сути все компьютеры, которые имеют доступ в Сеть, идентифицируются при помощи IP-адреса. Как правило, IP-адрес -- это набор цифр мало понятный обычному пользователю, однако благодаря системе доменных имен можно «обращаться» к ресурсам с помощью простых и понятных каждому имен.

Домен обеспечивает идентификацию сайта в онлайн пространстве, это имя сайта. Вы набираете в браузере majordomo.ru, а компьютер «видит» адрес, по которому нужно искать сайт. Поэтому при работе с сайтом вам не помешают знания о том, что собой представляет домен.

Как и человеческое имя, доменное имя состоит из нескольких частей или уровней:

домены первого уровня -- RU, COM, ORG и другие

домены второго уровня -- domain.ru

домены третьего уровня -- name.domain.ru

Уровни разделяются между собой точками.

Порядок расположения уровней от первого к третьему неизменен -- справа налево. Адрес сайта «читается» компьютером именно с конца, с домена первого уровня.

В этой главе мы расскажем Вам о доменах верхнего уровня или доменных зонах.

Домены верхнего уровня

(Top-Level Domains -- TLD) являются своеобразной точкой отсчета для всех доменных имен.

Вопросами создания, поддержки и административного управления доменами верхнего уровня занимается международная организация ICANN -- Интернет-корпорация по присвоению имён и номеров (англ. Internet Corporation for Assigned Names and Numbers).

Домены верхнего уровня разделяются на национальные и общие.

Национальные домены

(Country code Top-Level Domains -- ccTLD) -- двухбуквенные домены верхнего уровня, выделенные для конкретной страны. В 1987 году ICANN начала формирование списка доменов на основе кодов стран, закрепленных в стандарте ISO 3166-1. На настоящий момент зарегистрировано около 260 национальных (или как их еще называют -- географических) доменов верхнего уровня.

Некоторые национальные доменные зоны пользуются популярностью из-за их созвучности с англоязычными сокращениями. Например, домен Италии --.it, домен Тувалу --.tv или даже Федеративных Штатов Макронезии --.fm. В этих зонах регистрируют доменные имена компании, связанные, соответственно, с информационными технологиями, телевидением и радио.

Общие домены верхнего уровня

(General Top-level Domain -- gTLD) предназначены для определенного класса организаций. Изначально было создано семь gTLD: COM, NET, ORG, INT, EDU, GOV, MIL. Первая организация, занимавшаяся администрированием доменов верхнего уровня -- IANA (Internet Assigned Numbers Authority) -- объявила, что такого количества будет достаточно. Однако с бурным ростом интернет-сообщества возникла потребность в дополнительных gTLD. В 2001 году их число пополнилось: INFO, BIZ, NAME, COOP, MUSEUM, AERO и PRO.

Расширение числа доменов верхнего уровня оказалось связано с проблемой киберсквоттинга. Поэтому, когда поднимается вопрос о создании новой зоны, ICANN склоняется к выбору в пользу узкоспециализированных доменов, таких, как например, MUSEUM.

21. КАНАЛЫ ПЕРЕДАЧИ СОТОВОЙ И РАДИОСВЯЗИ

Канал связи (англ. channel, data line) -- система технических средств и среда распространения сигналов для односторонней передачи данных от источника к получателю. В случае использования проводной линии связи, средой распространения сигнала может являться оптическое волокно или витая пара. Канал связи является составной частью канала передачи данных.

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы.

Каналы связи также классифицируют на:

непрерывные (на входе и выходе канала -- непрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала -- дискретные сигналы),

· непрерывно-дискретные (на входе канала -- непрерывные сигналы, а на выходе -- дискретные сигналы),

· дискретно-непрерывные (на входе канала -- дискретные сигналы, а на выходе -- непрерывные сигналы).

Каналы могут быть как линейными и нелинейными, временными и пространственно-временными. Возможна классификация каналов связи по диапазону частот.

Канал связи описывается математической моделью, задание которой сводится к определению математических моделей выходного и входного и , а также установлению связи между ними, характеризующейся оператором , то есть

.

По типу замирания сигнала модели канала связи делятся на гауссовские, релеевские, райссовские и с замираниями, моделируемые с помощью распределения Накагами.

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал является детерминированным, то есть

где г -- константа, определяющая коэффициент передачи, ф -- постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что является случайной величиной. Например, если входной сигнал является узкополосным, то сигнал на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

,

где учтено, что входной сигнал может быть представлен в виде:

,

где -- преобразование Гильберта, -- случайная фаза, распределение которой считается обычно равномерным на интервале .

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, то есть, например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.

Модели дискретных каналов связи

Для задания модели дискретного канала необходимо определить множество входных и выходных кодовых символов, а также множество условных вероятностей выходных символов при заданных входных.

Одна общая проблема при передаче сигнала через любой канал - аддитивный шум. Вообще говоря, аддитивный шум создаётся часто внутри различных электронных компонентов, таких как резисторы и твёрдотельные устройства, используемых в системах связи. Эти шумы часто называют тепловым шумом. Другие источники шума и интерференции (наложения) могут возникать вне системы, например переходные помехи от других пользователей канала. Когда такой шум и переходные помехи занимают тот же самый диапазон частот, что и полезный сигнал, их влияние может быть минимизировано путем соответствующего выбора передаваемого сигнала и демодулятора в приемнике. Другие виды сигнальных искажений, которые могут встречаться при передаче сигнала по каналу, - это затухание сигнала, амплитудные и фазовые искажения сигнала и искажения сигнала, обусловленные многопутевым распространением волн.

Влияние шума может быть уменьшено увеличением мощности передаваемого сигнала. Однако конструктивные и другие практические соображения ограничивают уровень мощности передаваемого сигнала. Другое базовое ограничение - доступная ширина полосы частот канала. Ограничение ширины полосы обычно обусловлено физическими ограничениями среды и электрических компонентов, используемых в передатчике и приемнике. Эти два обстоятельства приводят к ограничению количества данных, которые могут быть переданы надёжно по любому каналу связи, как мы увидим в последующих главах книги. Ниже мы опишем некоторые из важных характеристик отдельных каналов связи.

Проводные каналы. Телефонная сеть экстенсивно использует проводные линии для передачи звукового сигнала, а также данных и видеосигналов. Витые проводные пары и коаксиальный кабель в основном дают электромагнитный канал, который обеспечивает прохождение относительно умеренной ширины полосы частот. Телефонный провод, обычно используемый, чтобы соединить клиента с центральной станции, имеет ширину полосы несколько сотен килогерц. С другой стороны, коаксиальный кабель имеет обычно используемую ширину полосы частот несколько мегагерц. Рисунок 1.2.1 поясняет частотный диапазон используемых электромагнитных каналов, которые включают волноводы и оптический кабель.

Сигналы, передаваемые через такие каналы, искажаются по амплитуде и фазе, и, кроме того, на них накладывается аддитивный шум. Проводная линия связи в виде витой пары также склонна к интерференции переходных помех от рядом расположенных пар. Поскольку проводные каналы составляют большой процент каналов связи по всей стране и миру, широкие исследования были направлены на определение их свойств передачи и на уменьшение амплитудных свойств передачи и на уменьшение амплитудных и фазовых искажений в канале. В гл. 9 мы опишем метод синтеза оптимальных передаваемых сигналов и демодуляторов; в гл. 10 и 11 рассмотрим синтез канальных эквалайзеров (выравнивателей), которые компенсируют амплитудные и фазовые искажения в канале.

Волоконно-оптические каналы. Стекловолокно представляет проектировщику системы связи ширину полосы частот, которая на несколько порядков больше, чем у каналов с коаксиальным кабелем. В течение прошедшего десятилетия были разработаны оптические кабели, которые имеют относительно низкое затухание для сигнала, и высоконадежные оптические устройства для генерирования и детектирования сигнала. Эти технологические достижения привели к быстрому освоению таких каналов как для внутренних систем электросвязи, так и для трансатлантических и мировых систем связи. С учётом большой ширины полос частот, доступной на волоконно-оптических каналах, стало возможно для телефонных компаний предложить абонентам широкий диапазон услуг электросвязи, включая передачу речи, данных, факсимильных и видеосигналов.

Передатчик или модулятор в волоконно-оптической системе связи - источник света, светоизлучающий диод (СИД) или лазер. Информация передаётся путем изменения (модуляции) интенсивности источника света посредством сигнала сообщения. Свет распространяется через волокно как световая волна, и она периодически усиливается (в случае цифровой передачи детектируется и восстанавливается ретрансляторами) вдоль тракта передачи, чтобы компенсировать затухания сигнала.

В приемнике интенсивность света детектируется фотодиодом, чей выход является электрическим сигналом, который изменяется пропорционально мощности света на входе фотодиода. Источники шума в волоконно-оптических каналах - это фотодиоды и электронные усилители.

Предполагается, что волоконно-оптические каналы заменят почти все каналы проводной линии связи в телефонной сети на рубеже столетия.

Беспроводные (радио) каналы. В системах беспроводной связи (радиосвязи) электромагнитная энергия передается в среду распространения антенной, которая служит излучателем. Физические размеры и структура антенны зависят прежде всего от рабочей частоты. Чтобы получить эффективное излучение электромагнитной энергии, размеры антенны должны быть больше чем 1/10 длины волны. Следовательно, передача радиостанции с AM на несущей, допустим, МГц, соответствующей длине волны м, требует антенны с диаметром по крайней мере 30м. Другие важные характеристики и свойства антенн для беспроволочной передачи описаны в гл. 5.

Рисунок 1.2.2 поясняет различные диапазоны частот для радиосвязи. Способы распространения электромагнитных волн в атмосфере и в свободном пространстве можно разделить на три категории, а именно: распространение поверхностной волной, распространение пространственной волной, распространение прямой волны. В диапазоне очень низких частот (ОНЧ) и звуковом диапазоне, в которых длины волн превышают 10км, земля и ионосфера образуют волновод для распространения электромагнитных волн. В этих частотных диапазонах сигналы связи фактически распространяются вокруг всего земного шара. По этой причине эти диапазоны частот прежде всего используется во всём мире для решения навигационных задач с берега до кораблей.

Ширина полосы частот канала, доступной в этих диапазонах, относительно мала (обычно составляет 1…10% центральной частоты), и, следовательно, информация, которая передаётся через эти каналы, имеет относительно низкую скорость передачи и обычно неприемлема для цифровой передачи.

Доминирующий тип шума на этих частотах обусловлен грозовой деятельностью вокруг земного шара, особенно в тропических областях. Интерференция возникает из-за большого числа станций в этих диапазонах частот.

Распространения земной волной, как иллюстрируется на рис. 1.2.3, является основным видом распространения для сигналов в полосе средних частот (0,3…3 МГц). Это - диапазон частот, используемый для радиовещания с AM и морского радиовещания. При AM радиовещании и распространении земной волной дальность связи, даже при использовании мощных радиостанций, ограничена 150 км. Атмосферные шумы, промышленные шумы и тепловые шумы от электронных компонентов приёмника являются основными причинами искажений сигналов, передаваемых в диапазоне средний частот.

Частным случаем распространения пространственной волны является ионосферное распространение, иллюстрируемое рис. 1.2.4. Оно сводится к отражению (отклонение или рефракция волны) передаваемого сигнала от ионосферы, которая состоит из нескольких слоёв заряженных частиц, расположенных на высоте 50…400 км от поверхности земли. В дневное время суток разогрев нижних слоёв атмосферы солнцем обуславливает появление нижнего слоя на высоте ниже 120 км. Эти нижние слои, особенно D-слой, вызывают поглощение частот ниже 2 МГц, таким образом ограничивая распространение ионосферной волной радиопередач AM радиовещания. Однако в течение ночных часов электронная концентрация частиц в нижних слоях ионосферы резко падает, и частное поглощение, которое встречается в дневное время, значительно сокращается. Как следствие, мощные радиовещательные сигналы с AM могут распространятся на большие расстояния посредством отражения от ионосферных слоев (которые располагаются на высоте от 140 до 400 км над поверхностью земли), и земной поверхности.

Рис. 1.2.3. Иллюстрация распространения поверхностной волной

Часто возникающая проблема при ионосферном распространении электромагнитной волны в частотном диапазоне ВЧ - это многопутёвость. Многопутёвость образуется потому, что передаваемый сигнал достигает приёмника по многим путям с различными задержками. Это обычно приводит к межсимвольной интерференции в системе цифровой связи. Более того, сигнальные компоненты, прибывающие по различным путям распространения, могут суммироваться таким образом, что это приводит к явлению, названному замираниями. Это большинство людей испытало при слушании отдалённой радиостанции ночью, когда ионосферная волна является доминирующим способом распространения. Аддитивный шум в ВЧ диапазоне - это комбинация атмосферных помех и теплового шума. Распространение ионосферной волны прекращается на частотах выше 30 МГц, что является границей диапазона ВЧ. Однако возможно ионосферно-тропосферное распространение на частотах в диапазоне от 30 до 60 МГц, обусловленное рассеянием сигналов от нижних слоев ионосферы. Также можно связаться на расстоянии нескольких сотен миль при помощи тропосферного рассеяния в диапазоне от 40 до 300 МГц. Тропосферное рассеяние обуславливается рассеянием сигнала благодаря частицам в атмосфере на высотах порядка 10 км. Обычно ионосферное и тропосферное рассеяние вызывает большие сигнальные потери и требует большой мощности передатчика и относительно больших размеров антенн.

Рис. 1.2.4. Иллюстрация распространения пространственной волной

Частоты выше 30 МГц проходят через ионосферу с относительно малыми потерями и делают возможным спутниковую и внеземную связь. Следовательно, на частотах УВЧ диапазона и выше основным способом электромагнитного распространения волн является распространение в пределах прямой видимости (ППВ). Для земных систем связи это означает, что передающая и приемная антенны должны быть в прямой видимости с относительно малой преградой (или ее отсутствием). По этой причине передача телевизионных станций в УВЧ и СВЧ диапазонах частот для достижения широкой зоны охвата осуществляется антеннами на высоких опорах.

Доминирующий шум, ограничивающий качество системы связи в ВЧ и УВЧ диапазонах, - тепловой шум, создаваемый во входных цепях приемника, и космические шумы, уловленные антенной. На частотах в диапазоне СВЧ выше чем 10 ГГц при распространения сигнала главную роль играют атмосферные условия. Например, на частоте 10 ГГц затухание меняется приблизительно от 0,003 дБ/км при лёгком дожде до 0,3 дБ/км при тяжёлом дожде. На частоте 100 ГГц затухание меняется приблизительно от 0,1 дБ/км при легком дожде до 6 дБ/км при тяжёлом дожде. Следовательно, в этом частотном диапазоне тяжелый дождь вызывает чрезвычайно высокие потери при распространении, которые могут приводить к отказу системы обслуживания (полный обрыв в системе связи).

Подводные акустические каналы. За последние 40 лет исследования океанской деятельности непрерывно расширялись. Это связано с усилением потребности передать данные, собранные датчиками, размещенными под водой и на поверхности океана. Оттуда данные передаются к центру сбора информации.

Электромагнитные волны не распространяются на большие расстояния под водой, за исключением крайне низких частот. Однако передача сигналов таких низких частот предельно дорога из-за чрезвычайно больших и мощных передатчиков. Затухание электромагнитных волн в воде может быть выражено глубиной поверхностного слоя, которая является расстоянием, на котором сигнал ослабляется в раз. Для морской воды глубина поверхностного слоя , где выражена в герцах, а - в метрах. Например, для частоты 10 кГц глубина поверхностного слоя 2,5 м. Напротив, акустические сигналы распространяются на расстояния порядка десятков и даже сотен километров.

Подводный акустический канал ведет себя как многопутевой канал благодаря сигнальным отражениям от поверхности и дна моря. Из-за случайного движения волны сигнальные продукты многопутевого (многолучевого) распространения приводят к случайным во времени задержкам распространения и в итоге к замираниям сигнала. Кроме того, имеется частотно-зависимое затухание, которое приблизительно пропорционально квадрату частоты сигнала. Глубинная скорость номинально равна приблизительно 1500 м/с, но реальное значение выше или ниже номинального значения в зависимости от глубины, на которой сигнал распространяется.

Аддитивный шум, издаваемый электронными контактами, и интерференция от смежных дорожек обычно представлены в сигнале считывания записанной информации точно так, как это имеет место в системе проводной телефонии или системе радиосвязи. Количество данных, которые можно хранить, ограничено размером диска или ленты и плотностью записи (числом битов, хранящихся на единице площади), которая может быть достигнута электронными системами и

CDMA (англ. Code Division Multiple Access -- множественный доступ с кодовым разделением) -- технология связи, обычно радиосвязи, при которой каналы передачи имеют общую полосу частот, но разную кодовую модуляцию. Наибольшую известность на бытовом уровне получила после появления сетей сотовой мобильной связи, ее использующих, из-за чего часто ошибочно исключительно с ней (сотовой мобильной связью) и отождествляется.

Для радиосистем существует два основных ресурса - частота и время. Разделение пар приёмников и передатчиков по частотам таким образом, что каждой паре выделяется часть спектра на всё время соединения, называется FDMA (Frequency Division Multiple Access). Разделение по времени таким образом, что каждой паре приёмник-передатчик выделяется весь спектр или большая его часть на выделенный отрезок времени, называют TDMA (Time Division Multiple Access). В CDMA (Code Division Multiple Access), для каждого узла выделяется весь спектр частот и всё время. CDMA использует специальные коды для идентификации соединений. Каналы трафика при таком способе разделения среды создаются посредством применения широкополосного кодо-модулированного радиосигнала -- шумоподобного сигнала, передаваемого в общий для других аналогичных передатчиков канал, в едином широком частотном диапазоне. В результате работы нескольких передатчиков эфир, в данном частотном диапазоне, становится ещё более шумоподобным. Каждый передатчик модулирует сигнал с применением присвоенного в данный момент каждому пользователю отдельного числового кода, приёмник, настроенный на аналогичный код, может вычленять из общей какофонии радиосигналов ту часть сигнала, которая предназначена данному приёмнику. В явном виде отсутствует временное или частотное разделение каналов, каждый абонент постоянно использует всю ширину канала, передавая сигнал в общий частотный диапазон, и принимая сигнал из общего частотного диапазона. При этом широкополосные каналы приёма и передачи находятся на разных частотных диапазонах и не мешают друг другу. Полоса частот одного канала очень широка, вещание абонентов накладывается друг на друга, но, поскольку их коды модуляции сигнала отличаются, они могут быть дифференцированы аппаратно-программными средствами приёмника.

При кодовой модуляции применяется техника расширения спектра с множественным доступом. Она позволяет увеличить пропускную способность при неизменной мощности сигнала. Передаваемые данные комбинируются с более быстрым шумоподобным псевдослучайным сигналом с использованием операции побитового взаимоисключающего ИЛИ (XOR). На изображении ниже показан пример, демонстрирующий применение метода для генерации сигнала. Сигнал данных с длительностью импульса Tb комбинируется при помощи операции XOR с кодом сигнала, длительность импульса которого равна (зам: ширина полосы пропускания пропорциональна , где = время передачи одного бита), следовательно ширина полосы пропускания сигнала с данными равна и ширина полосы пропускания получаемого сигнала равна . Так как много меньше , ширина полосы частот получаемого сигнала намного больше, чем таковая оригинального сигнала передаваемых данных. Величина называется фактором распространения или базой сигнала и определяет в известной мере верхний предел числа пользователей, поддерживаемых базовой станцией одновременно.

...

Подобные документы

  • Состав и обоснование выбора компонентов персонального компьютера (процессора, материнской платы, комплектующих и периферийных устройств), требования к ним и характеристики. Структурная схема компьютера, его программное обеспечение и расчёт стоимости.

    контрольная работа [1,3 M], добавлен 12.02.2015

  • Разновидности, производительность современных процессоров. Предназначение оперативной памяти. Микросхемы персонального компьютера. Постоянное запоминающее устройство. Тактико-технических характеристики процессоров. Перспективы развития памяти компьютера.

    реферат [61,9 K], добавлен 22.11.2016

  • Основные характеристики процессора: быстродействие, тактовая частота, разрядность, кэш. Параметры материнской платы. Исследование архитектуры домашнего компьютера. Соотношение частоты памяти и системной шины в смартфоне, количество слотов памяти.

    лабораторная работа [1,1 M], добавлен 26.12.2016

  • Понятие архитектуры персонального компьютера, компоновка частей компьютера и связи между ними. Составляющие системного блока ПК. Функции центрального процессора, системной платы, оперативного запоминающего устройства, видеокарты и жесткого диска.

    реферат [30,7 K], добавлен 28.01.2014

  • Модернизация персонального компьютера, характеристика компонентов и устройств: блока питания, системной и звуковой платы, процессора, накопителя CD/DVD-ROM, монитора. Популярные форм-факторы, их преимущества и недостатки. Программное обеспечение ПК.

    реферат [28,4 K], добавлен 05.05.2010

  • Архитектура персонального компьютера, функциональные и технические характеристики его устройств. Компоненты материнской платы, строение процессора, виды памяти. Принципы работы процессора и обращение к данным. Пути развития персонального компьютера.

    курсовая работа [102,4 K], добавлен 11.02.2011

  • Обоснование конфигурации домашнего компьютера, предназначенного для работы с офисными приложениями, просмотра видео. Выбор материнской платы, процессора, видеоадаптера, оперативной памяти, монитора, накопителей. Эскизная проработка рабочего места.

    курсовая работа [1,7 M], добавлен 06.08.2013

  • Организация и основные характеристики основной памяти персонального компьютера. Запоминающие устройства ЭВМ как совокупность устройств, обеспечивающих хранение и передачу данных. Хранение и обработка информации. Основные виды памяти компьютера.

    контрольная работа [52,0 K], добавлен 06.09.2009

  • Аппаратно-программные средства компьютера, позиционируемого в качестве учебного. Модернизация компонентов персонального компьютера, его потребляемая мощность. Исходная конфигурация компьютера. Установка дополнительных модуля памяти и жесткого диска.

    курсовая работа [120,3 K], добавлен 21.01.2013

  • Принцип действия процессора, оперативной памяти персонального компьютера. Ввод данных с помощью клавиатуры, мыши, графического планшета, сканера, цифровой камеры и микрофона. Использование устройств для вывода информации: монитора, принтера и колонок.

    презентация [2,0 M], добавлен 05.02.2014

  • Принципиальная схема устройства современного персонального компьютера. Краткая характеристика основных составляющих ПК: процессора, модулей оперативной (внутренней) и долговременной (внешней) памяти, устройств ввода и вывода информации для пользователя.

    презентация [100,7 K], добавлен 07.06.2015

  • Память персонального компьютера, основные понятия. Характеристика внутренней и внешней памяти компьютера. Логическое отображение и размещение. Классификация компьютерной памяти по назначению, по удаленности и доступности для центрального процессора.

    контрольная работа [1,8 M], добавлен 27.11.2010

  • Составные части персонального компьютера. Основные компоненты системного блока и периферийные устройства. Устройство и назначение звуковой платы. Принцип работы оперативной памяти. Устройство и назначение жесткого диска. CD и DVD дисководы и USB-порты.

    презентация [1,7 M], добавлен 09.04.2011

  • Виды систем охлаждения (СО) для персонального компьютера (ПК). Основные характеристики типовых СО, меры предупреждения неполадок. Организация воздушных потоков в корпусе ПК. Обзор и тестирование СО для процессора, основные методы тестирования.

    курсовая работа [4,2 M], добавлен 19.06.2011

  • Исследование оборудования компьютера с помощью настроек BIOS, теста видеокарты, тестирующих программ POST и Everest, операционной системы Windows XP. Технические характеристики процессора, материнской платы, жесткого диска, памяти, периферийных устройств.

    практическая работа [10,8 M], добавлен 28.05.2012

  • Сущность глобальной компьютеризации и ее распространенность на современном этапе. Основные характеристики персонального компьютера и требования к нему, главные критерии выбора и оценка ассортимента. Порядок выбора конфигурации персонального компьютера.

    реферат [398,1 K], добавлен 31.10.2010

  • Компоненты персонального компьютера: блок питания, материнская плата, устройство процессора, оперативной памяти, видео и звуковой карты, сетевого адаптера и жесткого диска. Съемные носители информации. Монитор, клавиатура и мышь. Периферийные устройства.

    дипломная работа [970,4 K], добавлен 22.11.2010

  • Классификация основных видов памяти компьютера. Использование оперативной памяти для временного хранения данных, используемых для работы программного обеспечения. Расчет потребления электроэнергии, формирование квитанции для потребителя в Microsoft Excel.

    курсовая работа [1,5 M], добавлен 23.04.2013

  • Принцип работы процессора, способы его охлаждения, кодовые названия. Шины процессора, разрядность и кэш–память. Технологии расширения и поток команд процессора. Процессорные вентиляторы и их характеристика. Алгоритм и способы разгона процессора.

    реферат [38,0 K], добавлен 21.02.2009

  • Обоснование выбора комплектующих компьютера. Особенности подбора процессора, материнской платы, видеокарты, оперативной памяти, жесткого диска. Расположение элементов в корпусе, модулей на материнской плате. Техника безопасности при работе за компьютером.

    курсовая работа [1,0 M], добавлен 17.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.