Жесткие диски
Характеристика жестких дисков, их физические и логические параметры. Принципы магнитной записи на жесткий диск. Структура хранения информации на жестком диске. Виды и правила форматирования диска. Тенденции развития магнитных накопителей информации.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.04.2015 |
Размер файла | 442,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Одним из возможных, но не желательных способов повышения физической емкости, для производителей, является увеличение емкости сектора. В настоящее время, стандартной емкостью сектора для IBM-совместимых компьютеров является 512 байт. Многие адаптеры позволяют, в процессе физического форматирования, программным путем, изменять емкость сектора, например, до 1024 байт. При этом, соотношение пользовательских данных и служебной информации для сектора улучшается, но снижается надежность хранения данных, т.к. тот же полином ECC будет использоваться для коррекции большего объема данных.
Логический объем зависит от того, как операционная система или программа записывает информацию в сектора. В случае использования программ и операционных систем с программной компрессией данных, можно повысить объем носителя на величину, зависящую от степени сжатия данных. Для оптимального использования поверхности дисков применяется так называемая зонная запись (Zoned Bit Recording - ZBR) , принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и потенциальную информационную емкость на единицу площади), информация записывается с большей плотностью, чем на внутренних.
Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому файлы, расположенные на дорожках с большим диаметром, в целом будут обрабатываться быстрее файлов, расположенных на дорожках с меньшим диаметром, т.к. для них будет производится меньшее число позиционирований с дорожки на дорожку.
В ЖД последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood - максимальное правдоподобие при неполном отклике) и S. M. A. R. T. (Self Monitoring Analysis and Report Technology - технология самостоятельного слежения анализа и отчетности).
Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска - уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов, и на основании максимальной похожести (правдоподобия) делается заключение о приеме того или иного машинного слова.
Накопитель, в котором реализована технология S. M. A. R. T., ведет статистику своих рабочих параметров (количество стартов/остановок и наработанных часов, время разгона шпинделя, обнаруженные/исправленные физические ошибки и т.п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или служебных зонах диска.
Эта информация накапливается в течение всего периода эксплуатации и может быть в любой момент затребована программами анализа. По ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.
6. Работа жесткого диска
Теперь рассмотрим процесс работы накопителя от запуска до остановки. При подаче питающих напряжений начинает работать микропроцессор контроллера. Вначале он, как и компьютер, выполняет самотестирование и в случае его успеха запускает схему управления двигателем вращения шпинделя. Диски начинают раскручиваться, увлекая за собой прилегающие к поверхностям слои воздуха, и при достижении некоторой скорости давление набегающего на головки потока воздуха преодолевает силу пружин, прижимающих их к дискам, и головки "всплывают", поднимаясь над дисками на доли микрона. С этого момента, вплоть до остановки дисков, головки не касаются дисков и "парят" над поверхностями, поэтому ни диски, ни сами головки практически не изнашиваются. Тем временем, двигатель шпинделя продолжает раскручивать поверхности. Его скорость постепенно приближается к номинальной (тысячи оборотов в минуту). В это время накопитель потребляет максимум питающего напряжения и создает предельную нагрузку на блок питания компьютера по напряжению 12 Вольт.
Поскольку в любой зоне дисков присутствует серворазметка, то сервоимпульсы начинают поступать с головок сразу же после начала вращения, и по их частоте контроллер судит о скорости вращения дисков. Система стабилизации вращения следит за потоком сервоимпульсов, и при достижении номинальной скорости происходит так называемый "захват", при котором любое отклонение скорости вращения сразу же корректируется изменением тока в обмотках двигателя. После достижения шпинделем номинальной скорости вращения освобождается фиксатор позиционера головок чтения/записи, и система его управления проверяет способность поворачиваться и удерживаться на выбранной дорожке путем выборочного произвольного позиционирования. При этом делается серия быстрых поворотов в разные стороны, что на слух выглядит как характерное "тарахтение", слышимое через несколько секунд после старта. Во время перемещения позиционера головок происходит слежение за поступающими с головок серво-импульсами, и система управления всегда "знает", над сколькими дорожками прошли головки. Аналогично происходит и удержание головок над выбранной дорожкой - при отклонении от центра дорожки изменяется во времени величина и форма серво-импульсов. Система управления может ликвидировать отклонение, изменяя ток в обмотках двигателя позиционера головок. Во время тестирования привода головок заодно делается и его калибровка - подбор параметров управляющих сигналов для наиболее быстрого и точного перемещения позиционера при минимальном количестве "промахов". Здесь нужно сказать, что микрокомпьютер ЖД, как и компьютер, имеет ПЗУ, в котором записана BIOS накопителя - набор программ для начального запуска и управления во время работы, и ОЗУ, в которое после раскрутки механической системы загружаются остальные части управляющих программ. Кроме всего прочего, в ОЗУ загружается так называемая карта переназначения дефектных секторов, в которой отмечены дефектные секторы, выявленные при заводской разметке дисков. Эти секторы исключаются из работы и иногда подменяются резервными, которые имеются на каждой дорожке и в специальных резервных зонах каждого диска. Таким образом, даже если диски и имеют дефекты (а при современной плотности записи и массовом производстве поверхностей носителей они имеют их всегда) , для пользователя создается впечатление "чистого" диска, свободного от сбойных секторов. Более того - на каждом диске накопителя имеется некоторый запас резервных секторов, которыми можно подменить и появляющиеся впоследствии дефекты. Для одних накопителей это возможно сделать под управлением специальных программ, для других - автоматически в процессе работы. Хранение подобной служебной информации на дисках, кроме очевидной выгоды, имеет и свои недостатки - при ее порче микрокомпьютер не сможет правильно запуститься, и, даже, если все информационные секторы не повреждены, восстановить их можно будет только на специальном заводском стенде.
После начальной настройки электроники и механики микрокомпьютер ЖД переходит в режим ожидания команд контроллера, расположенного на системной плате или интерфейсной карте, который в свою очередь программируется процедурами собственной BIOS или BIOS компьютера под управлением ОС. Получив команду, он позиционирует на нужный цилиндр, по серво-импульсам отыскивает нужную дорожку, дожидается, пока до головки дойдет нужный сектор, и выполняет считывание или запись информации. Если контроллер запросил чтение/запись не одного сектора, а нескольких - накопитель может работать в блочном режиме, используя ОЗУ в качестве буфера и совмещая чтение/запись нескольких секторов с передачей информации к контроллеру или от него.
При выключении питания двигатель шпинделя работает в режиме генератора, обеспечивая питание плат электроники на время, необходимое для корректного завершения работы. Прежде всего, блокируется подача тока записи в магнитные головки, чтобы они не испортили информацию на поверхностях, а остаток энергии подается в обмотки привода головок, толкая их к центру дисков (в этом движении головкам помогает и естественная скатывающая сила, возникающая при вращении дисков) . Как правило, для того чтобы запарковать головки достаточно одной скатывающей силы. Дойдя до посадочной зоны, привод головок защелкивается магнитным или механическим фиксатором еще до того, как головки успеют коснуться поверхности в результате падения скорости вращения дисков. В этом и состоит суть "автопарковки" - любой исправный накопитель всегда запаркует головки, как бы внезапно не было выключено питание, однако, если в этот момент происходила запись информации, то для пользователя последствия могут быть весьма печальными из-за недописанных или необновленных, как областей данных, так и управляющих структур файловой системы ПК, независимо от типа и вида установленной ОС.
7. Тенденции развития магнитных накопителей информации
Добиться увеличения скорости считывания можно двумя путями: увеличивая плотность записи информации или скорость вращения. При увеличении скорости вращения шпинделя винчестеры начинают гораздо сильнее греться и становятся более шумными. Технология их изготовления становится сложнее, и это отражается на их стоимости: она существенно выше. При увеличении плотности записи аналогично наблюдаются побочные эффекты. К плюсам можно отнести увеличение емкости накопителя. Поэтому компании-производители жестких дисков прибегают к этому способу.
AFC - технология создания магнитно-компенсированных пленок, предложенная фирмой IBM. На диск винчестера наносится трехслойное антиферромагнитное покрытие под названием AFC (antiferromagnetically-coupled, антиферромагнитная пара), в котором пара магнитных слоев разделена специальной изолирующей прослойкой из рутения.
За счет того, что расположенные друг под другом магнитные домены имеют антипараллельную ориентацию магнитного поля, они образуют пару, которая оказывается более устойчивой к спонтанному перемагничиванию, чем одиночный "плоский" домен. Пробные партии винчестеров, использующих технологию AFC, появились в 2001 году, но массовое ее использование началось сейчас. AFC позволяет увеличить емкость винчестеров в 4-8 раз.
PMR. Технология PMR, в отличие от классической технологии записи, использует магнитные домены с перпендикулярным магнитным полем.
Это позволяет уменьшить продольные размеры домена, слегка увеличив при этом его высоту. В PMR соседние инвертные биты (1 и 0) не глядят друг на друга одноименными полюсами, которые отталкиваются, - это позволяет уменьшить размер междоменного пространства, по сравнению с классической технологией записи, что еще больше увеличивает емкость винчестеров.
Для реализации PMR необходимо применять как совершенно иную конструкцию головки чтения/записи и новую структуру магнитной поверхности диска. Головка, записывающая методом PMR, должна иметь всего один основной полюс сердечника, второй полюс будет вспомогательным. Основной полюс сердечника создает сильное магнитное поле, линии которого выходят перпендикулярно магнитной поверхности диска; проходя через специальный внутренний магнитный слой, они замыкаются на широком вспомогательном полюсе сердечника.
HAMR и SOMA - технологии 2011 года. К числу наиболее перспективных технологий будущего, в задачу которых входит дополнить PMR, когда та исчерпает свои ресурсы и подойдет к очередному пределу, можно отнести термомагнитную запись (HAMR, Heat Assistant Magnetic Recording) и самоорганизующиеся магнитные решетки (SOMA, Self-Organized Magnetic Array).
Особенность HAMR заключается в использовании магнитных материалов с высокой коэрцитивной силой, которые обеспечивают высокую термостабильность записанных участков поверхности. Для записи информации магнитный домен предварительно разогревается с помощью сфокусированного лазерного пучка. Диаметр пучка и определяет размер области, соответствующей одному биту информации. При повышении температуры домена происходит существенное изменение его магнитных свойств (уменьшается коэрцитивная сила), и, таким образом, нагретые участки становятся способными к намагничиванию. Технология SOMA предусматривает формирование на поверхности диска монодисперсного слоя "самоорганизующихся магнитных массивов" из мельчайших однородных железно-платиновых конгломератов размером около 3 нм (3 нм - это 10-15 атомов твердого вещества, выложенных в ряд).
Применение "нанотехнологии" существенно снизит уровень нестабильности отдельных магнитных зерен и уменьшить размеры намагничиваемой области для записи бита данных. Это позволит выпускать накопители емкостью в десятки и сотни терабайт.
Заключение
Развитие электронной промышленности осуществляется быстрыми темпами, однако принципы устройства компьютера остаются неизменными.
Необходимы новые, инновационные методы совершенствования технологии создания жестких дисков. Требуется эффективная синхронизация процедур записи и считывания с движением головок.
Совершенствование жестких дисков на их пути к их усовершенствованию может привести к тому, что они вольют в себя некоторые свойства ближайших конкурентов - оптических носителей информации, таких как CD и DVD. Это приведет к резкому возрастанию их сложности, а значит и стоимости. В то же самое время, лишенные каких-либо суперпарамагнитных пределов, оптические устройства будут развиваться, захватывая новые рубежи, и, вероятно, по всем основным характеристикам превзойдут магнитные накопители.
В курсовой работе были представлены все необходимые характеристики жестких дисков, определены основные принципы его работы и пути повышения качественных и количественных характеристик устройств.
Таким образом, все поставленные на курсовую работу задачи успешно выполнены.
Список литературы
1. Аладьев В. З. Компьютерная хрестоматия. Справочное руководство. Москва.: Российская энциклопедия.2012. - работа жесткого диска
2. Ушаков Н. Н. Технология элементов вычислительных машин. М.: Высшая школа. 2001. - структуры хранения информации
3. Архитектура ПК, комплектующие, мультимедиа. - Рудометов Е., Рудометов В. - Питер, 2008. - контроллер жестких дисков
4. http://citforum.co.kz News Factor Network - общая информация
5. http://www.pcmag.ru/elearning/course/lesson.php?COURSE_ID=17&ID=121 - структура хранения информации на жестком диске
6. http://spas-info.ru/articles/?page=format - форматирование и его виды
7. http://itc.ua/articles/sata_i_drugie_interfejsy_zhestkih_diskov_22528 - интерфейсы жестких дисков
Размещено на Allbest.ru
...Подобные документы
Жесткий диск (винчестер): общее понятие, предназначение, структура. Основные операции по обслуживанию дисков. Процесс форматирования диска. Логические и физические дефекты, возникающие на диске и методы их устранения. Дефрагментация и очистка винчестера.
презентация [264,1 K], добавлен 23.10.2013Внутреннее устройство большинства дисковых накопителей. Форматирование жесткого магнитного диска (винчестера). Физическая архитектура и логическая структура дисковых накопителей. Функции файловой системы. Физические и логические параметры жестких дисков.
реферат [825,7 K], добавлен 19.02.2011Магнитные накопители как важнейшая среда хранения информации в ЭВМ. Виды, конструкция и функционирование магнитных накопителей. Магнитные носители: гибкий магнитный диск, флэш-память, супердискета. Компакт-диски и универсальные цифровые диски, их форматы.
реферат [40,8 K], добавлен 23.04.2011Производители жестких дисков и их классификация. Повышение плотности записи на винчестере. Дисковые массивы, некоторые аспекты реализации RAID-систем. Файловые системы FAT 16, FAT 32, NTFS. Диски со встроенным шифрованием. Форматирование жесткого диска.
книга [2,4 M], добавлен 10.09.2013Анализ принципа действия накопителей на жестких магнитных дисках персональных компьютеров. Перфокарта как носитель информации в виде карточки из бумаги, картона. Основные функции файловой системы. Способы восстановления информации с RAID-массивов.
дипломная работа [354,2 K], добавлен 15.12.2012Накопитель на гибких магнитных дисках. Сменные носители информации. Устройство накопителя для гибких магнитных дисков. Доступ к информации, записанной в одном цилиндре. Технические характеристики дискеты. Накопители на жестком диске и их устройство.
презентация [229,4 K], добавлен 13.08.2013Сравнительный анализ и оценка характеристик накопителей на гибких и жестких магнитных дисках. Физическое устройство, организация записи информации. Физическая и логическая организация данных, адаптеры и интерфейсы. Перспективные технологии производства.
дипломная работа [2,4 M], добавлен 16.04.2014Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.
презентация [1,2 M], добавлен 11.12.2013Накопитель на жёстких магнитных дисках как основной накопитель данных в большинстве компьютеров. Строение устройства. Блок электроники. Особенности геометрии дисков со встроенными контроллерами. Адресация памяти. Виды интерфейсов. Тенденции развития.
презентация [4,6 M], добавлен 20.11.2013Жесткий диск как основное устройство для хранения информации. Основные характеристики и общий вид внешнего и внутреннего диска. Интерфейс, емкость, физический размер, скорость вращения шпинделя и передачи данных. Установка и обслуживание жестких дисков.
контрольная работа [885,7 K], добавлен 21.09.2013Внешние запоминающие устройства для хранения программ и данных. История развития ВЗУ. Характеристика накопителей на магнитной ленте (стримеров) и на гибких магнитных дисках. Типы дисководов, устройство и виды дискеты. Способ записи на гибкий диск.
реферат [27,8 K], добавлен 16.11.2011Жесткий диск - энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Происхождение названия "винчестер". Характеристики жестких магнитных дисков, технологии записи данных. Устройство жесткого диска: гермозона и блок электроники.
контрольная работа [411,3 K], добавлен 15.10.2009Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).
презентация [324,3 K], добавлен 20.12.2015Анализ компьютерных устройств для хранения информации: винчестеры, компакт-диски, DVD (цифровой многоцелевой диск), HD DVD (DVD высокой четкости), голографические многоцелевые диски, минидиски (MD), а также устройства для записи компакт-дисков.
реферат [27,0 K], добавлен 23.09.2008Технические характеристики накопителей на жестких магнитных дисках и их устройство. Питание и охлаждение накопителей. Неисправности аппаратной и программной частей. Программы для проведения диагностики поверхности накопителя, его головок и электроники.
курсовая работа [483,6 K], добавлен 19.05.2013Основные и специализированные виды компьютерной памяти. Классификация устройств долговременного хранения информации, их характеристика: накопители на жестких магнитных дисках; оптические диски, дисководы. Расчет налога на доходы физических лиц в MS Excel.
курсовая работа [4,6 M], добавлен 27.04.2013Сущность и виды компакт-привода (оптического привода), история его появления. Формат хранения данных на диске. Считывание информации с диска. Скорость чтения/записи CD. Суть технологии записи высокой плотности. Технические особенности CD и DVD дисков.
контрольная работа [26,1 K], добавлен 04.10.2011Особенности конструкции современных жестких дисков, система оперативного наблюдения за их состоянием. Виды дефектов магнитного диска. Неисправности аппаратной части диска, характер их проявления и методика устранения. Признаки неисправностей оборудования.
курсовая работа [1,8 M], добавлен 10.10.2014Технические характеристики 18 моделей винчестеров с плотностью записи 20 GB на пластину и выше. Тестирование жестких дисков EIDE. Текущая линейка жестких дисков для настольных систем различных производителей (Fujitsu, IBM, Seagate, Maxtor, WD, Samsung).
реферат [1,0 M], добавлен 03.05.2010Современные внешние жесткие диски. Основные характеристики винчестера. Скорость вращения шпинделя. Скорость передачи данных при последовательном доступе. Состав и основные компоненты прибора. Установка и техническое обслуживание жесткого диска.
курсовая работа [728,1 K], добавлен 13.06.2012