Введение в программу матлаб

Применении пакета MatLab для анализа многомерных данных, его характеристика. Рабочая среда программы, выполнение простейших вычислений. Сохранение рабочей среды и MAT файлы, сущность векторов и матриц. Интегрирование и обмен данными MatLab и Excel.

Рубрика Программирование, компьютеры и кибернетика
Вид учебное пособие
Язык русский
Дата добавления 16.04.2015
Размер файла 386,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В этом пособии рассказывается о применении пакета MatLab для анализа многомерных данных. Этот текст не является учебником по MatLab. В нем приведены только базовые сведения о работе в этой среде, необходимые для реализации основных алгоритмов. Более подробное изложение можно найти здесь.

В пособии интенсивно используются понятия и методы матричной алгебры - вектор, матрица, и т.п. Читателям, которые плохо знакомы с этим аппаратом, рекомендуется изучить, или, хотя бы просмотреть, пособие "Матрицы и векторы".

Для практического воплощения хемометрических методов используются как специализированные пакеты программ (например, the Unsrambler или SIMCA), так и статистические пакеты общего назначения (например, SPSS или Statistica). Среди средств общего назначения, используемых в хемометрике, особое место занимает пакет MatLab. Его популярность необычайно высока. Это объясняется тем, что MatLab является мощным и универсальным обработки многомерных данных. Сама структура пакета делает его удобным средством для проведения матричных вычислений. Спектр проблем, исследование которых может, осуществлено при помощи MatLab, охватывает: матричный анализ, обработку сигналов и изображений, нейронные сети и многие другие. MatLab -- это язык высокого уровня, имеющий открытый код, что дает возможность опытным пользователям разбираться в запрограммированных алгоритмах. Простой встроенный язык программирования позволяет легко создавать собственные алгоритмы. За много лет использования MatLab создано огромное количество функций и ToolBox (пакетов специализированных средств). Самым популярным является пакет PLS ToolBox компании Eigenvector Research, Inc.

Многие книги и статьи содержат MatLab коды, позволяющие читателю сразу применить описываемые методы на практике. MatLab прекрасно интегрируется с Microsoft Word и Excel. Российское хемометрическое общество издало учебное пособие, являющееся полезным введением в хемометрические приложения MatLab.

1. Базовые сведения

1.1 Рабочая среда MatLab

Чтобы запустить программу дважды щелкните на иконку . Перед Вами откроется рабочая среда, изображенная на рисунке.

Рабочая среда MatLab 6.х немного отличается от рабочей среды предыдущих версий, она имеет более удобный интерфейс для доступа ко многим вспомогательным элементам

Рабочая среда MatLab 6.х содержит следующие элементы:

· панель инструментов с кнопками и раскрывающимся списком;

· окно с вкладками Launch Pad и Workspace, из которого можно получить доступ к различным модулям ToolBox и к содержимому рабочей среды;

· окно с вкладками Command History и Current Directory, предназначенное для просмотра и повторного вызова ранее введенных команд, а также для установки текущего каталога;

· командное окно, в котором находится приглашение к вводу » и мигающий вертикальный курсор;

· строку состояния.

Если в рабочей среде MatLab 6.х отсутствуют некоторые окна, приведенные на рисунке, то следует в меню View выбрать соответствующие пункты: Command Window, Command History, Current Directory, Workspase, Launch Pad.

Команды следует набирать в командном окне. Символ », обозначающий приглашение к вводу командной строки, набирать не нужно. Для просмотра рабочей области удобно использовать полосы скроллинга или клавиши Home, End, для перемещения влево или вправо, и PageUp, PageDown для перемещения вверх или вниз. Если вдруг после перемещения по рабочей области командного окна пропала командная строка с мигающим курсором, просто нажмите Enter.

Важно помнить, что набор любой команды или выражения должен заканчиваться нажатием на Enter, для того, чтобы программа MatLab выполнила эту команду или вычислила выражение.

1.2 Простейшие вычисления

Наберите в командной строке 1+2 и нажмите Enter. В результате в командном окне MatLab отображается следующее:

Рис. 2 Графическое представление метода главных компонент

Что сделала программа MatLab? Сначала она вычислила сумму 1+2, затем записала результат в специальную переменную ans и вывела ее значение, равное 3, в командное окно. Ниже ответа расположена командная строка с мигающим курсором, обозначающая, что MatLab готов к дальнейшим вычислениям. Можно набирать в командной строке новые выражения и находить их значения. Если требуется продолжить работу с предыдущим выражением, например, вычислить (1+2)/4.5, то проще всего воспользоваться уже имеющимся результатом, который хранится в переменной ans. Наберите ans/4.5 (при вводе десятичных дробей используется точка) и нажмите Enter, получается

Рис. 3 Графическое представление метода главных компонент

1.3 Эхо команд

Выполнение каждой команды в MatLab сопровождается эхом. В приведенном выше примере -- это ответ ans = 0.6667. Часто эхо затрудняет восприятие работы программы и тогда его можно отключить. Для этого команда должна завершаться символом точка с запятой. Например

Рис. 4 Пример ввода функции ScoresPCA

1.4 Сохранение рабочей среды. MAT файлы

Самый простой способ сохранить все значения переменных -- использовать в меню File пункт Save Workspase As. При этом появляется диалоговое окно Save Workspase Variables, в котором следует указать каталог и имя файла. По умолчанию предлагается сохранить файл в подкаталоге work основного каталога MatLab. Программа сохранит результаты работы в файле с расширением mat. Теперь можно закрыть MatLab. В следующем сеансе работы для восстановления значений переменных следует открыть этот сохраненный файл при помощи подпункта Open меню File. Теперь все переменные, определенные в прошлом сеансе, опять стали доступными. Их можно использовать во вновь вводимых командах.

1.5 Журнал

В MatLab имеется возможность записывать исполняемые команды и результаты в текстовый файл (вести журнал работы), который потом можно прочитать или распечатать из текстового редактора. Для начала ведения журнала служит команда diary. В качестве аргумента команды diary следует задать имя файла, в котором будет храниться журнал работы. Набираемые далее команды и результаты их исполнения будут записываться я в этот файл, например последовательность команд производит следующие действия:

1. открывает журнал в файле exampl-1.txt;

2. производит вычисления;

3. сохраняет все переменные в MAT файле work-1.mat;

4. сохраняет журнал в файле exampl-1.txt в подкаталоге work корневого каталога MatLab и закрывает MatLab;

Посмотрите содержимое файла exampl-1.txt в каком-нибудь текстовом редакторе. В файле окажется следующий текст:

a1=3;

a2=2.5;

a3=a1+a2

a3 =

5.5000

save work-1

quit

2. Матрицы

2.1 Скаляры, векторы и матрицы

В MatLab можно использовать скаляры, векторы и матрицы. Для ввода скаляра достаточно приписать его значение какой-то переменной, например

Заметим, что MatLab различает заглавные и прописные буквы, так что p и P -- это разные переменные. Для ввода массивов (векторов или матриц) их элементы заключают в квадратные скобки. Так для ввода вектора-строки размером 1Ч3, используется следующая команда, в которой элементы строки отделяются пробелами или запятыми.

При вводе вектора-столбца элементы разделяют точкой с запятой. Например,

Вводить небольшие по размеру матрицы удобно прямо из командной строки. При вводе матрицу можно рассматривать как вектор-столбец, каждый элемент которого является вектор-строкой.

или матрицу можно трактовать как вектор строку, каждый элемент которой является вектор-столбцом.

2.2 Доступ к элементам

Доступ к элементам матриц осуществляется при помощи двух индексов -- номеров строки и столбца, заключенных в круглые скобки, например команда B(2,3) выдаст элемент второй строки и третьего столбца матрицы B. Для выделения из матрицы столбца или строки следует в качестве одного из индексов использовать номер столбца или строки матрицы, а другой индекс заменить двоеточием. Например, запишем вторую строку матрицы A в вектор z

Также можно осуществлять выделение блоков матриц при помощи двоеточия. Например, выделим из матрицы P блок отмеченный цветом

Если необходимо посмотреть переменные рабочей среды, в командной строке необходимо набрать команду whos.

Видно, что в рабочей среде содержатся один скаляр (p), четыре матрицы (A, B, P, P1) и вектор-строка (z).

2.3 Основные матричные операции

При использовании матричных операций следует помнить, что для сложения или вычитания матрицы должны быть одного размера, а при перемножении число столбцов первой матрицы обязано равняться числу строк второй матрицы. Сложение и вычитание матриц, так же как чисел и векторов, осуществляется при помощи знаков плюс и минус

а умножение -- знаком звездочка *. Введем матрицу размером 3Ч2

Умножение матрицы на число тоже осуществляется при помощи звездочки, причем умножать на число можно как справа, так и слева. Возведение квадратной матрицы в целую степень производится с использованием оператора ^

Проверьте полученный результат, умножив матрицу Р саму на себя.

Содержание

2.4 Создание матриц специального вида

Заполнение прямоугольной матрицы нулями производится встроенной функцией zeros

Единичная матрица создается при помощи функции eye

Матрица, состоящая из единиц, образуется в результате вызова функции ones

MatLab предоставляет возможность заполнения матриц случайными числами. Результатом функции rand является матрица чисел, равномерно распределенных между нулем и единицей, а функции randn -- матрица чисел, распределенных по нормальному закону с нулевым средним и единичной дисперсией.

Функция diag формирует диагональную матрицу из вектора, располагая элементы по диагонали.

3. Интегрирование MatLab и Excel

Интегрирование MatLab и Excel позволяет пользователю Excel обращаться к многочисленным функциям MatLab для обработки данных, различных вычислений и визуализации результата. Надстройка excllink.xla реализует данное расширение возможностей Excel. Для связи MatLab и Excel определены специальные функции.

3.1 Конфигурирование Excel

Перед тем как настраивать Excel на совместную работу с MatLab, следует убедиться, что Excel Link входит в установленную версию MatLab. В подкаталоге exclink основного каталога MatLab или подкаталога toolbox должен находиться файл с надстройкой excllink.xla. Запустите Excel и в меню Tools выберите пункт Add-ins. Откроется диалоговое окно, содержащее информацию о доступных в данный момент надстройках. Используя кнопку Browse, укажите путь к файлу excllink.xla. В списке надстроек диалогового окна появтится строка Excel Link 2.0 for use with MatLab с установленным флагом. Нажмите OK, требуемая надстройка добавлена в Excel.

Обратите внимание, что в Excel теперь присутствует панель инструментов Excel Link, содержащая три кнопки: putmatrix, getmatrix, evalstring. Эти кнопки реализуют основные действия, требуемые для осуществления взаимосвязи между Excel и MatLab -- обмен матричными данными, и выполнение команд MatLab из среды Excel. При повторных запусках Excel надстройка excllink.xla подключается автоматически.

Согласованная работа Excel и MatLab требует еще нескольких установок, которые приняты в Excel по умолчанию (но могут быть изменены). В меню Tools перейдите к пункту Options, открывается диалоговое окно Options. Выберите вкладку General и убедитесь, что флаг R1C1 reference style выключен, т.е. ячейки нумеруются A1, A2 и т.д. На вкладке Edit должен быть установлен флаг Move selection after Enter.

3.2 Обмен данными между MatLab и Excel

Запустите Excel, проверьте, что проделаны все необходимые настройки так, как описано в предыдущем разделе (MatLab должен быть закрыт). Введите в ячейки с A1 по C3 матрицу, для отделения десятичных знаков используйте точку в соответствии с требованиями Excel.

Выделите на листе данные ячейки и нажмите кнопку putmatrix, появляется окно Excel с предупреждением о том, что MatLab не запущен. Нажмите OK, дождитесь открытия MatLab.

Появляется диалоговое окно Excel со строкой ввода, предназначенной для определения имени переменной рабочей среды MatLab, в которую следует экспортировать данные из выделенных ячеек Excel. Введите к примеру, М и закройте окно при помощи кнопки OK. Перейдите к командному окну MatLab и убедитесь, что в рабочей среде создалась переменная М, содержащая массив три на три:

Проделайте некоторые операции в MatLab с матрицей М, например, обратите ее.

Вызов inv для обращения матрицы, как и любой другой команды MatLab можно осуществить прямо из Excel. Нажатие на кнопку evalstring, расположенную на панели Excel Link, приводит к появлению диалогового окна, в строке ввода которого следует набрать команду MatLab

IM=inv(M).

Результат аналогичен полученному при выполнении команды в среде MatLab.

Вернитесь в Excel, сделайте текущей ячейку A5 и нажмите кнопку getmatrix. Появляется диалоговое окно со строкой ввода, в которой требуется ввести имя переменной, импортируемой в Excel. В данном случае такой переменной является IM. Нажмите OK, в ячейки с A5 по A7 введены элементы обратной матрицы.

Итак, для экспорта матрицы в MatLab следует выделить подходящие ячейки листа Excel, а для импорта достаточно указать одну ячейку, которая будет являться верхним левым элементом импортируемого массива. Остальные элементы запишутся в ячейки листа согласно размерам массива, переписывая содержащиеся в них данные, поэтому следует соблюдать осторожность при импорте массивов.

Вышеописанный подход является самым простым способом обмена информацией между приложениями -- исходные данные содержатся в Excel, затем экспортируются в MatLab, обрабатываются там некоторым образом и результат импортируется в Excel. Пользователь переносит данные при помощи кнопок панели инструментов Excel Link. Информация может быть представлена в виде матрицы, т.е. прямоугольной области рабочего листа. Ячейки, расположенные в строку или столбец, экспортируются, соответственно, в вектор-строки и вектор-столбцы MatLab. Аналогично происходит и импорт вектор-строк и вектор-столбцов в Excel.

4. Программирование

4.1 М-файлы

Работа из командной строки MatLab затрудняется, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды незначительно облегчают работу. Самым удобным способом выполнения групп команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. С его помощью можно создавать собственные функции и вызывать их, в том числе и из командного окна.

Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file. Новый файл открывается в окне редактора M-файлов, которое изображено на рисунке.

М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files), содержащие последовательность команд, и файл-функции, (Function M-Files), в которых описываются функции, определяемые пользователем.

4.2 Файл-программа

Наберите в редакторе команды, приводящие к построению двух графиков на одном графическом окне

Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug. На экране появится графическое окно Figure 1, содержащее графики функций.

Команды файл-программы осуществляют вывод в командное окно. Для подавления вывода следует завершать команды точкой с запятой. Если при наборе сделана ошибка и MatLab не может распознать команду, то происходит выполнение команд до неправильно введенной, после чего выводится сообщение об ошибки в командное окно.

Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure 1. Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише Shift, первые четыре команды и выполните их из пункта Text. Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным: командам. Запомните, что для выполнения части команд их следует выделить и нажать клавишу F9. matlab матрица вычисление вектор

Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии начинаются со знака процента и автоматически выделяются зеленым цветом, например:

4.4 Создание графика

MatLab имеет широкие возможности для графического изображения векторов и матриц, а также для создания комментариев и печати графиков. Дадим описание несколько важных графических функций.

Функция plot имеет различные формы, связанные с входными параметрами, например plot(y) создает кусочно-линейный график зависимости элементов y от их индексов. Если в качестве аргументов заданы два вектора, то plot(x,y) создаст график зависимости y от x. Например, для построения графика функции sin в интервале от 0 до 2?, сделаем следующее

Программа построила график зависимости, который отображается в окне Figure 1

MatLab автоматически присваивает каждому графику свой цвет (исключая случаи, когда это делает пользователь), что позволяет различать наборы данных.

Команда hold on позволяет добавлять кривые на существующий график. Функция subplot позволяет выводить множество графиков в одном окне

4.5 Печать графиков

Пункт Print в меню File и команда print печатают графику MatLab. Меню Print вызывает диалоговое окно, которое позволяет выбирать общие стандартные варианты печати. Команда print обеспечивает большую гибкость при выводе выходных данных и позволяет контролировать печать из М-файлов. Результат может быть послан прямо на принтер, выбранный по умолчанию, или сохранен в заданном файле.

4.6 SVD/PCA

Наиболее популярным способом сжатия данных в многомерном анализе является метод главных компонент (PCA). С математической точки зрения PCA -- это декомпозиция исходной матрицы X, т.е. представление ее в виде произведения двух матриц T и P

X = TPt + E

Матрица T называется матрицей счетов (scores) , матрица P -- матрицей нагрузок (loadings), а E -- матрицей остатков.

Простейший способ найти матрицы T и P -- использовать SVD разложение через стандартную функцию MatLab, называемую svd.

function [T, P] = pcasvd(X)

% pcasvd: calculates PCA components.

% The output matrices are T and P.

% T contains scores

% P contains loadings

[U,D,V] = svd(X);

T = U * D;

P = V;

%end of pcasvd

4.7 PCA/NIPALS

Для построения PCA счетов и нагрузок, используется рекуррентный алгоритм NIPALS, который на каждом шагу вычисляет одну компоненту. Сначала исходная матрица X преобразуется (как минимум - центрируется; см. раздел 4.3) и превращается в матрицу E0, a=0. Далее применяют следующий алгоритм.

1. Выбрать начальный вектор t

2. pt = tt Ea / ttt

3. p = p / (ptp)Ѕ

4. t = Ea p / ptp

5. Проверить сходимость, если нет, то идти на 2

После вычисления очередной (a-ой) компоненты, полагаем ta=t и pa=p. Для получения следующей компоненты надо вычислить остатки Ea+1 = Ea - t pt и применить к ним тот же алгоритм, заменив индекс a на a+1.

Код алгоритма NIPALS может быть написан и самими читателями, в данном же пособии авторы приводят свой вариант. При расчете PCA, можно вводить число главных компонент (переменная numberPC). Если же не известно, сколько необходимо компонент, следует написать в командной строке [P,T] = pcanipals (X) и тогда программа задаст число компонент равным наименьшему из показателей размерности исходной матрицы X.

4.8 PLS1

Самым популярным способом для многомерной калибровки является метод проекции на латентные структуры (PLS). В этом методе проводится одновременная декомпозиция матрицы предикторов X и матрицы откликов Y:

X=TPt+E Y=UQt+F T=XW(PtW)-1

Проекция строится согласованно - так, чтобы максимизировать корреляцию между соответствующими векторами X-счетов ta и Y-счетов ua. Если блок данных Y включает несколько откликов (т.е. K>1), можно построить две проекции исходных данных - PLS1 и PLS2. В первом случае для каждого из откликов yk строится свое проекционное подпространство. При этом и счета T (U) и нагрузки P (W, Q) , зависят от того, какой отклик используется. Этот подход называется PLS1. Для метода PLS2 строится только одно проекционное пространство, которое является общим для всех откликов.

Детальное описание метода PLS приведено в этой книге Для построения PLS1 счетов и нагрузок, используется рекуррентный алгоритм. Сначала исходные матрицы X и Y центрируют

[E0, mX] = mc(X);

[F0, mY] = mc(Y);

и они превращаются в матрицу E0 и вектор f0, a=0. Далее к ним применяет следующий алгоритм

1. wt = fat Ea

2. w = w / (wtw)Ѕ

3. t = Ea w

4. q = tt fa / ttt

5. u = qfa / q2

6. pt = tt Ea / ttt

После вычисления очередной (a-ой) компоненты, полагаем ta=t и pa=p. Для получения следующей компоненты надо вычислить остатки Ea+1 = Ea - t pt и применить к ним тот же алгоритм, заменив индекс a на a+1.

О вычислении PLS1 с помощью надстройки Chemometrics рассказано в пособии Проекционные методы в системе Excel.

Заключение

MatLab это это очень популярный инструмент для анализа данных. По данным опроса, проведенного на сайте www.chemometrics.it его используют до трети всех исследователей, тогда как программа the Unsrambler применяется только 16% ученых. Главным недостатком MatLab являются его высокая цена. Кроме того, MatLab хорош для рутинных расчетов. Отсутствие интерактивности делает его неудобным при выполнении поисковых, исследовательских расчетов для новых, неисследованных массивов данных.

Размещено на Allbest.ru

...

Подобные документы

  • Язык и среда Matlab. Управляемая графика. Библиотека математических функций. Программный интерфейс. Использование операторов при составлении выражений. Работа в командной строке. Команды save, load и clear. Рабочий каталог. Сохранение рабочей сессии.

    презентация [413,6 K], добавлен 14.11.2013

  • Зарождение и развитие системы MatLab. Порядок выполнения простых вычислений. Построение логической области в графическом окне. Работа с символьными массивами. Написание функции, выполняющей требуемое задание для матриц и векторов любой размерности.

    отчет по практике [761,4 K], добавлен 21.10.2015

  • Назначение и особенности системы MATLAB. Запуск программы, работа в режиме диалога, понятие о сессии, операции строчного редактирования. Формирование векторов и матриц. Графики ряда функций. Знакомство с трехмерной графикой. Интерфейс основного окна.

    учебное пособие [65,9 K], добавлен 17.03.2011

  • Исследование математико-экономической модели компании с целью выработки оптимального решения по выпуску продукции для получения максимальной прибыли и минимизации затрат с помощью методов оптимизации и программы MS Excel и инструментального пакета Matlab.

    дипломная работа [3,1 M], добавлен 15.06.2014

  • Метод наименьших квадратов. Возможные варианты расположения экспериментальных точек. Аппроксимация экспериментальных данных в программах Microsoft Excel, MathCAD и MatLAB. Вычисление средних значений и их сумм. Коэффициенты корреляции и детерминации.

    курсовая работа [890,9 K], добавлен 30.10.2012

  • Определение граничных значений параметров, принципов организации из математического пакета программ MatLab. Реализация принципов управляемости и наблюдаемости. Основные методы параметрического оценивания. Реализация принципов идентификации и адекватности.

    курсовая работа [2,3 M], добавлен 24.06.2013

  • Исследование и оценка возможностей работы со следующими разделами библиотеки приложения Simulink пакета программ Matlab: Source, Sinks, Continuous, Math Operation. Функции по представлению полученных в результате моделирования данных в графическом виде.

    лабораторная работа [438,9 K], добавлен 23.09.2022

  • Возможности Matlab, выполнении математических и логических операций, интерактивные инструменты построения графиков. Конструкции для обработки и анализа больших наборов данных, программные и отладочные инструменты, оптимизация данных, операций и функций.

    статья [170,5 K], добавлен 01.05.2010

  • Matlab - матричная лаборатория - система программирования для научно-технических расчетов. Особенности ввода векторов. Специальные матрицы, простые команды. Простые примеры, иллюстрирующие эффективность Matlab. Графический способ решения уравнений.

    реферат [46,3 K], добавлен 05.01.2010

  • Создание матриц специального вида в Matlab: использование функций и анализ основного синтаксиса. Проведение вычислений с элементами массивов. Логические функции, поиск в массиве. Матричные и поэлементные операции. Операции "деления" слева и справа.

    презентация [189,4 K], добавлен 24.01.2014

  • Краткая характеристика пакета Mathcad, описание простейших примеров работы с ним, примеры решения основных задач элементарной математики. Компьютерные технологии решения математических задач и символьных вычислений. Образование векторов и матриц.

    дипломная работа [621,1 K], добавлен 11.03.2011

  • Общая характеристика и свойства системы Matlab - пакета прикладных программ для решения задач технических вычислений. Разработка математической модели в данной среде, программирование функций для задающего воздействия. Проектирование GUI-интерфейса.

    курсовая работа [1023,2 K], добавлен 23.05.2013

  • Математическая основа параллельных вычислений. Свойства Parallel Computing Toolbox. Разработка параллельных приложений в Matlab. Примеры программирования параллельных задач. Вычисление определенного интеграла. Последовательное и параллельное перемножение.

    курсовая работа [1,1 M], добавлен 15.12.2010

  • Назначение и возможности пакета MATLAB, его основные составляющие. Набор вычислительных функций. Роль интерполяции функций в вычислительной математике. Пример интерполяции с четырьмя узлами. Интерполирование и сглаживание, схемы решения задач в MATLAB.

    курсовая работа [594,5 K], добавлен 28.12.2012

  • Основные элементы окна программы MathCAD. Выполнение операций с файлами, редактирование, настройка программы. Способы ввода и редактирования в рабочем поле окна программы. Задание на рабочей области необходимых функций и матриц, выполнение вычислений.

    контрольная работа [18,0 K], добавлен 11.09.2019

  • Назначение и возможности пакета MATLAB. Цель интерполирования. Компьютерная реализация решения инженерной задачи по интерполяции табличной функции различными методами: кусочно-линейной интерполяцией и кубическим сплайном, а также построение их графиков.

    контрольная работа [388,3 K], добавлен 25.10.2012

  • Математическое моделирование. Изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования. Интегрирование функций MATLAB.

    курсовая работа [889,3 K], добавлен 27.09.2008

  • Изучение возможностей среды статистических вычислений R для классификации многомерных неоднородных ассиметричных данных с помощью Expectation-Maximization (EM) алгоритмов. Использование R для анализа модели смеси вероятностных распределений (FMM).

    реферат [1,8 M], добавлен 09.12.2014

  • Проектирование экспертной системы выбора нейронной сети. Сущность семантических сетей и фреймов. MatLab и системы Фаззи-регулирования. Реализация программы с использованием пакета fuzzy logic toolbox системы MatLab 7. Составление продукционных правил.

    курсовая работа [904,4 K], добавлен 17.03.2016

  • Программный комплекс MATLAB как мощное средство для высокоточного цифрового моделирования системы автоматического управления. Основные особенности построения временных характеристик с помощью пакета Control System и моделирования в системе Simulink.

    контрольная работа [2,3 M], добавлен 14.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.