Квантовые компьютеры

Характеристика квантовых компьютеров, их фундаментальные единицы информации. Основные понятия и принципы квантовых вычислений. Идеи квантового компьютинга и квантовой связи. Отличие квантовых компьютеров от классических. Перспективы квантовых вычислений.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 07.05.2015
Размер файла 25,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Оглавление

  • Введение
  • 1. Квантовые компьютеры. Основные понятия и принципы квантовых вычислений
  • 2. Отличие квантовых компьютеров от классических
  • 3. Перспективы квантовых вычислений
  • Заключение
  • Список используемой литературы

Введение

Представьте себе компьютер, память которого экспоненциально больше, чем можно было бы ожидать, оценивая его явный физический размер; компьютер, который может оперировать одновременно с экспоненциально большим набором входных данных; компьютер, который проводит вычисления в туманном для большинства из нас гильбертовом пространстве. квантовый компьютер вычисление связь

Тогда вы думаете о квантовом компьютере.

Идея вычислительного устройства, основанного на квантовой механике, впервые рассматривалась еще в ранних 1970-х годах и ранних 1980-х физиками и компьютерными учеными, такими, например, как Чарльз Х. Беннет из IBM Thomas J. Watson Research Center, Пол А. Бениофф из Аргоннской национальной лаборатории в Иллинойсе, Дэвидом Дойчем из Оксфордского университета, и позднее Ричардом П. Фейнманом из из Калифрнийского технологического института (Калтех). Идея возникла тогда, когда ученые заинтересовались фундаментальными ограничениями вычислений. Они поняли, что если технология будет продолжать следовать постепенному уменьшению размеров вычислительных сетей упакованных в кремниевые ЧИПы, то это приведет к тому, что индивидуальные элементы станут не больше чем несколько атомов. Тогда возникла проблема, так как на атомном уровне действуют законы квантовой физики, а не классической. А это подняло вопрос, можно ли сконструировать компьютер, основанный на принципах квантовой физики.

Фейнман одним из первых попытался дать ответ на этот вопрос. В 1982г. он предложил модель абстрактной квантовой системы, пригодной для вычислений. Он также объяснил, как такая система может быть симулятором в квантовой физике. Другими словами, физики могли бы проводить вычислительные эксперименты на таком квантовом компьютере.

Позже, в 1985 году, Дойч осознал, что утверждение Фейнмана могло бы, в конце концов, привести к квантовому компьютеру общего назначения, и опубликовал важнейшую теоретическую работу, показывающую, что любой физический процесс может в принципе быть промоделирован на квантовом компьютере.

К сожалению, все, что тогда смогли придумать, было несколько довольно надуманных математических задач, до тех пор, пока Шор выпустил в 1994 году свою работу, в которой представил алгоритм решения на квантовом компьютере одной важной задачи из теории чисел, а именно, разложения на простые множители. Он показал, как набор математических операций, сконструированных специально для квантового компьютера, может факторизовать (разложить на простые множители) огромные числа фантастически быстро, значительно быстрее, чем на обычных компьютерах. Это был прорыв, который перевел квантовые вычисления из разряда академического интереса в разряд задачи, интересной для всего мира.

Актуальность выбранной темы реферата имеет место быть и по сей день. Главной целью работы являются изучение основных понятий квантовой механики, понятий и принципов квантовых вычислений, а также предположение возможных перспектив квантовых вычислений.

1. Квантовые компьютеры. Основные понятия и принципы квантовых вычислений

Хотя компьютеры стали компактными и значительно быстрее, чем раньше, справляются со своей задачей, сама задача остается прежней: манипулировать последовательностью битов и интерпретировать эту последовательность как полезный вычислительный результат. Бит - это фундаментальная единица информации, обычно представляемая как 0 или 1 в вашем цифровом компьютере. Каждый классический бит физически реализуется макроскопической физической системой, такой как намагниченность на жестком диске или заряд конденсатора. Например, текст, составленный из n символов, и сохраненный на жестком диске типичного компьютера, описывается строкой из 8n нулей и единиц. Здесь и лежит фундаментальное отличие между вашим классическим компьютером и квантовым компьютером. В то время как классический компьютер подчиняется хорошо понятным законам классической физики, квантовый компьютер это устройство, которое использует квантово-механические явления (в особенности квантовую интерференцию), чтобы осуществлять совершенно новый способ обработки информации.

В квантовом компьютере фундаментальная единица информации (называемая квантовый бит или кубит), не двоична, а скорее четверична по своей природе. Это свойство кубита проистекает как прямое следствие его подчиненности законам квантовой механики, которые радикально отличаются от законов классической физики. Кубит может существовать не только в состоянии, соответствующем логическим 0 или 1, как классический бит, но также в состояниях, соответствующих смесли или суперпозиции этих классических состояний. Другими словами, кубит может существовать как ноль, как единица, и как одновременно 0 и 1. При этом можно указать некоторый численный коэффициент, представляющий вероятность оказаться в каждом состоянии.

К настоящему времени открыты квантовые алгоритмы, приводящие к экспоненциальному ускорению вычислений по сравнению с вычислениями на классическом компьютере. К ним относится алгоритм Шора определения простых множителей больших (многоразрядных) чисел. Эта чисто математическая проблема тесно связана с жизнью общества, так как на "невычислимости" таких множителей построены современные шифровальные коды. Именно это обстоятельство вызвало сенсацию, когда был открыт алгоритм Шора. Для физиков важно, что и решение квантовых задач (решение уравнения Шрёдингера для многочастичных систем) экспоненциально ускоряется, если использовать квантовый компьютер.

Наконец, очень важно, что в ходе исследований задач квантового компьютинга подвергаются новому анализу и экспериментальной проверке основные проблемы квантовой физики: проблемы локальности, реальности, дополнительности, скрытых параметров, коллапса волновой функции.

Идеи квантового компьютинга и квантовой связи возникли спустя сто лет после рождения первоначальных идей квантовой физики. Возможность построения квантовых компьютеров и систем связи показана выполненными к настоящему времени теоретическими и экспериментальными исследованиями. Квантовая физика "достаточна" для проектирования квантовых компьютеров на различной "элементной базе". Квантовые компьютеры, если их удастся построить, будут техникой XXI века. Для их изготовления потребуется создание и развитие новых технологий на нанометровом и атомном уровне размеров. Эта работа может занять, по-видимому, несколько десятилетий. Построение квантовых компьютеров было бы еще одним подтверждением принципа неисчерпаемости природы: природа имеет средства для осуществления любой корректно сформулированной человеком задачи.

2. Отличие квантовых компьютеров от классических

В обычном компьютере информация кодируется последовательностью битов, и эти биты последовательно обрабатываются булевскими логическими элементами, чтобы получить нужный результат. Аналогично квантовый компьютер обрабатывает кубиты, выполняя последовательность операций квантовыми логическими элементами, каждый из которых представляет собой унитарное преобразование, действующее на единичный кубит или пару кубитов. Последовательно выполняя эти преобразования, квантовый компьютер может выполнить сложное унитарное преобразование над всем набором кубитов приготовленных в некотором начальном состоянии. После этого можно произвести измерение над кубитами, которое и даст конечный результат вычислений. Это сходство вычислений между квантовым и классическим компьютером позволяет считать, что, по крайней мере, в теории, классический компьютер может в точности воспроизводить работу квантового компьютера. Другими словами, классический компьютер может делать все то же самое, что и квантовый компьютер. Тогда зачем вся эта возня с квантовым компьютером? Дело в том, что, хотя теоретически классический компьютер может симулировать квантовый компьютер, это очень неэффективно, настолько неэффективно, что практически классический компьютер не в состоянии решать многие задачи, которые по плечу квантовому компьютеру. Симуляция квантового компьютера на классическом компьютере вычислительно сложная проблема, потому что корреляции между квантовыми битами качественно отличается от корреляций между классическими битами, как было впервые показано Джоном Беллом. Для примера можно взять систему только из нескольких сотен кубитов. Она существует в пространстве Гильберта размерностью ~1090, что потребует, при моделировании классическим компьютером, использования экспоненциально больших матриц (чтобы выполнить расчеты для каждого отдельного состояния, которое также описывается матрицей). Это означает, что классическому компьютеру понадобится экпоненциально больше времени по сравнению даже с примитивным квантовым компьютером.

Ричард Фейнман был среди первых, кто осознал потенциал, заложенный в явлении квантовой суперпозиции для решения таких задач гораздо быстрее. Например, система из 500 кубитов, которую практически невозможно промеделировать классически, представляет собой квантовую суперпозицию из 2500 состояний. Каждое значение такой суперпозиции классически эквивалентно списку из 500 единиц и нулей. Любая квантовая операция над такой системой, например, настроенный определенным образом импульс радиоволн, который может выполнить операцию управляемое НЕ над, скажем, 100-м и 101-м кубитом, будет одновременно воздействовать на 2500 состояний. Таким образом, за один тик компьютерных часов квантовая операция вычисляет не одно машинное состояние, как обычные компьютеры, а 2500 состояний сразу!

Шифрование, однако, только одно возможное применение квантового компьютера. Шор разработал целый набор математических операций, которые могут быть выполнены исключительно на квантовом компьютере. Некоторые из этих операций используются в его алгоритие факторизации. Далее, Фейнман утверждал, что квантовый компьютер может действовать как моделирующее устройство для квантовой физики, потенциально открывая двери ко многим открытиям в этой области. В настоящее время мощь и возможности квантового компьютера, в основном, предмет теоретических рассуждений; появление первого по-настоящему функционального квантового компьютера, несомненно, принесет много новых и волнующих практических применений.

3. Перспективы квантовых вычислений

Перспективность квантовых вычислений заключается втом, что квантовые компьютеры смогут решать целые классы задач, которые сейчасявляются очень тяжелыми и трудно обрабатываемыми. Они же смогут решать их оченьбыстро. В частности, наиболее перспективной областью, в которую в основном идут средства, является создание квантовой криптографии.

Квантовая криптография говорит о следующем: перехватпосланного сообщения сразу же становится известным. Это означает, что фактшпионажа не заметить нельзя. Перехваченное сообщение, зашифрованное квантовымкомпьютером, утрачивает свою структуру и становится непонятным для адресата.Поскольку квантовая криптография эксплуатирует природу реальности, а нечеловеческие изыски, то скрыть факт шпионажа становится невозможно. Появлениешифрования такого рода поставит окончательную точку в борьбе криптографов за наиболеенадежные способы шифрования сообщений.

Кроме того, квантовый компьютер, благодаря своим качествам, способен разложить 250-значное число не за 800-1000 лет, как современные самые мощные электронно-вычислительные машины, а за 30 минут. С такой машиной спецслужбы могут быстро взломать любой, самый сложный шифр.

У квантовых компьютеров есть еще одна сфераприменения, огромное значение которой понятно уже сегодня. Гигантская вычислительная мощь квантового компьютера позволит переложить на плечи машинысамую разнообразную интеллектуальную деятельность. Машина может не тольконакапливать, хранить и обрабатывать информацию, но и производить с нейоперации, совершенно недоступные даже самым мощным современным компьютерам.

Это значит, что квантовые компьютеры позволят создать экспертные системы нового поколения. Экспертная система -- этокомпьютерная система, которая использует знания одного или нескольких экспертовв формализованном виде, а также логику принятия решений. Эта системапредназначена для принятия обоснованного решения в тяжелых условиях, когда нехватает времени, опыта, знаний, информации. На введенный запрос машина даетквалифицированную консультацию или подсказку.

Экспертные системы стали создавать, как только этопозволили вычислительные мощности компьютеров. В СССР работы по созданиюэкспертных систем развернул известный специалист в области кибернетики,академик Виктор Глушков еще в 1968 году. Собственно, создание экспертных системназывается часто разработкой искусственного интеллекта.

Первые модели были созданы в середине 1970-х годов:система MYCIN использовалась вмедицине для диагностики заболеваний, DENDRALв разведке месторождений полезных ископаемых для анализа химического составапочв.

Но квантовый компьютер, резко превосходящий обычныйкомпьютер, в состоянии использовать накопленные знания и алгоритмы принятия решений более полно и всесторонне. Экспертная система на основе квантовыхкомпьютеров может заменить коллективы самых лучших ученых и инженеров, а также может накапливать с течением времени интеллектуальный потенциал. Разумеется, что человек не будет полностью исключен из работы, потому что потребуются люди,которые будут формулировать запросы в экспертную систему.

В памяти экспертной системы может храниться огромноеколичество всевозможных технических сведений: параметры материалов, машин,промышленного оборудования, стандарты и многое другое. Также хранятся алгоритмыпринятия решений, созданные тысячами самых лучших специалистов. В экспертнуюсистему вводится запрос на конструирование машины с определенными функциями.Экспертная система выполняет разработку и конструирование машины, как если быэто делал большой коллектив высококлассных специалистов, и выдает готовыечертежи, по которым машину можно построить. В разработке учтены наличиематериалов и возможности производства.

Создание подобной экспертной системы на основеквантовых компьютеров произведет крупнейший переворот в технике. В разысократится время разработок новых машин, будет освоен большой спектрразнообразных технических и конструкторских решений, будут преодолены традиции,сковывающие работу специалистов. Страна, которая первой создаст такуюэкспертную систему, получит уникальный шанс вырваться в лидеры внаучно-технической гонке.

Также можно отметитьуже функциональные образцы квантовых вычислителей.

Самым нашумевшимпредставителем является компьютер Orionфирмы D-Wave.Данная фирма в 2007 году собрала 16-кубитовый квантовый компьютер, который былотмечен как самый мощный квантовый компьютер, а также первым,на котором можно запускать коммерчески-значимые приложения.

Всё этонамного превосходит большинство других разработок квантовых компьютеров, причёмD-Wave смогла создать компьютер,используя технологии производства полупроводников и существующиеполупроводниковые заводы, не прибегая к помощи оптических схем, квантовыхточек, сдерживания лазера или других экзотических технологий производства. D-Wave работает и над второйполовиной проблемы, а именно над инструментами программирования для созданияприложений, способных получить преимущество от возможностей, которые обещаютдать квантовые вычисления.

Однакоданные открытия ставят под сомнения в научных кругах, указывая на сложности приработе с большим числом кубитов.

Следует отметить, что для проведения операций с кубитамиранее необходимо было использовать лазеры, ядерный магнитный резонанс и ионныеловушки. Но чтобы приблизить появление настоящего квантового компьютера,необходимо создать более простую и менее чувствительную к колебаниям внешнихусловий машину. Это значит, что одну из основных рабочих частей (процессор) желательно создать из классических твёрдых материалов.

Заключение

В настоящее время идет активное исследование альтернативного метода вычислений, такого как вычисление при помощи квантовых компьютеров. Квантовые компьютеры позволяют выполнить операцию над неограниченным количеством кубитов одновременно, что может многократно увеличить скорость вычислений.

Сейчас квантовые компьютеры и квантовые информационные технологии остаются в состоянии пионерских разработок. Решение трудностей, с которыми сейчас столкнулись эти технологии, обеспечит прорыв квантовых компьютеров к их законному месту самых быстрых вычислительных машин из всех физически возможных. К сегодняшнему дню исправление ошибок существенно продвинулось, приближая момент, когда мы сможем создавать достаточно надежные компьютеры, способные противостоять эффектам декогеренции. С другой стороны, создание квантового оборудования пока остается только возникающей отраслью; но работа, проделанная на сегодня, убеждает нас, что создание достаточно больших машин, способных выполнять серьезные алгоритмы, например, алгоритм Шора, всего лишь дело времени.

Таким образом, квантовые компьютеры обязательно появятся. По меньшей мере, это будут самые совершенные вычислительные устройства, а современные нам компьютеры устареют. Квантовые вычисления берут свое начало в весьма специфических областях теоретической физики, но их будущее, несомненно, окажет огромное воздействие на жизнь всего человечества.

Нельзя сказать, что квантовые компьютеры целиком вытеснят классические, однако в определенных сферах данный тип вычислителей сможет значительно улучшить выполнение специфичных задач

Список используемой литературы

1) Квантовые вычисления: за и против. Под ред. В.А. Садовничего. - Ижевск: Издательский дом «Удмуртский университет», 2010. - 212 с.

2) «Квантовыйкомпьютер» -- Свободная энциклопедия «Википедия» ru.wikipedia.org/wiki/Квантовый_компьютер

3) «Твердотельный квантовый чип» -- Компьютерный журнал «membrana» , 2010. - 17 с.

4) Маслов. Д. «Квантовые вычисления и коммуникация: реальность и перспективы», Компьютерра, №46 , 2004г.

5) Холево А. «Квантовая информатика: прошлое, настоящее, будущее», В МИРЕ НАУКИ, №7, 2008г.

Размещено на Allbest.ru

...

Подобные документы

  • Структура квантового компьютера. Несколько идей и предложений как сделать надежные и легко управляемые квантовые биты. Использование квантовых электродинамических полостей для фотонов. Системы двух одномерных квантовых каналов для электронных волн.

    презентация [102,5 K], добавлен 24.05.2014

  • История возникновения идеи о квантовых вычислениях. Основные понятия квантовых вычислений. Квантовые биты, вентили и алгоритмы. Основные принципы работы и реализации квантового компьютера. Алгоритмы Шора и Гровера. Квантовый компьютер на ионных ловушках.

    реферат [1,8 M], добавлен 26.05.2012

  • Основные понятия квантовой механики, понятия и принципы квантовых вычислений. Возможность построения квантового компьютера, и его преимущества перед "классическим". Алгоритм Гровера - квантовый алгоритм быстрого поиска в неупорядоченной базе данных.

    реферат [241,0 K], добавлен 07.05.2009

  • Основные направления технического развития. Что же такое нанотехнологии? Основные типы квантовых компьютеров. Область применения и проблемы создания квантовых компьютеров. Компоненты субатомного размера. Нанотехнологии в информационных технологиях.

    отчет по практике [546,3 K], добавлен 06.06.2015

  • Нейровычислитель как устройство переработки информации на основе принципов работы естественных нейронных систем. Основные преимущества нейрокомпьютеров. Кубит как основа для работы квантового компьютера. Основные перспективы квантовых компьютеров.

    курсовая работа [31,7 K], добавлен 07.01.2011

  • Физическая реализация квантового компьютера. Вычислимые функции и разрешимые предикаты. Вероятностные алгоритмы, проверка простоты числа. Соотношение между классическим и квантовым вычислением. Базисы для квантовых схем. Универсальная квантовая схема.

    курсовая работа [3,8 M], добавлен 05.04.2013

  • Квантовые и классические приборы. Алгоритмы, классы их сложности. Квантовая информация в квантовой системе. Определение квантовой информации, реализация алгоритма. Универсальные наборы элементарных операций. Общий вид двухкубитовой операции CNOT.

    курсовая работа [213,0 K], добавлен 24.12.2012

  • Характеристика квантовых генераторов, их основные категории и роль в развитии цивилизации. Понятие и свойства администрирования, сущность нейролингвистического программирования. Способы тестирования, компиляция нетрадиционного изложения нотной грамоты.

    реферат [4,0 M], добавлен 18.02.2011

  • Исторические предшественники компьютеров. Появление первых персональных компьютеров. Концепция открытой архитектуры ПК. Развитие элементной базы компьютеров. Преимущества многопроцессорных и многомашинных вычислительных систем перед однопроцессорными.

    курсовая работа [1,7 M], добавлен 27.04.2013

  • История появления и развития первых вычислительных машин. Изучение характеристик электронно-вычислительной машины. Архитектура и классификация современных компьютеров. Особенности устройства персональных компьютеров, основные параметры микропроцессора.

    курсовая работа [48,6 K], добавлен 29.11.2016

  • Сущность, понятие и назначение квантового комп’ютера; его использование для вычисления процессов квантовой природы. Физические системы, реализующие кубиты. Упрощённая схема вычисления на квантовом компьютере. Тезис Черча-Тьюринга. Алгоритм Deutsch-Josza.

    реферат [122,6 K], добавлен 10.11.2014

  • Сущность и задачи системы грид их практическое применение. Основные идеи, заложенные в концепции грид-вычислений. Уровни архитектуры грид, их характеристика. Технология облачных вычислений. Промежуточное программное обеспечение в распределенных системах.

    контрольная работа [736,9 K], добавлен 06.01.2013

  • Особенности устройства и назначения карманного персонального компьютера. Отличительные черты операционной системы, процессора, оперативной и постоянной памяти. Характеристика малогабаритных компьютеров, классических и легких ноутбуков, их преимущества.

    реферат [33,3 K], добавлен 21.03.2010

  • История и факторы развития облачных вычислений. Роль виртуализации в развитии облачных технологий. Модели обслуживания и принципы работы облачных сервисов. Преимущества облака для Интернет-стартапов. Применение технологии облачных вычислений в бизнесе.

    реферат [56,6 K], добавлен 18.03.2015

  • Алгоритм логарифмического сдваивания. Средняя степень параллелизма. Характеристики векторных компьютеров. Модель ускорения для параллельной вычислительной системы. Суммирование методом рекурсивного удвоения. Условия выполнения несогласованного алгоритма.

    лекция [183,2 K], добавлен 22.10.2014

  • Появление первых портативных компьютеров. Анализ и оценка современных портативных компьютеров. Ведущие изготовители и поставщики ноутбуков. Тенденции и перспективы развития ноутбуков. Обзор и анализ рынка ноутбуков. Особенности бракованных ноутбуков.

    дипломная работа [678,2 K], добавлен 23.04.2015

  • История появления персональных компьютеров. Квантовые, оптические, молекулярные компьютеры. Решение задачи подсчета потраченного абонентами трафика, средствами табличного процессора MS Excel. Тарифы на услуги доступа к Интернету. Вид таблицы "Начисления".

    курсовая работа [888,6 K], добавлен 27.04.2013

  • Первые шаги автоматизации умственного труда. Механические и электромеханические принципы вычислений. Применение компьютеров и баз данных, управляющих программ. Классификация ЭВМ по принципу действия, назначению, размерам и функциональным возможностям.

    презентация [3,5 M], добавлен 19.05.2016

  • Анализ структуры и содержания плана маркетинга компании. Рынок облачных вычислений и возможность их применения. Отбор источников информации и представление полученных результатов. Разработка программной инструментальной оболочки облачных вычислений.

    дипломная работа [149,8 K], добавлен 12.11.2013

  • Рассмотрение вопросов разработки компьютеров параллельного действия. Информационные модели, сети межсоединений, коммутация, алгоритмы выбора маршрута. Программное обеспечение. Компьютеры SIMD. Мультипроцессоры с памятью совместного использования.

    дипломная работа [9,3 M], добавлен 19.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.