Основны информатики

Рассмотрение общего системного представления об информации, методах ее хранения, обработки и передачи. Обзор информационных технологий и систем, истории их развития, влияния на общество и бизнес, методологии их применения в деятельности предприятия.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 28.04.2015
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

оперируют практически без участия профессиональных программистов;

обеспечивают информационную поддержку для решений проблем, которые не могут быть определены заранее;

применяют сложный многомерный и многофакторный анализ и инструментальные средства моделирования.

Данные, приведенные в таблице 4.3, показывают различия между системами MIS и DSS.

Таблица 4.3.

Параметр

MIS

DSS

Концепция

Обеспечивает формализованные и частично формализованные данные для принятия структурированных решений

Обеспечивает интегрированные инструментальные средства, многомерные разнородные данные, динамические модели и язык интерпретации

Системный анализ

Выделяет информационные требования в соответствии с установленными правилами

Формирует порядок применения инструментальных средства и динамических правила в процессе работы

Проект

Поставляет информацию, основанную на утвержденных требованиях

Итеративный процесс добавления новых данных и информации, вытекающий из динамики среды

Источник данных

Внутренняя и частично внешняя среда

Внешняя и внутренняя среда

Пользователи

Менеджеры эксплуатационного и управленческого уровней

Высшее руководство, менеджеры департаментов, ИТ-служб, управленческого уровня, аналитики

Хорошо разработанные DSS используются на многих уровнях предприятия. Руководители компании и ведущие менеджеры могут использовать финансовые модули DSS, чтобы предсказать эффективность использования активов компании при изменении деловой активности или экономической ситуации в стране. Менеджеры среднего звена могут использовать ту же систему для оценки перспективности краткосрочных инвестиций по выполняемым проектам. Для руководителей проектов -- это инструмент для финансового планирования и распределения средств по планируемым закупкам.

DSS состоят из трех компонент: программного ядра и хранилища данных, аналитических средств обработки, анализа и представления информации, телекоммуникационных устройств.

Хранилище данных предоставляет единую среду хранения корпоративных данных, организованных в структуры, оптимизированные для выполнения аналитических операций.

Аналитические средства позволяют конечному пользователю, не имеющему специальных знаний в области информационных технологий, осуществлять навигацию и представление данных в терминах предметной области. Для пользователей различной квалификации, DSS располагают различными типами интерфейсов доступа к своим сервисам (рис. 4.11).

Рис. 4.11. Основные компоненты системы поддержки принятия решения

Аналитические системы позволяют решать три основных задачи: анализ разнородной многомерной информации разной степени формализованности в реальном времени, последующий интеллектуальный анализ данных с построением моделей развития деловой ситуации и ведение отчётности.

Процесс принятия делового решения (рис. 4.12) отличается от аналогичного процесса в научной или социальной сфере тем, что преобразование рабочей гипотезы в решение осложняется двумя объективно существующими проблемами.

Первая из них состоит в том, что накопление личного опыта в ходе повседневной деятельности у бизнесменов отстаёт от динамичного изменения экономической ситуации -- что особенно характерно для современной России. Вторая проблема заключается в том, что в предпринимательской деятельности -- да еще в условиях свободного рынка -- практически отсутствует возможность проведения целенаправленных экспериментов, которые позволяют проверять правильность гипотезы на практике.

Рис. 4.12. Итерационный процесс принятия решения

Следовательно, применительно к бизнес-деятельности процесс принятия решения претерпевает разрыв как минимум в двух точках: на этапе выдвижения гипотез и на этапе экспериментальной верификации моделей. Ликвидировать эти разрывы призвано активно развивающееся направление информационных технологий -- технология многомерного анализа данных (On-Line Analitycal Processing -- OLAP).

Коротко эту технологию можно охарактеризовать следующими словами: Быстрый Анализ Разделяемой Многомерной Информации (Fast Analysis of Shared Multidimensional Information -- FASMI).

Ценность технологии многомерного анализа данных для бизнеса определяется тем, что она позволяет извлекать информацию и знания из "сырых" структурированных (как правило, в виде таблиц) данных. Использование этой информации в принятии и реализации решений позволяет создавать дополнительную стоимость в компании по сравнению со стоимостью, создаваемой в отсутствие такой информации.

OLAP-технологии

В 1993 году основоположник реляционного подхода к построению баз данных Э. Кодд с партнерами опубликовали статью, инициированную компанией "Arbor Software" (сегодня это известнейшая компания "Hyperion Solutions"), озаглавленную "Обеспечение OLAP (оперативной аналитической обработки) для пользователей-аналитиков". В статье сформулированы 12 особенностей технологии OLAP, которые впоследствии были дополнены еще шестью.

Эти положения стали основным содержанием новой и очень перспективной технологии.

Основные особенности технологии OLAP (Basic):

многомерное концептуальное представление данных

интуитивное манипулирование данными

доступность и детализация данных

пакетное извлечение данных против интерпретации

модели анализа OLAP

архитектура "клиент-сервер" (OLAP доступен с рабочего стола)

прозрачность (прозрачный доступ к внешним данным).

многопользовательская поддержка

Специальные особенности (Special):

обработка неформализованных данных

сохранение результатов OLAP: хранение их отдельно от исходных данных

исключение отсутствующих значений

обработка отсутствующих значений

Особенности представления отчетов (Report)

гибкость формирования отчетов

стандартная производительность отчетов

автоматическая настройка физического уровня извлечения данных

Управление измерениями (Dimension):

универсальность измерений

неограниченное число измерений и уровней агрегации

неограниченные операции между размерностями.

Исторически сложилось так, что сегодня термин OLAP подразумевает не только многомерный взгляд на данные со стороны конечного пользователя, но и многомерное представление данных в целевой БД. Именно с этим, связано появление в качестве самостоятельных терминов "Реляционный OLAP" (ROLAP) и "Многомерный OLAP" (MOLAP).

Рис. 4.13. Элементарный OLAP-куб

Программные средства OLAP -- это инструмент оперативного анализа данных, содержащихся в хранилище. Главной особенностью является то, что эти средства ориентированы на использование не специалистом в области информационных технологий, не экспертом-статистиком, а профессионалом в прикладной области управления -- менеджером отдела, департамента, управления, и, наконец, директором. Средства предназначены для общения аналитика с проблемой, а не с компьютером. На рисунке 4.13 показан элементарный OLAP-куб, позволяющий производить оценки данных по трём измерениям.

OLAP-сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. Многомерный OLAP-куб и система соответствующих математических алгоритмов статистической обработки позволяет анализировать данные любой сложности на любых временных интервалах. Вся работа с OLAP-системой происходит в терминах предметной области и позволяет строить статистически обоснованные модели деловой ситуации. Взаимодействуя с OLAP-системой, менеджер может осуществлять быстрый просмотр интересующей его информации, получать произвольные срезы данных и выполнять аналитические операции: детализации, свертки, сквозного распределения, сравнения во времени одновременно по многим параметрам.

Рис. 4.14. Аналитическая ИС извлечения, обработки данных и представления информации

Имея в своем распоряжении гибкие механизмы манипулирования данными и визуального отображения (рис. 4.14, 4.15), менеджер сначала рассматривает с разных сторон данные, которые могут быть (а могут и не быть) связаны с решаемой проблемой.

Рис. 4.15. Механизмы манипулирования данными и визуального отображения результатов

Далее он сопоставляет различные показатели бизнеса между собой, стараясь выявить скрытые взаимосвязи. Может рассмотреть данные более пристально, детализировав их, например, разложив на составляющие по времени, по регионам или по клиентам, или наоборот еще более обобщить представление информации, чтобы убрать отвлекающие подробности. После этого с помощью модуля статистического оценивания и имитационного моделирования строится несколько вариантов развития событий, и из них выбирается наиболее приемлемый вариант.

У управляющего компанией, например, может зародиться гипотеза о том, что разброс роста активов в различных филиалах компании, зависит от соотношения в них специалистов с техническим и экономическим образованием. Для проверки этой гипотезы менеджер может запросить из хранилища и отобразить на графике интересующее его соотношение для тех филиалов, у которых за текущий квартал рост активов снизился по сравнению с прошлым годом более чем на 10 %, и для тех, у которых повысился более чем на 25 %.

Для этого он должен иметь возможность использовать простой выбор из предлагаемого меню. Если полученные результаты ощутимо распадутся на две соответствующие группы, то это должно стать стимулом для дальнейшей проверки выдвинутой гипотезы.

В настоящее время быстрое развитие получило направление, называемое динамическим моделированием (Dynamic Simulation), в полной мере реализующее указанный выше принцип FASMI. Используя динамическое моделирование, аналитик строит модель деловой ситуации, развивающуюся во времени, по некоторому сценарию. При этом результатом такого моделирования могут быть несколько новых бизнес-ситуаций, порождающих дерево возможных решений с оценкой вероятности и перспективности каждого. В таблице 4.4 приведены сравнительные характеристики статического и динамического анализа.

Таблица 4.4

Характеристика

Статический анализ

Динамический анализ

Типы вопросов

Кто? Что? Сколько? Как? Когда? Где?

Почему так? Что было бы, если? Что будет, если?

Время отклика

Не регламентируется

Секунды

Типичные операции работы с данными

Регламентированный отчет, диаграмма, таблица, рисунок

Последовательность интерактивных отчетов, диаграмм, экранных форм. Динамическое изменение уровней агрегации и срезов данных.

Уровень аналитических требований

Средний

Высокий

Тип экранных форм

В основном, определенный заранее, регламентированный

Определяемый пользователем, есть возможности настройки

Уровень агрегации данных

Детализированные и суммарные

Определяется пользователем

"Возраст" данных

Исторические и текущие

Исторические, текущие и прогнозируемые

Типы запросов

В основном, предсказуемые

Непредсказуемые -- от случаю к случаю

Назначение

Регламентированная аналитическая обработка

Многопроходный анализ, моделирование и построение прогнозов

Практически всегда задача построения аналитической системы для многомерного анализа данных -- это задача построения единой, согласованно функционирующей информационной системы, на основе неоднородных программных средств и решений. И уже сам выбор средств для реализации ИС становится чрезвычайно сложной задачей. Здесь должно учитываться множество факторов, включая, взаимную совместимость различных программных компонент, легкость их освоения, использования и интеграции, эффективность функционирования, стабильность и даже формы, уровень и потенциальную перспективность взаимоотношений различных фирм производителей.

OLAP применим везде, где есть задача анализа многофакторных данных. Вообще, при наличии некоторой таблицы с данными, в которой есть хотя бы одна описательная колонка и одна колонка с цифрами, OLAP-инструмент будет эффективным средством анализа и генерации отчетов. В качестве примера применения OLAP-технологии рассмотрим исследование результатов процесса продаж.

Ключевые вопросы: "Сколько продано?", "На какую сумму продано?" расширяются по мере усложнения бизнеса и накопления исторических данных до некоторого множества факторов, или разрезов: "…в Санкт-Петербурге, в Москве, на Урале, в Сибири…", "..в прошлом квартале, по сравнению с нынешним", "..от поставщика А по сравнению с поставщиком Б…" и т. д.

Ответы на подобные вопросы необходимы для принятия управленческих решений: об изменении ассортимента, цен, закрытии и открытии магазинов, филиалов, расторжении и подписании договоров с дилерами, проведения или прекращения рекламных кампаний и т. д.

Если попытаться выделить основные цифры (факты) и разрезы (аргументы измерений), которыми манипулирует аналитик, стараясь расширить или оптимизировать бизнес компании, то получится таблица, подходящая для анализа продаж как некий шаблон, требующий соответствующей корректировки для каждого конкретного предприятия.

Поля таблицы:

Время, Категория товара, Товар, Регион, Продавец, Покупатель, Сумма, Количество.

Время. Как правило, это несколько периодов: Год, Квартал, Месяц, Декада, Неделя, День. Многие OLAP-инструменты автоматически вычисляют старшие периоды из даты и вычисляют итоги по ним.

Категория товара. Категорий может быть несколько, они отличаются для каждого вида бизнеса: Сорт, Модель, Вид упаковки и пр. Если продается только один товар или ассортимент очень невелик, то категория не нужна.

Товар. Иногда применятся название товара (или услуги), его код или артикул. В тех случаях, когда ассортимент очень велик (а некоторые предприятия имеют десятки тысяч позиций в своем прайс-листе), первоначальный анализ по всем видам товаров может не проводиться, а обобщаться до некоторых согласованных категорий.

Регион. В зависимости от глобальности бизнеса можно иметь в виду Континент, Группа стран, Страна, Территория, Город, Район, Улица, Часть улицы. Конечно, если есть только одна торговая точка, это измерение отсутствует.

Продавец. Это измерение тоже зависит от структуры и масштабов бизнеса. Здесь может быть: Филиал, Магазин, Дилер, Менеджер по продажам. В некоторых случаях измерение отсутствует, например, когда продавец не влияет на объемы сбыта, магазин только один и так далее.

Покупатель. В некоторых случаях, например в розничной торговле, покупатель обезличен и измерение отсутствует, в других случаях информация о покупателе есть, и она важна для продаж. Это измерение содержать название фирмы-покупателя или множество группировок и характеристик клиентов: Отрасль, Группа предприятий, Владелец и так далее.

Важный вопрос -- наличие данных. Если они есть в каком-либо виде (Excel или Access-таблица, данные из базы учетной системы, в виде структурированных отчетов филиалов) ИТ-специалист сможет передать их OLAP-системе напрямую или с промежуточным преобразованием. Для этого OLAP-системы имеют специальные инструменты конвертации данных.

После настройки OLAP-системы на данные, пользователь получит возможность быстро получать ответы на ключевые вопросы путем простых манипуляций мышью над OLAP-таблицей и соответствующими меню. При этом будут доступны некоторые стандартные методы анализа, следующие из природы OLAP-технологии.

Факторный (структурный) анализ. Анализ структуры продаж для выявления важнейших составляющих в интересующем разрезе. Для этого удобно использовать, например, диаграмму типа "Пирог" в сложных случаях, когда исследуется сразу 3 измерения -- "Столбцы". Например, в магазине "Компьютерная техника" за квартал продажи компьютеров составили $100000, фототехники --$10000, расходных материалов -- $4500. Вывод: оборот магазина зависит в большой степени от продажи компьютеров (на самом деле, быть может, расходные материалы необходимы для продажи компьютеров, но это уже анализ внутренних зависимостей).

Анализ динамики (регрессионный анализ -- выявление трендов). Выявление тенденций, сезонных колебаний. Наглядно динамику отображает график типа "Линия". Например, объемы продаж продуктов компании A в течение года падали, а объемы продаж B росли. Возможно, улучшилось благосостояние среднего покупателя, или изменился имидж магазина, а с ним и состав покупателей. Требуется провести корректировку ассортимента. Другой пример, в течение 3 лет зимой снижается объем продаж видеокамер.

Анализ зависимостей (корреляционный анализ). Сравнение объемов продаж разных товаров во времени для выявления необходимого ассортимента -- "корзины". Для этого также удобно использовать график типа "Линия". Например, при удалении из ассортимента принтеров в течение первых двух месяцев обнаружилось падение продаж картриджей с порошком.

Сопоставление (сравнительный анализ). Сравнение результатов продаж во времени, или за заданный период, или для заданной группы товаров. В зависимости от количества анализируемых факторов (от 1 до 3-х) используется диаграмма типа "Пирог" или "Столбцы". Пример, сравнение результатов продаж однотипных магазинов для оценки качества работы менеджеров.

Дисперсионный анализ. Исследование распределения вероятностей и доверительных интервалов рассматриваемых показателей. Применяется для прогнозирования и оценки рисков.

Этими видами анализа возможности OLAP не исчерпываются. Например, применяя в качестве алгоритма вычисления промежуточных и окончательных итогов функции статистического анализа -- дисперсию, среднее отклонение, моды более высоких порядков, можно получить самые изощренные виды аналитических отчетов.

OLAP-системы являются частью более общего понятия "интеллектуальные ресурсы предприятия" или "средства интеллектуального бизнес-анализа" (Business Intelligence -- BI), которое включает в себя помимо традиционного OLAP-сервиса средства организации совместного использования данных и информации, возникающих в процессе работы пользователей хранилища. Технология Business Intelligence обеспечивает электронный обмен отчетными документами, разграничение прав пользователей, доступ к аналитической информации из Internet и Intranet.

Технологии Data Mining

В настоящее время элементы искусственного интеллекта активно внедряются в практическую деятельность менеджера. В отличие от традиционных систем искусственного интеллекта, технология интеллектуального поиска и анализа данных или "добыча данных" (Data Mining -- DM), не пытается моделировать естественный интеллект, а усиливает его возможности мощностью современных вычислительных серверов, поисковых систем и хранилищ данных. Нередко рядом со словами Data Mining встречаются слова "обнаружение знаний в базах данных" (Knowledge Discovery in Databases).

В основу современной технологии Data Mining (Discovery-driven Data Mining) положена концепция шаблонов (Pattern), отражающих фрагменты многоаспектных взаимоотношений в данных. Эти шаблоны представляют собой закономерности, свойственные выборкам данных, которые могут быть компактно выражены в понятной человеку форме. Поиск шаблонов производится методами, не ограниченными рамками априорных предположений о структуре выборке и виде распределений значений анализируемых показателей. На рисунке 4.16 показана схема преобразования данных с использованием технологии Data Mining.

Рис. 4.16. Схема преобразования данных с использованием технологии DM

Важное положение Data Mining -- нетривиальность разыскиваемых шаблонов. Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные (Unexpected) регулярности в данных, составляющие, так называемые, скрытые знания (Hidden Knowledge). К деловым людям пришло понимание, что "сырые" данные (Raw Data) содержат глубинный пласт знаний, при грамотной раскопке которого могут быть обнаружены настоящие самородки, которые можно использовать в конкуренции.

Data Mining -- это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Data Mining представляют большую ценность для руководителей и аналитиков в их повседневной деятельности. Деловые люди осознали, что с помощью методов Data Mining они могут получить ощутимые преимущества в конкурентной борьбе.

В первую очередь методы Data Mining заинтересовали коммерческие предприятия, развертывающие проекты на основе информационных хранилищ данных (Data Warehousing). Опыт многих таких предприятий показывает, что отдача от использования Data Mining может достигать 1000 %. Известны сообщения об экономическом эффекте, в 10--70 раз превысившем первоначальные затраты от 350 до 750 тыс. долларов. Есть сведения о проекте в 20 млн. долларов, который окупился всего за 4 месяца. Другой пример -- годовая экономия 700 тыс. долларов за счет внедрения Data Mining в одной из сетей универсамов в Великобритании.

Компания Microsoft официально объявила об усилении своей активности в области Data Mining. Специальная исследовательская группа Microsoft, возглавляемая Усамой Файядом, и пять приглашенных партнеров (компании Angoss, Datasage, Epiphany, SAS, Silicon Graphics, SPSS) готовят совместный проект по разработке стандарта обмена данными и средств для интеграции инструментов Data Mining с базами и хранилищами данных.

Сфера применения Data Mining ничем не ограничена -- технологию можно применять всюду, где имеются огромные количества какие-либо "сырых" данные!

Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. (рис. 4.17). Отсюда обилие методов и алгоритмов, реализованных в различных действующих системах Data Mining. [В. А. Дюк,http://www.inftech.webservis.ru/it/data mining/ar2.html]. Многие из таких систем интегрируют в себе сразу несколько подходов. Тем не менее, как правило, в каждой системе имеется какая-то ключевая компонента, на которую делается главная ставка.

Рис. 4.17. Области применения технологии Data Mining

Можно назвать пять стандартных типов закономерностей, выявляемых с помощью методов Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование.

Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Например, исследование, проведенное в компьютерном супермаркете, может показать, что 55 % купивших компьютер берут также и принтер или сканер, а при наличии скидки за такой комплект принтер приобретают в 80 % случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка.

Если существует цепочка связанных во времени событий, то говорят о последовательности. Так, например, после покупки дома в 45 % случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60 % новоселов обзаводятся холодильником.

С помощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил.

Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства Data Mining самостоятельно выделяют различные однородные группы данных.

Рис. 4.18. Полный цикл применения технологии Data Mining

Основой для всевозможных систем прогнозирования служит историческая информация, хранящаяся в БД в виде временных рядов. Если удается построить найти шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать и поведение системы в будущем. На рисунке 4.18 показан полный цикл применения технологии Data Mining.

Статистические пакеты

Последние версии почти всех известных статистических пакетов включают наряду с традиционными статистическими методами также элементы Data Mining. Но основное внимание в них уделяется все же классическим методикам -- корреляционному, регрессионному, факторному анализу и другим.

Недостатком систем этого класса считают требование к специальной подготовке пользователя. Также отмечают, что мощные современные статистические пакеты являются слишком "тяжеловесными" для массового применения в финансах и бизнесе. К тому же часто эти системы весьма дороги -- от $1000 до $15000.

Есть еще более серьезный принципиальный недостаток статистических пакетов, ограничивающий их применение в Data Mining. Большинство методов, входящих в состав пакетов опираются на статистическую парадигму, в которой главными фигурантами служат усредненные характеристики выборки. А эти характеристики при исследовании реальных сложных жизненных феноменов часто являются фиктивными величинами. Это чрезвычайно важное обстоятельство следует обязательно учитывать при анализе многомерных данных.

В качестве примеров наиболее мощных и распространенных статистических пакетов можно назвать SAS (компания SAS Institute), SPSS (SPSS), STATGRAPHICS (Manugistics), STATISTICA для WINDOWS, STADIA и другие. Эти пакеты с успехом могут применять небольшие и средние предприятия, большие многопрофильные компании могут интегрировать их в общую корпоративную сеть.

Нейронные сети и экспертные системы

Это большой класс систем, архитектура которых имеет аналогию с построением нервной ткани из нейронов. В одной из наиболее распространенных архитектур -- многослойном персептроне с обратным распространением ошибки -- имитируется работа нейронов в составе иерархической сети, где каждый нейрон более высокого уровня соединен своими входами с выходами нейронов нижележащего слоя.

На нейроны самого нижнего слоя подаются значения входных параметров, на основе которых нужно принимать какие-то решения, прогнозировать развитие ситуации и т. д. Эти значения рассматриваются как сигналы, передающиеся в следующий слой, ослабляясь или усиливаясь в зависимости от числовых значений (весов), приписываемых межнейронным связям. В результате на выходе нейрона самого верхнего слоя вырабатывается некоторое значение, которое рассматривается как ответ -- реакция всей сети на введенные значения входных параметров.

Для того чтобы сеть можно было применять в дальнейшем, ее прежде надо "натренировать" на полученных ранее данных, для которых известны и значения входных параметров, и правильные ответы на них (рис. 4.19). Тренировка состоит в подборе весов межнейронных связей, обеспечивающих наибольшую близость ответов сети к известным правильным ответам.

Рис. 4.19. Схема самообучающейся информационной системы

Основным недостатком нейросетевой парадигмы является необходимость иметь очень большой объем обучающей выборки, хотя современные хранилища знаний относительно легко позволяют делать это. Другой существенный недостаток заключается в том, что даже натренированная нейронная сеть представляет собой черный ящик, "глотающий" начальные условия и выдающий прогноз.

Знания, зафиксированные как веса нескольких сотен межнейронных связей, совершенно не поддаются анализу и интерпретации человеком (известные попытки дать интерпретацию структуре настроенной нейросети выглядят пока неубедительно).

Примеры используемых нейросетевых систем -- BrainMaker (CSS), NeuroShell (Ward Systems Group), OWL (HyperLogic). Они не очень дешевы, но вполне доступны: $1500--8000.

В отличие от нейронных сетей, где прогноз формируется без участия человека, экспертные системы включают одного или нескольких специалистов высокого класса в качестве элемента (рис. 4.20).

Рис. 4.20. Схема экспертной информационной подсистемы

Экспертная система имеет разветвленную сеть, позволяющую делать запросы и глубокий поиск в базах данных и хранилищах знаний. Нейронные сети работают на принципе передачи информации от одних слоев нейронов к другим, причем изменения информации, происходящие во время передачи, обусловлены заранее не оговоренными эвристическими правилами. В экспертных же системах существует жесткий логический каркас -- создатель заключения, который автоматически проводит линию рассуждения по заложенным в алгоритм правилам и использует параметры, вовлеченные в решение.

Ответ может быть известен заранее по результатам отзывов специалистов-экспертов, этот ответ сопоставляется с ответом системы, параметры изменяются, и проводится второй "прогон".

В результате выдается экспертное заключение с вероятностной оценкой его надежности. Интерфейс допускает работу сразу нескольких пользователей.

Рис. 4.21. Пример интеллектуальной информационной системы

Экспертные системы широко применяются в бизнесе, часто работают независимо и не включаются в корпоративные информационные сети. Экспертные системы, как правило, являются узко специализированными: научные, транспортные, медицинские, банковские, торговые, юридические и т. д.

Нейронные сети, аналитические и экспертные системы образуют обширный класс интеллектуальных систем. Структура такой информационной системы показана на рисунке 4.21.

4.6. Информационные системы поддержки деятельности руководителя

Системы поддержки выполнения решений (Executive Support Systems -- ESS) появились в середине 80-х годов в крупных корпорациях. ESS помогает принимать неструктурированные решения на стратегическом уровне управления компании и проводить системный анализ информации из внешней среды лучше, чем любые прикладные и специализированные ИС (рис. 4.22).

Рис. 4.22. Процессы стратегического управления, поддерживаемые ESS

Система поставляет совокупность текущей информации -- как правило, внешней: курсы акций, спрос и предложения по отрасли, политические новости, экономические обзоры, прогнозы динамики цен и выбора оптимальной структуры инвестиционного портфеля (основанные на различных эмпирических моделях динамики рынка), данные аналитического учета по предприятию из внутренних модулей MIS и DSS.

Она фильтрует, упорядочивает данные и выявляет критические параметры по заданным статистическим критериям, сокращая время и усилия для подготовки информации, необходимой для руководителя. В системах ESS используют самое "продвинутое" графическое программное обеспечение, которое может поставлять нужную графическую, аудио и видео информацию немедленно в офис руководителя или зал заседаний.

Системы ESS часто используют несложный статистический аппарат, но максимально учитывают сложившуюся специфику области бизнеса (профессиональный язык, системы различных индексов и пр.). На рынке имеется достаточно много программных модулей для встраивания в ESS. Как правило, они относительно дешевы (обычно $1000--2000). В настоящее время модули ESS в виде специализированных подсистем являются обязательной частью многих ERP-систем.

В отличие от других подсистем ИС (TPS, MIS, DSS) ESS не предназначены для решения какого-то определенного круга проблем. Вместо этого системы этого типа обеспечивает обобщенную неформализованную информацию и её оперативную передачу для оценки ситуаций с динамично изменяющимся набором проблем. Системы ESS используют более простой алгоритм оценивания, чем DSS, ее аналитические возможности позволяют строить относительно простые модели, которые можно прямо применять для предварительной оценки ситуации (рис. 4.23).

Рис. 4.23. Принципиальная схема исполнительной информационной системы

Изменилось, к примеру, налоговое законодательство или ставки таможенных пошлин -- руководитель компании может быстро "проиграть" ситуацию с тем, чтобы оценить, во что это выльется для его бизнеса и принять некоторые превентивные меры. Подсистема ESS помогает найти ответы на общие вопросы:

Какие изменения мы должны произвести в своем бизнесе, что получить (вернуть) конкурентное преимущество?

Какие новые приобретения, в том числе и в области ИТ, защитят нас от циклических колебаний в экономике?

Что предпринимают наши конкуренты, чтобы обогнать нас, что должны сделать мы, чтобы обогнать их?

Какие подразделения корпорации нужно закрыть и какие акции продать в первую очередь, чтобы уменьшить влияние общего спада в отрасли на наш бизнес?

ESS формирует пакеты информации по заданным темам и представляет комфортный доступ для высших руководителей компаний и корпораций без посредников. Интерфейс ESS максимально дружелюбен, используется наглядная графика, аудио и видео средства, мобильная связь, современные методы хранения и представления данных, а также проведения видеоконференций в распределенных компаниях.

В настоящее время с развитием технологий Internet/Intranet круг пользователей ESS значительно расширился -- он, подобно MIS, охватывает практически все уровни управления, кроме, пожалуй, эксплуатационного. Информационные базы ESS содержат большие объемы наглядной и "исторической" информации, которая может быть очень полезна на уровнях выполнения проектов.

Современные ESS широко используют технологии географических информационных систем (Geographical Information System -- GIS). GIS до последнего времени не получали достойного применения из-за высокой стоимости и необходимости дописывать необходимые программные модули и интерфейсы. Многопрофильные и многонациональные корпорации последней четверти конца ХХ века, связанные с нефтяным, геологоразведочным, авиатранспортным, рыболовным, туристическим бизнесом сделали GIS необходимым приложением к информационной системе общего пользования.

Примером долгоживущей системы на рынке программных продуктов, реализующих ESS, может быть пакет Comshare's Commander Decision, выполненный по технологии "клиент-сервер". Пакет CDD работает с информацией любого вида, включая запросы, вычисления, несложный статистический анализ данных, работу с таблицами, гипертекстом. Это универсальный инструмент может использоваться для разработки традиционных ESS-приложений для систем поддержки принятия решений на различных уровнях управления и исполнения. CDD обеспечивает выборочный контроль, распознавание информации по шаблонам, демонстрацию диаграмм по лучшим и худшим показателям, указывает на необходимость обновить информацию по текущим выборкам данных.

В отличие от экспертных систем и компактных приложений анализа данных, исполнительные информационные системы делаются обычно "под заказ", и они в виде исполнительных модулей входят в корпоративную информационную систему.

Задача руководителя -- определить, какого типа данные и какой объем информации необходимы ему для плодотворной повседневной деятельности. Только он досконально знает структуру своего бизнеса и стратегию его развития. Никто другой не знает этого лучше!

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и значение информации и коммуникации в управлении современным предприятием. Изучение тенденций развития информационных технологий. Анализ экономической деятельности предприятия ТОО "Бриз". Проектирование системы автоматизации бизнес-процессов.

    дипломная работа [718,5 K], добавлен 06.07.2015

  • История развития информатики как науки о методах и процессах сбора, хранения, обработки, передачи, анализа информации. Создание компьютерного класса по информатике на основе процессора AMD и видеоадаптера фирмы ATI. Подбор аппаратного обеспечения.

    курсовая работа [34,3 K], добавлен 22.12.2015

  • Общая характеристика информационных систем, предназначенных для передачи, преобразования и хранения информации. Изучение форм представления детерминированных сигналов. Энтропия сложных сообщений. Рассмотрение основных элементов вычислительных машин.

    лекция [1,5 M], добавлен 13.04.2014

  • Содержательный и кибернетический подходы к определению и измерению информации. Кодирование символьной информации в компьютере. Линия информации и информационных процессов. Обзор процесса передачи информации по техническим каналам связи. Языки информатики.

    презентация [173,0 K], добавлен 19.10.2014

  • Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа [210,0 K], добавлен 11.09.2010

  • Общество и информация, определение информации и ее свойства, базовые информационные процессы. Виды и особенности экономической информации. Понятие, виды и этапы развития информационных компьютерных систем. Обзор информационных ресурсов Интернет.

    шпаргалка [645,8 K], добавлен 22.02.2011

  • Понятия глобализации в сфере информационных технологий. Задачи и процессы обработки информации по этапам развития. Преимущества применения компьютерных технологий. Инструментальные технологические средства. Изменения стиля ведения бизнеса с внедрением ИТ.

    презентация [584,5 K], добавлен 19.09.2016

  • История развития информационных технологий. Классификация, виды программного обеспечения. Методологии и технологии проектирования информационных систем. Требования к методологии и технологии. Структурный подход к проектированию информационных систем.

    дипломная работа [1,3 M], добавлен 07.02.2009

  • Появление и развитие компьютеров. Разработка технологий управления и обработки потока информации с применением вычислительной техники. Свойства информационных технологий, их значение для современного этапа технологического развития общества и государства.

    презентация [148,7 K], добавлен 13.01.2015

  • Рассмотрение взаимосвязи информационных подсистем предприятия. Характеристика сервис-ориентированной архитектуры информационных систем. Оценка реализации SOA-инфраструктуры на базе сервисной шины предприятия. Анализ бизнес-цели внедрения SOA-решений.

    контрольная работа [1,0 M], добавлен 28.03.2018

  • Понятие информационных технологий, этапы их развития, составляющие и основные виды. Особенности информационных технологий обработки данных и экспертных систем. Методология использования информационной технологии. Преимущества компьютерных технологий.

    курсовая работа [46,4 K], добавлен 16.09.2011

  • Определение перспектив, направлений и тенденций развития вычислительных систем как совокупности техники и программных средств обработки информации. Развитие специализации вычислительных систем и проблема сфер применения. Тенденции развития информатики.

    реферат [19,5 K], добавлен 17.03.2011

  • Оценка применения информационно-компьютерных технологий. Обзор совокупности методов, производственных процессов и программно-технических средств, интегрированных с целью сбора, обработки, хранения, распространения, отображения и использования информации.

    статья [19,0 K], добавлен 26.08.2017

  • Структура организации на примере ТОО "Ali-Abdi", назначение ее отделов. Информационные потоки и документооборот, способы хранения и обработки информации. Виды информационных систем. Формирование конструкторской документации на основе трехмерной модели.

    отчет по практике [2,3 M], добавлен 03.12.2013

  • Анализ показателей оценки эффективности информационных систем и технологий. Расчет трудовых и стоимостных показателей и показателей достоверности информации, разработка программы для ускорения методов обработки данных. Интерфейс и листинг приложения.

    дипломная работа [1,2 M], добавлен 14.01.2012

  • Обзор новых информационных технологий в обучении в высших учебных заведениях. Методы и способы применения мультимедиа технологий при чтении лекций. Внедрение информационных систем в классические библиотеки. Характеристика обучающих систем в ДонТУ.

    реферат [216,9 K], добавлен 10.02.2012

  • Предмет и задачи информатики, ее место в процессе управления. Метод и средства преобразования информации для использования ее в организации технологического процесса переработки информации. Улучшение работы предприятия с помощью информационных технологий.

    курсовая работа [943,2 K], добавлен 01.05.2009

  • Понятия, определения и терминология информационных технологий. Роль и значение ИТ для современного этапа развития общества и их значение для экономики стран. Методы обработки информации в управленческих решениях. Классификация информационных технологий.

    реферат [1,8 M], добавлен 28.02.2012

  • Информационные технологии, сущность и особенности применения в строительстве. Анализ деятельности информационных технологий, основные направления совершенствования применения информационных технологий, безопасность жизнедеятельности на ООО "Строитель".

    дипломная работа [1,7 M], добавлен 26.09.2010

  • Понятие информации, информационных технологий (ИТ) и системы (ИС). Анализ организационной структуры предприятия. Выбор методов по устранению недостатков. Способы применения ИТ для построения ИС. Внедрение информационных систем и технологий на предприятие.

    курсовая работа [1008,1 K], добавлен 06.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.