Основы инженерно-технической защиты информации

Свойство информации как предмета защиты, ее источники и носители. Защита информации в организации. Способы и средства добывания и защиты информации. Материально-вещественные, радиоэлектронные, оптические каналы утечки информации и их особенности.

Рубрика Программирование, компьютеры и кибернетика
Вид учебное пособие
Язык русский
Дата добавления 06.05.2015
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Неконструктивным свойствам различают рыхлые акустические материалы, плитные материалы, акустическая штукатурка и резонансные поглотители в виде панелей и щитов из дерева и других материалов. Средства поглощения звука в помещениях, используемые для акустической обработки помещений, подразделяют на:

- звукопоглощающие облицовки в виде акустических плит мелкой зернистой или ячеечной структуры (плиты минераловатные "Акмигран", "Акмант", "Силакпор", "Винипор", ПА/С, ПА/О, ПП-80, ППМ, ПММ);

- звукопоглощающие облицовки из слоя пористо-волокнистого материала (стеклянного или базальтового волокна, минеральной ваты) в защитной оболочке из ткани или пленки с перфорированным покрытием (металлическим, гипсовым и др.). В качестве защитных покрытий применяются: ткани марок ЭЗ-100, А-1, ТСД, пленки типа ПЭТФ, алюминиевые перфорированные панели типа ПА, ЛАП, ЛАК, листы стальные перфорированные, асбоцементные перфорированные листы, листы гипсовые типа АГП, АГШБ и др.

Плоский слой звукопоглощающего материала облицовок устанавливается на жестком основании, который крепится непосредственно или с воздушным промежутком на поверхности ограждения, к потолку или стенам.

Для дополнительного звукопоглощения и уменьшения числа переотражений от ограждений с целью снижения времени реверберации используются штучные звукопоглотители. Они представляют собой одно или многослойные объемные звукопоглощающие конструкции (в виде куба, параллелепипеда, конуса), подвешиваемые к потолку помещения. Размеры граней штучных звукопоглотителей составляют 40-400 см.

Каналы вентиляции и систем кондиционирования могут способствовать утечке информации из помещения. Передача звука через вентиляционный канал происходит по воздуху, находящемуся в полости канала, и по элементам конструкции канала. Наиболее эффективной мерой предотвращения утечки информации через воздухопроводы является установка в них абсорбционных глушителей.

Громкость звука, воспринимаемого человеком, зависит не только от его собственной интенсивности, но и от других звуков, действующих одновременно на барабанную перепонку уха. В силу психофизиологических особенностей восприятия звука человеком интенсивность маскирующих звуков обладает асимметричностью [25]. Она проявляется в том, что маскирующий звук оказывает относительно небольшое влияние на тоны маскируемого звука ниже его собственной частоты, но сильно затрудняет восприятие более высоких звуков. Поэтому для маскировки акустических сигналов эффективны низкочастотные акустические шумовые сигналы.

Характеристики шумовых акустических генераторов приведены в табл. 8.9.

Следует отметить, что акустическое зашумление помещения обеспечивает эффективную защиту информации в нем, если акустический генератор расположен к акустическому приемнику злоумышленника ближе, чем источник информации. Например, когда подслушивание возможно через дверь или открытое окно, то акустический генератор целесообразно разместить возле двери или на подоконнике окна. Если местонахождение акустического приемника злоумышленника неизвестно, например, закладного устройства, то размещение акустического генератора между говорящими людьми, как рекомендуют некоторые фирмы, не гарантирует надежную защиту информации. Кроме того, повышение уровня шума вынуждает собеседников к более громкой речи, что создает дискомфорт и снижает эффект от зашумления.

Таблица 8.9.

Тип генератора

Вид зашумления

Шумовая полоса. Гц

Габариты, мм

Примечание

"Заслон"

вибрационное

100-6000

256х206х90,излучатель - 68х46х42

Защищает до 10 условных поверхностей

"Кабинет"

вибрационное

100-6000

100х200х350

До 30 излучателей

ANG-2000

акустическое. вибрационное

250-5000

43х152х254

Количество излучателей -- до 18

АД-23

акустическое

20-20000

220х160х100

Площадь зашумления до 25 м2

WNG 022

акустическое

199-12000

98х71х30

Площадь зашумления до 50 м2

Более эффективным и активным универсальным способом защиты информации, передаваемым структурным звуком, является вибрационное зашумление. Шум в звуковом диапазоне в твердых телах создают пьезокерамические вибраторы акустического генератора, прикрепляемые (приклеиваемые) к поверхности зашумляемого ограждения (окна, стены, потолка и др.) или твердотельного звукопровода (батареи отопления, трубы и др.). Так как уровень структурного шума, создаваемого генератором, выше уровня речевого сигнала в твердых телах, но ниже уровня слышимости, то вибрационное зашумление целесообразно применять во всех случаях, когда существует возможность утечки с помощью структурного звука. Один виброизлучатель (вибратор) обеспечивает эффективное зашумление в радиусе 1.5-5 м.

Пассивное энергетическое скрытие акустической информации от подслушивания лазерным микрофоном заключается в ослаблении энергии акустической волны, воздействующей на оконное стекло. Оно достигается использованием штор и жалюзей, а также двойных оконных рам. Активные способы энергетического скрытия акустической информации предусматривают применение генераторов шумов в акустическом диапазоне, датчики которых приклеиваются к стеклу и вызывают его колебание по случайному закону с амплитудой, превышающей амплитуду колебаний стекла от акустической волны. Некоторые типы генераторов вибрационного акустического зашумления приведены в табл. 8.9.

Способы и средства предотвращения несанкционированной записи речевой информации на диктофон

Для предотвращения несанкционированной (скрытой) записи речевой информации на диктофон необходимо:

- обнаружить работающий диктофон в кармане, портфеле, сумке или других носимых вещах участника переговоров или совещания;

- нарушить работу диктофона таким образом, чтобы качество записанной информации было ниже допустимого уровня.

Решение даже первой задачи позволяет принять меры по защите информации, в том числе:

- прекратить переговоры или совещание;

- снизить уровень конфиденциальности разговора, не допуская высказываний, которые могут при их документировании на диктофон нанести ущерб организации или участнику переговоров.

Обнаружение работающих диктофонов представляет сложную задачу, так как производители диктофонов для скрытой записи принимают эффективные меры по исключению или снижению информативности демаскирующих признаков: обеспечивается бесшумность работы лентопротяжного механизма, отсутствуют генераторы подмагничивания и стирания, экранируются головки и корпус и т. д.

Диктофон может быть обнаружен металлодетектором (ручным или стационарным). Но этот способ допустим перед проведением ответственного совещания по договоренности с его участниками. В обычной деятельности организации и его руководства такой способ нецелесообразен, так как может вызвать негативную реакцию посетителя или участника переговоров.

В диктофонах с записью на магнитной ленте или проволоке наибольшую информативность имеет низкочастотное пульсирующее (переменное) магнитное поле работающего электродвигателя. Спектр этого поля шириной 50-400 Гц содержит гармоники, кратные частоте вращения ротора двигателя. Поле двигателя слабо экранируется тонким корпусом диктофона, но обнаружить его можно лишь на небольшом расстоянии. Задача усложняется из-за наличия в помещении разнообразных низкочастотных полей, создаваемых цепями электропитания, телефонными и другими линиями, многочисленными электро- и радиоприборами, компьютерами, транспортом и т. д., а также неравномерностью распределения напряженности полей в пространстве.

Поэтому в современных средствах обнаружения идентификация работающего диктофона производится путем выявления и анализа изменений параметров полей, измеренных в месте размещения посетителя (участника переговоров или совещания). Путем накопления изменений удается выделить регулярное поле двигателя диктофона на фоне даже более мощных случайных полей других источников.

В аналоговых обнаружителях АОЗТ "Смерш техникс" (С-Петербург) PTRD 014-017 обнаружение диктофонов осуществляется во временной области по изменению мощности сигнала в одном или двух пространственных или частотных каналах [98]. Цифровая технология обнаружения диктофонов реализована в офисной системе PRTD 018. В ней предусмотрена многоканальная обработка сигналов от большого числа (до 16) датчиков. Метод многоканальности фильтрации помех основывается на различии влияния на датчики дальних и ближних переменных магнитных полей. Дальние поля, создаваемые источниками помех, оказывают приблизительно одинаковое воздействие на все датчики. Влияние поля диктофона на разные датчики из-за большей разницы в расстоянии от двигателя до датчиков могут существенно отличаться. Дополнительные возможности отстройки помех дают методы многоканальной адаптивной фильтрации [98].

Датчики PRTD 018 позволяют охватить до 16 посадочных мест, что в 8 раз превышает возможности аналоговых моделей. Применение указанных методов обеспечивает работу прибора в помещении с неблагоприятной помеховой обстановкой. Дальность обнаружения диктофонов достигает 1.5 м.

Датчики могут устанавливаться под столом руководителя или другого должностного лица, под креслом для посетителя, под столешницей стола для совещаний и в других местах. За несколько минут до проверки прибор включается и производится его адаптация к помеховой ситуации. О появлении в одном или нескольких датчиках сигналов с уровнями тревоги высвечивается на жидкокристаллическом дисплее соответствующее сообщение, информирующее о достаточно высокой вероятности скрытой записи разговора.

Для исключения записи речи на диктофоны создано большое количество типов активных средств нарушения их работы. Принципы работы этих средств основаны на изменении под действием создаваемых ими полей режимов усилителей записи, в результате чего резко ухудшается разборчивость речи и становится невозможным ее восстановление при воспроизведении. Характеристики средств защиты конфиденциальных разговоров от скрытой записи приведены в табл. 8.10 [115].

Таблица 8.10.

Тип средства

Дальность подавления

Зона подавления

Излучаемая мощность

Время непрерывной работы

Примечание

"Рубеж-1"

не менее 1.5м/*

60°

-

не более 1 ч

Стационарн.

"РаМЗес-Авто"

не менее 1.5 м/ до 1.5 м

70°

4-5 Вт

не более 1 ч

Стационарн.

"РаМЗес-Дубль"

Не менее 2 м/до 2м

70°

8 Вт

не более 1 ч

Стационарн.

"Буран-2"

не менее 1.5/*

45°х15°

до 10 Вт в импульсе

не более 2 ч

Мобильн. В дипломате

"Буран-3"

не менее 3 м/не менее 2 м

45°х150

до 10 Вт в импульсе

не более 2 ч

Адаптивная модуляция сигнала

Примечание. В графе "Дальность подавления" в числителе - дальность для пластмассового корпуса, в знаменателе - для металлического корпуса, * -определяется индивидуально

Мобильное средство подавления, вмонтированное в портфеле типа "дипломат", устанавливается возле руководителя под видом его личного портфеля и ориентируется таким образом, чтобы стул или кресло посетителя попали в зону подавления. Перед началом разговора руководитель или сотрудник СБ незаметно включает средство подавления органом управления на его панели или с пульта дистанционного управления, после его окончания -выключает.

Глава 9. Способы и средства предотвращения утечки информации с помощью закладных подслушивающих устройств

Демаскирующие признаки закладных устройств

Обнаружение закладных устройств, также как и любых других объектов, производится по их демаскирующим признакам. Чем больше демаскирующих признаков в признаковой структуре и чем они информативнее, тем выше вероятность обнаружения объекта. Каждый вид закладных устройств имеет свою признаковую структуру, позволяющую с той или иной вероятностью обнаружить закладку. Распознавание закладки, т. е. определение ее вида, назначения и характеристик, проводится в результате анализа схемотехнических и конструктивных решений. Однако внешний вид закладки и способы ее оперативного применения позволяют приблизительно определить принадлежность злоумышленника к зарубежной разведке, конкуренту или криминальным элементам.

Спецслужбы используют наиболее совершенные средства добывания, как привило, отсутствующие на рынке, и тщательно готовят операцию по установке закладок. Криминальные элементы пользуются средствами, имеющимися на рынке, и действуют более грубо. Разведка коммерческих структур применяет закладки промышленного изготовления и тщательно скрывает от конкурента свои намерения получения конфиденциальной информации нелегальными способами.

Наиболее информативными признаками микрофонной закладки являются:

- тонкий провод, проложенный от малогабаритного микрофона закладки в другое помещение;

- наличие в кожухе закладки одного или нескольких отверстий. Признаковые структуры некамуфлированной радиозакладки включают:

- радиоизлучения с модуляцией радиосигнала акустическим сигналом, циркулирующим в помещении;

- признаки внешнего вида - малогабаритный предмет непонятного назначения в форме параллелепипеда, цилиндра без или с одним органом управления (выключателем питания) на поверхности;

- одно или несколько отверстий малого диаметра в кожухе;

- наличие, но не всегда, небольшого отрезка провода, выходящего из кожуха;

- присутствие полупроводниковых элементов, выявляемых при облучении обследуемых предметов нелинейными радиолокаторами;

- наличие в устройстве металлических проводников или других деталей, определяемых металлодетекторами или при просвечивании предмета рентгеновскими лучами.

Камуфлированные радиозакладки по внешнему виду на первый взгляд не отличаются от объекта имитации, особенно если закладка устанавливается в корпус бытового предмета без изменения его внешнего вида. Некоторые камуфлированные закладные устройства неотличимы от оригиналов при внешнем осмотре. Например, на поверхность закладки-конденсатора наносятся заводские реквизиты - тип, величина емкости, номер серии и т. д. Назначение таких закладок можно выявить путем разборки или просвечивания их рентгеновскими лучами.

Однако следует иметь ввиду, что закладки, камуфлированные под малогабаритные предметы, снижают функциональные возможности этих предметов. Поэтому обнаруженные ограничения функций средств оргтехники, электробытовых устройств и др. могут служить косвенными признаками установки в них закладных устройств. Например, в шариковой авторучке закладное устройство занимает приблизительно половину ее длины, в результате чего резко укорачивается пишущий стержень и сокращается время нормальной работы ручки. Кроме того, такую ручку нельзя разобрать, например, для замены стержня, так как разбираемые части склеивают.

Не могут применяться по прямому назначению электролампочки типа РК-520 с установленной в цоколь закладкой. Однако другой тип электролампочки -- PK-560-S лишен этого признака. Визуально выявить наличие в этой электролампе радиозакладки невозможно.

9.2. Классификация средств обнаружения и локализации закладных подслушивающих устройств

Вследствие постоянной конкуренции между производителями закладных устройств и средств их обнаружения и локализации на рынке существует множество видов и типов технических средств как тех, так и других. Классификация технических средств обнаружения и локализации закладных устройств приведена на рис. 9.1.

Средства радиоконтроля помещения предназначены для обнаружения закладных устройств, излучающих радиоволны во время их поиска. Для обнаружения неизлучающих при поиске закладок - дистанционно управляемых и передающих сигналы по проводам, применяются средства, реагирующие не на радиоизлучения, а на иные демаскирующие признаки закладок. Наконец, средства подавления закладных устройств обеспечивают энергетическое скрытие их сигналов, нарушение работоспособности закладок или их физическое разрушение.

Рис. 9.1. Классификация средств обнаружения и локализации закладных устройств

Учитывая, что радиоизлучающие закладки преобладают на рынке закладных устройств, существуют разнообразные средства радиоконтроля обследуемых помещений: от простейших индикаторов электромагнитного поля до сложных автоматизированных комплексов. Классификация обнаружителей радиоизлучений закладных устройств указана на рис. 9.2.

Рис.9.2. Классификация средств обнаружения излучений закладных устройств

Простейшими и наиболее дешевыми обнаружителями радиоизлучений складных устройств являются индикаторы электромагнитных полей. Наиболее простые из них - обнаружители поля, которые световым или звуковым сигналом информируют оператора о наличии в месте расположения антенны индикатора электромагнитного поля с напряженностью выше фоновой. Более сложные из них - частотомеры обеспечивают, кроме того, измерение частоты колебаний поля. Но чувствительность обнаружителей поля мала, поэтому с их помощью можно обнаруживать поля радиозакладок в непосредственной близости от источника излучения.

Существенно большую чувствительность имеют супергетеродинные бытовые приемники. Однако возможности использования бытовых радиоприемников для поиска радиозакладок ограничены радиовещательным диапазоном и видами модуляции, применяемыми в радиовещании (AM и ЧМ). С помощью преобразователей (конверторов) можно перестроить частотный диапазон бытового радиоприемника на частоту радиозакладки, если она известна. Но для поиска радиозакладных устройств с неизвестной частотой перестроенные бытовые радиоприемники неэффективны, так как они обеспечивают поиск частоты закладки в узком диапазоне частот.

Широкими возможностями по обнаружению радиозакладок обладают специальные приемники. Среди них все большую популярность приобретают радиоприемники с автоматизированным сканированием радиодиапазона. Они обеспечивают поиск в диапазоне частот, перекрывающем частоты почти всех применяемых радиозакладок - от долей МГц до единиц ГГц. Кроме того, сканирующие радиоприемники имеют, как правило, оперативную память для запоминания частот не представляющих интерес источников излучения, прежде всего, радиовещательных и служебных радиостанций.

Информационно-техническое сопряжение сканирующих приемников с переносными компьютерами послужило технической основой для создания автоматизированных комплексов для быстрого и надежного поиска радиоиз-лучающих подслушивающих устройств.

Но дистанционно управляемые радиозакладки и закладки, передающие информацию по проводам, не обнаруживаются аппаратурой радио контроля. Для их поиска используются демаскирующие признаки материала конструкции и элементов схемы закладного устройства, а также признаки сигналов, распространяющихся по проводам. С целью обнаружения и локализации таких закладок применяются или создаются специальные технические средства, классификация которых приведена на рис. 9.3.

Рис. 9.3. Классификация средств обнаружения неизлучающих закладок

Аппаратура для контроля проводных линий предназначена для выявления в них опасных сигналов и их источников, в том числе закладных устройств. Так как основными направляющими линиями, по которым передаются от закладных устройств электрические сигналы с информацией, являются телефонные линии и цепи электропитания, то соответствующие средства контроля включают приборы контроля телефонных линий и линий электропитания.

Обнаружители пустот позволяют обнаруживать возможные места установки закладных устройств в пустотах стен или других деревянных или кирпичных конструкциях.

Большую группу образуют средства обнаружения или локализации закладных устройств по физическим свойствам элементов электрической схемы или конструкции. Такими элементами являются: полупроводниковые приборы, которые применяются в любых закладных устройствах, металлические детали конструкции, элементы, поглощающие рентгеновские лучи.

Из этих средств наиболее достоверные результаты обеспечивают средства для обнаружения полупроводниковых элементов по их нелинейным свойствам - нелинейные радиолокаторы. Принципы работы нелинейных радиолокаторов близки к принципам работы радиолокационных станций, широко применяемых для радиолокационного наблюдения различных объектов. Существенное отличие заключается в том, что если приемник радиолокационной станции принимает отраженный от объекта эхо-сигнал на частоте излучаемого сигнала, то приемник нелинейного локатора принимает 2-ю и 3-ю гармоники отраженного сигнала. Появление в отраженном сигнале этих гармоник обусловлено нелинейностью характеристик выход/вход полу проводников. В результате нелинейного преобразования электрического сигнала, индуцируемого в элементах схемы закладного устройства высокочастотным полем локатора, образуется сигнал, в спектре которого присутствуют кроме основной частоты ее гармоники. Количество и амплитуда гармоник зависят от характера нелинейности и мощности электромагнитного поля.

Металлодетекторы (металлоискатели) реагируют на наличие в зоне поиска электропроводных материалов, прежде всего, металлов, и позволяют обнаруживать корпуса или другие металлические элементы закладки.

Переносные рентгеновские установки применяются для просвечивания предметов, назначение которых не удается выявить без их разборки, прежде всего, тогда, когда разборка невозможна без разрушения найденного предмета.

Аппаратура радиоконтроля

Принципы работы и основные характеристики аппаратуры радиоконтроля состоят в следующем.

Обнаружитель поля представляет собой широкополосный приемник примою усиления (в простейшем случае - детекторный) с телескопической штыревой антенной. Продетектированный наведенный в антенне сигнал усиливается до значений, превышающих порог срабатывания звуковой и световой сигнализации. Коэффициент усиления большинства известных обнаружителей поля регулируется с помощью переменного сопротивления, ручка регулировки которого выведена на корпус прибора. Индикаторы оповещают оператора о наличии поля с уровнем напряженности выше некоторого установленного порогового значения, определяемого регулятором чувствительности. С целью большей информативности световых индикаторов их выполняют в современных обнаружителях поля в виде линейки из 4-10 светодиодов. Каждый последующий светодиод излучает свет при повышении уровня сигнала в соответствии с линейной или логарифмической шкалой.

Новейшие варианты индикаторов поля дополняются устройством акустической обратной связи (акустической "завязки"), позволяющим выделить излучение закладки на фоне других радиосигналов. Суть акустической "завязки" состоит в подаче продетектированного и усиленного сигнала на малогабаритный громкоговоритель индикатора поля, в результате чего образуется между ним и микрофоном закладки положительная обратная акустическая связь. В результате ее генерируются акустические сигналы, информирующий S оператора о наличии вблизи индикаторов поля акустической закладки.

Перед поиском закладки индикатор поля настраивается на уровень фона в обследуемом помещении. С этой целью оператор, находясь в точке помещения на удалении нескольких метров от возможных мест размещения закладок, устанавливает регулятор чувствительности в такое положение, при котором индикатор находится на грани срабатывания. При приближении индикатора поля к излучающей закладке напряженность электромагнитного поля возрастает, повышается уровень сигнала в антенне и, соответственно, на входе индикатора поля. При превышении уровня порогового значения, определяемого положением регулятора чувствительности, индикатор срабатывает, оповещая о появлении в обследуемой зоне электромагнитного поля мощностью, превышающей мощность фона.

Однако источником этого поля не обязательно будет закладка. В результате многочисленных переотражений электромагнитных волн различных внешних источников от стен помещения распределение энергии в пространстве комнаты имеет сложный вид с минимумами и максимумами. Это обстоятельство и низкая чувствительность индикаторов поля ограничивают возможности этих устройств и их целесообразно использовать в качестве средств при визуальном поиске закладок в труднодоступных местах (под плинтусом, за картиной, в книжном шкафу и др.). Характеристики основных обнаружителей поля приведены в табл. 9.1.

Чувствительность обнаружителей поля значительно хуже супергетеродинных радиоприемников и составляет доли и единицы мВ.

В результате дальнейшего развития индикаторов поля созданы широко- _ полосные радиоприемные устройства - интерсепторы с автоматической настройкой их селективных элементов на радиосигнал с наибольшим уровнем. Чувствительность интерсепторов выше чувствительности детекторных индикаторов поля. Например, интерсептор AS 104 фирмы Optoelectronics обеспечивает прием радиосигналов в полосе 10-1000 МГц, имеет активный преселектор с полосой 4 МГц и усиление в 30 дБ.

Таблица 9.1.

Тип индикатора поля

Характеристики индикаторов

Диапазон частот. Мгц

Габариты, мм

Масса, г

UM 063,1

25-1000

160х70х20

200

UM 063.2

25-1000

124х68х27

150

ИП-1

50-1200

-

-

ИП-2

70-1000

-

-

ИП-3

20-1200

140х20х60

-

ИП-4

25-1000

-

-

D 006

50-1000

128х63х20

250

D007

50-1000

70х60х20

-

D008

50-1500

135х68х24

-

DM-1

5-1500

138х75х8

470

DM-2

20-1000

150х40х19

800

DM-5

1-1000

156х38х75

400

DM-15

1-1000

62х26х78

150

DP3 02

25-1000

124х64х21

200

DP3 03

25-1000

220х90х40

900

DP3 06

25-1000

35х45х15

100

Принцип "захвата" частоты радиосигнала с максимальным уровнем и последующим анализом его характеристик микропроцессором положен в основу работы современных частотомеров. Микропроцессор записывает сигнал с максимальным уровнем во внутреннюю память, производит его цифровую фильтрацию, проверку на стабильность и когерентность сигнала и измерение его частоты с точностью до единиц кГц (2 кГц, 0.01% от номинального значения). Значение частоты в цифровой форме индуцируется на жидкокристаллическом экране. Основные характеристики частотомеров приведены в табл. 9.2.

Таблица 9.2.

Тип, фирма

Характеристики

Диапазон частот, МГц

Чувствительность. мВ

Габариты, мм

Примечание

ЗОООА, Optoelectronics

0.00001-3000

0.45-60

135х100х34

4 поддиапазона

3300, Optoelectronics

1-2300

*0.3-40

93х69х30

М 1, Optoelectronics

0.00001-2800

0.3-50

120х70х34

SCOUT. Optoelectronics

10-1400

~ 1

97х70х30

400 каналов памяти

РЙЧ-1, "Прогресстех"

50-1300

3-10

55х55х38

XPLORER,Poccn Секьюритн

30-2000

-

140х70х40

500 каналов памяти

ПС 4-4, Novo

0,0002-10

0.03-0.15

160х84х30

Знание частоты позволяет оператору грубо классифицировать принимаемый радиосигнал по возможным его источникам (радио- или телевизионное вещание, служебная связь, сотовая радиотелефонная связь и т. д) и повысить оперативность "чистки" помещения.

Бытовые приемники как средства обнаружения закладных устройств имеют существенно более высокую чувствительность чем индикаторы поля и частотомеры и позволяют уверенно принимать радиосигнал закладки, если только его частота соответствует диапазону частот радиоприемника. Диапазоны частот бытовых радиоприемников стандартизированы и составляют:

для России и стран СНГ - 65.8-74 Мгц (УКВ1) и 100-108 Мгц (УКВ2), в соответствии с Международным регламентом радиосвязи -41-68 Мгц (УКВ1) и 87.5-108 Мгц (УКВ2). Большинство современных бытовых радиоприемников выпускаются в так называемом расширенном диапазоне 65-108 Мгц. Доля закладок с частотами излучений, попадающих в эти диапазоны, мала и постоянно убывает. Учитывая это, некоторые бытовые радиоприемники оснащаются встроенными или подключаемыми конверторами (преобразователями) на диапазон излучений радиозакладок до 450-480 МГц. К таким приемникам относятся, например, АЕ 1490, Sony CFM-145. У них имеется дополнительный диапазон рабочих частот 460-480 МГц, чувствительность их составляет 2-3 мкВ, что обеспечивает прием высокочастотных ЧМ-сигналов радиозакладок.

Наглядное представление о загрузке радиодиапазона, что облегчает поиск радиозакладных устройств, обеспечивают анализаторы спектра. Широкий диапазон частот имеют анализаторы спектра производства фирмы Rohde&Schwarz ZWOB2 (100 кГц-1.6 кГц), ZWOB6 (100 кГц-2.7 ГГц), ZWOB4 (100 кГц-2.3 ГГц), ZRMD (10 МГц-18 ГГц). Несколько меньшими возможностями обладают анализаторы спектра производства стран СНГ:

СК4-61 (100 МГц-15 ГГц), С4-42 (40 МГц-17 ГГц), СК4-59 (10 кГц-0.3 ГГц), С4-47 (100 МГц- 39.6 ГГц), СК4-83 (10 Гц- 0.3 Гц), С4-9 (50 МГц- 1.4 МГц).

Все более широко для поиска закладных устройств применяются сканирующие радиоприемники. Эти приемники имеют высокие электрические параметры в широком диапазоне частот настройки, перекрывающем частоты радиоизлучений имеющихся на рынке закладок. Сканирующие приемники автоматически последовательно настраиваются на частоты радиосигналов во всем диапазоне. Оператор, прослушивая звуковые сигналы на выходе приемника на каждой из частот, принимает решение о продолжении или прекращении поиска. Для продолжения поиска он нажимает соответствующую кнопку, подавая устройству управления приемника команду о перестройке на следующую частоту. В сканирующих приемниках с памятью в ней запоминаются частоты радиосигналов, которые не интересуют оператора, что ускоряет процесс последующего поиска. Очевидно, что для того чтобы оператор мог обнаружить радиосигнал закладки, она должна передавать узнаваемый акустический сигнал. Для этого при поиске закладок с помощью бытовых и сканирующих радиоприемников необходимо в обследуемом помещении излучать акустический сигнал. Акустический сигнал, кроме того, "провоцирует" закладные устройства, автоматически включаемые от голосов разговаривающих.

Параметры сканирующих радиоприемников приведены табл. 3.6.

В условиях большого и постоянно расширяющего диапазона частот излучений радиозакладных устройств его последовательный просмотр даже с помощью сканирующих приемников занимает несколько часов. В результате длительного поиска оператор утомляется и повышается вероятность пропуска им излучения закладки.

Для оперативного поиска закладок применяются специальные приемники, которые содержат кроме сканирующего приемника излучатель акустического тестового сигнала и микропроцессор. Излучатель акустического сигнала имитирует источник акустической информации. Микропроцессор выявляет радиосигналы, на которые настраивается сканирующий приемник, по критерию "свой - чужой" и быстро обнаруживает радиосигнал закладки, если таковой имеется. Например, приемник РК 855-S генерирует звуковой сигнал на частоте 2.1 кГц. После обнаружения "своего" сигнала он последовательно автоматически проверяет его 4 раза, после чего подается сигнал оператору об обнаружении закладки. Сканирование всего диапазона частот занимает около 3-4 минут. Чтобы избежать перегрузки чувствительных микрофонов и надежно обнаруживать радиозакладки различных типов, громкость тестового акустического сигнала ступенчато меняется: 1.5-2 мин. он излучается на полной громкости, затем то же время на половинной мощности. Аппаратура размещается в портфеле типа "дипломат", весит 4.9 кг.

Дальнейшее развитие специальных приемников привело к появлению на рынке автоматизированных программно-аппаратных комплексов для поиска средств негласного съема акустической информации. Типовой комплекс включает:

- сканирующий радиоприемник с широкополосными антеннами;

- коммутатор антенн для комплексов, контролирующих несколько помещений;

- компьютер типа Notebook или микропроцессор;

- специальное математическое обеспечение комплекса;

- контролер ввода информации с выхода радиоприемника в компьютер и формирования тестового сигнала;

- преобразователь спектра;

- акустический коррелятор;

- блок питания.

Комплекс при минимальном участии оператора определяет и запоминает уровни и частоты радиосигналов в контролируемом помещении, выявляет в результате корреляционной обработки спектрограмм вновь появившиеся излучения, с использованием тестового акустического сигнала распознает скрытно установленные в помещении радиомикрофоны и определяет их координаты. Возможности комплексов расширяют также включением в их состав блока контроля проводных линий, позволяющего обнаруживать подслушивающие устройства, подключенные к проводам кабелей. Характеристики комплексов приведены в табл. 9.3.

Таблица 9.3.

Тип, фирма

Диапазон частот. МГц

Точность измерения координат, см

Основной состав аппаратуры

Примечание

АРК-Д1 ("Крона"). Нелк

30-2000

до 10

AR-3000A, ПЭВМ Notebook

1 помещение

АРК-ДЗ ("Крона-2") Нелк

30-2000

до 10

AR-3000A, ПЭВМ Notebook

8 помещении

"Крона-4". Нелк

0.025-5, 25-1900

до 10

AR-8000, ПЭВМ Notebook

"Крона-5". Нелк

0.01-2600, ИК

до 10

AR-5000, ПЭВМ Notebook

АРК-Д1, АРК-ПК, Иркос

1-2000

до 10

AR-3000A, ПЭВМ Notebook

до 12 помещении

АРК-Д1-12.АРК-ПК-12, Иркос

0.01-5. 1-2000

до 10

AR-3000A, ПЭВМ Notebook

OCS-5000. REI

0.01-3000. 850-1070 нм(ИК)

5-10

Р/приемник,спе-компьютер

помещение

RS1000/3, RS 1000/5, RS 1000/8, "Радиосервнс"

0.1-2600

до 10

AR-3000A, AR-5000, AR-8000, ПЭВМ

помещение

"Дельта-С, П". Элерон

0.1-2036

*

AR-3000A, ПЭВМ

до 7 помещений

С целью сокращения времени просмотра диапазона частот до нескольких минут анализ сигналов в перспективных комплексах (АРК-ДЗ, АРК-ПК, Крона-5 и др.) проводится на основе быстрого преобразования Фурье.

Оригинальная портативная автоматизированная аппаратура радио- и радиотехнического контроля "Барс" создана 5 ЦНИИ МО РФ и ВНИИС. Она обеспечивает: обзор в полосе 30 МГц-30 ГГц, пеленгацию источников радиоизлучений с точностью 2-8 град., измерение характеристик радиосигнала (частоты и мощности сигнала, длительности и периода повторения импульсов, напряженности поля), распознавание типа РЭС с вероятностью не менее 0.9, формирование банка данных с не менее 100 эталонами. Аппаратура "Барс" состоит из антенно-фидерного устройства, сменных высокочастотных блоков, блоков быстрого частотно-временного и точного анализа, обработки данных, управления и контроля, а также блока питания. Принцип построения аппаратной части и программного обеспечения позволяет адаптировать аппаратуру для конкретных условий.

Создание и применение автоматизированных комплексов для непрерывного радиомониторинга помещений с конфиденциальной информацией является наиболее эффективным направлением развития средств для комплексной защиты информации от утечки по радиоэлектронному каналу.

Такое утверждение основывается на следующих предпосылках:

- при непрерывном контроле накапливается большой объем информации об электромагнитной обстановке в защищаемом помещении, что облегчает и ускоряет процесс обнаружения новых источников излучения;

- выявляются не только непрерывно излучающие или включаемые по акустическому сигналу закладки, но и радиоизлучения дистанционно управляемых закладок в период их активной работы, т. е. создаются предпосылки для борьбы с закладными устройствами в реальном масштабе времени;

- выявляются информативные побочные излучения различных радиоэлектронных средств, для обнаружения которых в виду большей неопределенности их проявления и малой мощности излучений требуется более тщательный анализ радиообстановки в помещении.

Возможности автоматизированных комплексов определяются не столько техническими параметрами аппаратуры (большинство комплексов имеют близкие параметры, так как комплектуются в основном однотипными радиоприемниками и ПЭВМ), сколько программным обеспечением. Большими возможностями обладает программное обеспечение фирмы "Нелк" -- программные комплексы SedifPlus, SedifPro, Filin, Sedif Scout.. Универсальная базовая программа Filin позволяет накапливать данные о радиоэлектронной обстановке, анализировать загрузку и спектральный состав радиосигналов в диапазоне частот радиоприемника, выявлять информативные электромагнитные излучения от любых РЭС, оценивать эффективность использования радиотехнических средств зашиты информации и решать другие задачи.

Дальнейшее развитие автоматизированных комплексов предусматривает:

- расширение видов обнаруживаемых закладных устройств;

- создание и включение в состав программного обеспечения комплекса базы данных о закладных устройствах с информационными портретами излучаемых сигналов для их автоматического обнаружения и распознавания;

- разработка на базе программно-аппаратных средств комплексов экспертной системы по обнаружению источников утечки информации в радиоэлектронном канале.

9.1 Принципы контроля телефонных линий и цепей электропитания

Учитывая повсеместное распространение телефонов как средств коммуникаций и особый интерес злоумышленников к подслушиванию телефонных разговоров, при обеспечении защиты информации большое внимание уделяется способам и средствам контроля телефонных линий.

Способы контроля телефонных линий основаны на том, что любое подключение к ним вызывает изменение электрических параметров линий: напряжения и тока в линии, значений емкости и индуктивности линии, активного и реактивного сопротивления. В зависимости от способа подключения подслушивающего устройства к телефонной линии (последовательного- в разрыв провода телефонного кабеля или параллельного) влияние подключаемого подслушивающего устройства может существенно отличаться. Так как закладное устройство использует энергию телефонной линии, величина отбора мощности закладкой из телефонной линии зависит от мощности передатчика закладки и его коэффициента полезного действия. Наилучшие возможности по выявлению этих отклонений существуют при опущенной трубке Телефонного аппарата. Это обусловлено тем, что в этом состоянии в телефонную линию подается постоянное напряжение 60+10% В (для отечественных телефонных линий) и 25-36 В (для зарубежных АТС). При поднятии трубки в линию поступают от АТС дискретный сигнал, преобразуемый в телефонной трубке в длинный гудок, а напряжение в линии уменьшается до 12В [56]. Для контроля телефонных линий применяются следующие устройства:

- устройства оповещения световым и звуковым сигналом об уменьшении напряжения в телефонной линии, вызванном несанкционированным подключением средств подслушивания к телефонной линии;

- измерители характеристик телефонных линий (напряжения, тока, емкости, сопротивления и др.), при отклонении от которых формируется сигнал тревоги;

- "кабельные радары", позволяющие измерять неоднородности телефонной линии и определять расстояние до неоднородности (асимметрии постоянному току в местах подключения подслушивающих устройств, обрыва, короткого замыкания и др.).

Простейшее устройство контроля телефонных линий представляет собой измеритель напряжения с индикацией изменения ого значения от номинального, которое фиксируется оператором в режиме настройки вращением регулятора на лицевой панели устройства. Предполагается, что при установке номинального напряжения к телефонной линии подслушивающее устройство не подключено. Например, анализатор проводных линий АПЛ-1 ("Иней", Ассоциация "Конфидент") позволяет обнаруживать подключение подслушивающих устройств, включенных последовательно и имеющих сопротивление не менее 5 Ом, и подключенных параллельно с сопротивлением не более 1.5 мОм [67]. На некоторых подобных устройствах, например, ST1, устанавливается стрелочный измеритель напряжения (вольтметр), в других (АТ-23, "Атолл", АТЛ-2 и др.) предусмотрено цифровое отображение значений напряжения и тока на ЖК-дисплее.

Как правило, подобные устройства содержат также фильтры для защиты от прослушивания за счет "микрофонного эффекта" в элементах телефонного аппарата и высокочастотное навязывания.

Но устройства контроля телефонной сети по изменению напряжения или тока в ней не обеспечивают надежного обнаружения подключаемых параллельно к линии современных средств подслушивания с входным сопротивлением более единиц МОм. Повышение реальной чувствительности устройств контроля ограничено нестабильностью параметров линии, колебаниями напряжения источников электропитания на АТС, помехами в линии. Для снижения вероятности ложных тревог в более сложных подобных устройствах увеличивают количество измеряемых характеристик линии, предусматривают возможность накопления и статистической обработки результатов измерений в течение достаточно длительного времени как контролируемой линии, так и близко расположенных. Например, портативный анализатор ССТО-1000 фирмы CCS Commucation Control позволяет проводить 6 типов контрольных проверок телефонной линии и может быть использован для одновременной проверки 25 телефонных пар, а анализатор АТЛ-2 информирует о размыкании телефонной линии на время более 20 секунд, которое возникает при последовательном подключении к ней подслушивающего устройства.

Так как любое физическое подключение к кабелю телефонной линии создает в ней неоднородность, от которой отражается посылаемый в линию сигнал, то по характеру отражения и времени запаздывания отраженного сигнала оценивают вид неоднородности и рассчитывают длину участка линии до неоднородности (места подключения). В приборах АПЛ-1 и АТ-2 ("Амулет", г. Москва) характер схемы подслушивающего устройства оценивается по фигуре Лиссажу, вид которой определяется сдвигом фаз между напряжением и током сигнала, подаваемого на вертикальные и горизонтальные пластины электронно-лучевой трубки. Для выявления неоднородностей применяют также испытатели кабельных линий Р5-А, Р5-5, Р5-8, Р5-9, Р5-10, Р5-13 [85].

Средствами и программным обеспечением для обнаружения и анализа сигналов закладных устройств в проводных линиях оснащаются также перспективные автоматизированные комплексы. Например, в мобильном автоматизированном комплексе "Крона-5" ("Нелк") установлен многофункциональный конвертор, позволяющий обнаруживать утечку акустической информации по электросети, телефонным и другим проводным линиям в диапазоне частот 0.01-5 Мгц, а также по инфракрасному каналу.

Наиболее рациональным вариантом является совмещение в одном приборе функции обнаружения несанкционированного подключения к телефонной линии и противодействия подслушиванию. Активное противодействие осуществляется путем линейного зашумления телефонной линии.

9.2 Технические средства подавления сигналов закладных устройств

Другую группу средств активной борьбы с закладками образуют генераторы помех. Классификация этих средств приведена на рис. 9.4.

Выходы генератора линейного зашумления соединяются с проводами телефонной линии и электросети и в них подаются электрические сигналы, перекрывающие опасные сигналы по спектру и мощности. Генераторы пространственного зашумления повышают уровень электромагнитных помех в помещении и. следовательно, на входе приемника злоумышленника. Для эффективного подавления сигнала закладки уровень помехи в полосе спектра сигнала должен в несколько раз превышать уровень сигнала.

Рис. 9.4. Классификация средств подавления закладок

Энергетическое скрытие информации путем подавления (снижения отношения сигнал/шум ниже порогового значения) электрических и радиосигналов позволяет обеспечить превентивную защиту информации, без предварительного обнаружения и локализации закладных устройств. Возможны три способа подавления:

- снижение отношения сигнал/шум до безопасных для информации значений путем пространственного и линейного зашумления:

- воздействия на закладные устройства радио- и электрическими сигналами, нарушающими заданные режимы работы этих устройств;

- воздействия на закладные устройства, вызывающие их разрушение. Для подавления сигналов закладных устройств применяются заградительные и прицельные помехи. Заградительные помехи имеют ширину спектра, перекрывающего частоты излучений подавляющего числа закладных устройств. Характеристики таких генераторов помех приведены в таблице 9.4

Таблица 9.4.

Тип

Диапазон. частот. МГц

Мощность излучения. Вт

Вид зашумления

Габариты, см

"Гном-3"

0.1-1000

20

П. Л

307х95х49

"Гном-4"

20-1200

5

П.Л

Стационарный

Ш-1

50-500

3

П

Стационарный

Ш-2

10-1000

5

П

Переносной

ГШ-1000

0.1-1000

25-60 дБ

П

700х600х35, с антенной

ГШ-К-1000

0.1-1000

25-60 дБ

П для ПЭВМ

Плата расширения

"Салют"

1-1000

-

П для ПЭВМ

Плата расширения

"Смог"

0.001- 1000

-

П для ПЭВМ

Плата расширения

Примечание: П - пространственное зашумление, Л - линейное зашумление.

Однако подобные генераторы помех эффективно подавляют радиосигналы закладки, если отношение мощности помехи и сигнала закладки в несколько раз выше отношения ширины спектра помехи и сигнала. Это требование обусловлено тем, что мощность помехи "размазывается" по диапазону частот генератора помех, в среднем составляющем около 1000 МГц, и на долю узкополосного сигнала закладки приходится лишь незначительная часть энергии помехи, которой не хватает для эффективного искажения информационных параметров сигнала. Например, одно из устройств активной защиты информации с повышенной выходной мощностью обеспечивает максимальную мощность шума в полосе ЧМ-сигнала (150-200 кГц) порядка 40 мВт при интегральном значении выходной мощности генератора до 20Вт. Но для узкополосного ЧМ-сигнала мощность помехи в полосе сигнала составляет доли и единицы мВт, что недостаточно для подавления сигналов закладки. Учитывая значительную долю на рынке радиозакладок с мощностью излучения порядка 10-20 мВт и тенденцию сужения полосы их кварцованных частот, применение достаточно мощных генераторов помех не гарантирует предотвращение утечки информации. Наращивание мощности заградительной помехи ограничивается требованиями по экологической безопасности и электромагнитной совместимости излучений помех и сигналов радиовещания, и связи в зашумляемом пространстве.

Проблема электромагнитной совместимости не возникает при линейном зашумлении. Задача подавления сигналов закладок, передаваемых по цепям электропитания, решается простым превышением спектральной плотности помехи над спектральной плотностью сигнала. Для подавления телефонных радиозакладок путем линейного зашумления спектр помехи не должен совпадать со спектром речевого сигнала, иначе помеха будет мешать разговору абонентов. В качестве таких помех применяют аналоговые и дискретные помеховые сигналы, спектр которых выше спектра речевого сигнала. Простейшим дискретным помеховым сигналом является меандр - последовательность прямоугольных импульсов со скважностью 2. Частоты сигналов подбираются такими, чтобы они проходили через селективные цепи микрофонного усилителя и модулятора, но не воспринимались слуховой системой человека.

Сигналы-помехи с частотой выше 20 кГц изменяют режимы работы подключенных к телефонной линии закладных устройств, в результате чего изменяется частота и расширяется спектр их излучении. Вследствие этого ухудшается разборчивость принимаемой злоумышленником речи и уменьшается в несколько раз дальность подслушивания.

Воздействие помехи на параллельно подключенное к телефонной линии закладное устройство проявляется в основном в изменении частоты излучения передатчика, в результате чего приемник, настроенный на номинальную частоту передатчика закладки, не сможет принять сигнал. Например, устройство защиты телефонных линий УЗТ-02 фирмы "Нелк" генерирует помеховый сигнал с максимальной амплитудой 35 В, который, воздействуя на элементы электронной схемы телефонной закладки, приводит к "размыванию" спектра излучаемого сигнала и снижению соотношения сигнал/шум на входе приемника злоумышленника. Воздействие помех нарушает также работу устройств автоматической регулировки уровня записи и автоматического включения диктофона голосом. Основные характеристики устройств активной защиты телефонных линий приведены в табл. 9.5 [115].

Таблица 9.5.

Тип средства

Вид помехи (ВЧ/НЧ)

Вид подавления

Питание

"Гром-ЗИ-6"

+/+

1,6,7

220

"Барьер-3"

+/-

1,2,3*)4,6

220

KZOT-06

-/+

1.2.5,6

9/220

SP-17/T

-/+

1*)

12/220

TSU-3000

-/+

1*)3,5

220

"Протон"

+/+

1,2,6.7

220

ПТЗ-003

+/+

1.3*).4,5

220

СТО-24

-/+

1.2,4,5,6

9

ТЛ-2

-/

1.2.3.4.6.7

220

Примечание. В графе "Вид подавления": 1 - снижение отношения сигнал/шум на входе подслушивающего устройства: 2 - размывание спектра передатчика радиозакладки: 3 - отключение радиозакладки: 4 - сдвиг частоты излучения радиозакладки: 5 - блокировка автопуска записывающего устройства: 6 - защита от ВЧ-навязывания: 7 - гальваническая развязка телефонного аппарата от линии связи: *) - полное подавление подслушивающего устройства.

Один из способов физического повреждения закладок, подключенных к телефонной линии и линиям электропитания, - подача в линию коротких импульсов большой амплитуды. Так как в схемах закладок применяются миниатюрные низковольтные детали (транзисторы, конденсаторы), то высоковольтные импульсы их пробивают и схема закладки выводится из строя. Например, так называемый разрушитель "жучков" РК 3320 (РК Electronic) посылает в линию импульсы амплитудой до 4000 Вив течение 2-4 мин. приводит в неработоспособное состояние закладное устройство. Отечественный выжигатель телефонных закладных устройств ПТЛ-1500 выводит из строя закладные устройства путем подачи в телефонную линию импульсов напряжением 1600 В. Однако метод физического разрушения аппаратных закладок нельзя использовать без отключения от телефонной линии всех радиоэлектронных средств (современных электронных телефонных аппаратом, модемов ПЭВМ, факсов и т. д.).

Более предпочтительными являются заградительные радиопомехи, имеющие ширину спектра излучения в 1.5-2 раза больше ширины спектра сигнала. В этом случае маломощный генератор помех (до 1 Вт) может гарантировано обеспечить безопасность информации от утечки через закладки, но при условии совпадения частот генератора помех и закладки. Однако знание частоты радиозакладки предполагает ее обнаружение, а обнаружение - локализацию с последующим ее изъятием. Поэтому зашумление сигналов закладок целесообразно при непрерывном радиомониторинге помещения и автоматическом включении на частотах излучения радиозакладок передатчика заградительной помехи.

В автоматизированном комплексе "Крона-5" ("Нелк") установлен блок прицельных радиопомех на частотах излучений обнаруженных закладных устройств, что дает возможность практически мгновенно нейтрализовать утечку информации через эти устройства.

Тенденция информационного сопряжения настраиваемого передатчика заградительных помех с автоматизированными комплексами обнаружения радиозакладных устройств представляется определяющей для обеспечения безопасности информации в помещении.

Аппаратура нелинейной локации

Нелинейные радиолокаторы используют нелинейные свойства полупроводников, имеющиеся в составе любых радиоэлектронных закладок. При облучении области пространства, в котором размещены полупроводники, высокочастотной электромагнитной волной с частотой f в отраженной волне появляются гармоники с частотами 2f, 3f и т. д. Так как амплитуда гармоники резко убывает с увеличением ее номера, то в основном используют 2-ю и реже 3-ю гармоники. По характеристикам 2 и 3-й гармоник отраженной волны принимается решение о нахождении в облучаемой области нелинейных элементов.

Но наличие нелинейности характерно не только для полупроводников радиоэлектронных средств, но контактов между металлическими предметами с пленкой окислов на поверхности, например, ржавых прутьев в железобетонных плитах домов. Поэтому обнаружение 2-й гармоники в отраженном сигнале не является достаточным условием наличия закладного устройства. Одновременный анализ 2-й и 3-й гармоник позволяет провести селекцию их источников с большой достоверностью. Применение нелинейных локаторов обеспечивает высокий процент обнаружения закладных устройств, размещенных в железобетонных стенах, но гарантированное их выявление возможно только в результате последующего обследования предполагаемого местонахождения.

...

Подобные документы

  • Характеристики объекта информатизации ОВД, с точки защищаемой информации. Способы утечки информации. Разработка предложений по защите информации на объекте информатизации ОВД. Алгоритм выбора оптимальных средств инженерно-технической защиты информации.

    курсовая работа [693,1 K], добавлен 28.08.2014

  • Защита информации - правовые формы деятельности ее собственника по сохранению сведений, общие положения. Технический канал утечки, демаскирующие признаки, каналы несанкционированного воздействия. Организационно-технические способы защиты информации.

    курсовая работа [39,0 K], добавлен 05.02.2011

  • Моделирование объектов защиты информации. Структурирование защищаемой информации. Моделирование угроз безопасности: способы физического проникновения, технические каналы утечки информации, угрозы от стихийных источников. Инженерно-техническое мероприятия.

    курсовая работа [794,1 K], добавлен 13.07.2012

  • Физическая целостность информации. Система защиты информации. Установка средств физической преграды защитного контура помещений. Защита информации от утечки по визуально-оптическим, акустическим, материально-вещественным и электромагнитным каналам.

    курсовая работа [783,9 K], добавлен 27.04.2013

  • Организация системы защиты информации во всех ее сферах. Разработка, производство, реализация, эксплуатация средств защиты, подготовка соответствующих кадров. Криптографические средства защиты. Основные принципы инженерно-технической защиты информации.

    курсовая работа [37,5 K], добавлен 15.02.2011

  • Исследование теоретических основ и вопросов инженерно-технической защиты информации на предприятии. Разработка информационной системы инженерно-технической защиты информации. Экономическая эффективность внедренных систем защиты информации на предприятии.

    курсовая работа [2,3 M], добавлен 26.05.2021

  • Главные каналы утечки информации. Основные источники конфиденциальной информации. Основные объекты защиты информации. Основные работы по развитию и совершенствованию системы защиты информации. Модель защиты информационной безопасности ОАО "РЖД".

    курсовая работа [43,6 K], добавлен 05.09.2013

  • Комплексный подход в обеспечении информационной безопасности. Анализ процессов разработки, производства, реализации, эксплуатации средств защиты. Криптографические средства защиты информации. Основные принципы инженерно-технической защиты информации.

    курсовая работа [725,1 K], добавлен 11.04.2016

  • Характеристики объектов защиты и требования к ним. Выявление каналов утечки и требования по защите. Средства защиты и их размещение. Альтернативная система защиты информации комплексным экранированием. Экранированные сооружения, помещения, камеры.

    курсовая работа [2,1 M], добавлен 16.04.2012

  • Проблема защиты информации. Особенности защиты информации в компьютерных сетях. Угрозы, атаки и каналы утечки информации. Классификация методов и средств обеспечения безопасности. Архитектура сети и ее защита. Методы обеспечения безопасности сетей.

    дипломная работа [225,1 K], добавлен 16.06.2012

  • Методика анализа угроз безопасности информации на объектах информатизации органов внутренних дел. Выявление основных способов реализации утечки информации. Разработка модели угроз. Алгоритм выбора оптимальных средств инженерно-технической защиты данных.

    курсовая работа [476,3 K], добавлен 19.05.2014

  • Необходимость и потребность в защите информации. Виды угроз безопасности информационных технологий и информации. Каналы утечки и несанкционированного доступа к информации. Принципы проектирования системы защиты. Внутренние и внешние нарушители АИТУ.

    контрольная работа [107,3 K], добавлен 09.04.2011

  • Защита выделенного помещения. Структурирование защищаемой информации. Перечень сведений, составляющих государственную или коммерческую тайну. Моделирование угроз безопасности информации. Каналы утечки информации. Скорость распространения носителя.

    курсовая работа [66,4 K], добавлен 22.02.2011

  • Анализ информации как объекта защиты и изучение требований к защищенности информации. Исследование инженерно-технических мер защиты и разработка системы управления объектом защиты информации. Реализация защиты объекта средствами программы Packet Tracer.

    дипломная работа [1,2 M], добавлен 28.04.2012

  • Способы и средства защиты информации от несанкционированного доступа. Особенности защиты информации в компьютерных сетях. Криптографическая защита и электронная цифровая подпись. Методы защиты информации от компьютерных вирусов и от хакерских атак.

    реферат [30,8 K], добавлен 23.10.2011

  • Обоснование актуальности проблемы защиты информации. Концепция защиты информации в адвокатской фирме "Юстина". Каналы и методы несанкционированного доступа к защищаемой информации. Организация комплексной системы защиты информации в адвокатской конторе.

    курсовая работа [92,4 K], добавлен 21.10.2008

  • Наиболее распространённые пути несанкционированного доступа к информации, каналы ее утечки. Методы защиты информации от угроз природного (аварийного) характера, от случайных угроз. Криптография как средство защиты информации. Промышленный шпионаж.

    реферат [111,7 K], добавлен 04.06.2013

  • Обработка информации, анализ каналов ее возможной утечки. Построение системы технической защиты информации: блокирование каналов несанкционированного доступа, нормативное регулирование. Защита конфиденциальной информации на АРМ на базе автономных ПЭВМ.

    дипломная работа [398,5 K], добавлен 05.06.2011

  • Политика защиты информации. Возможные угрозы, каналы утечки информации. Разграничение прав доступа и установление подлинности пользователей. Обзор принципов проектирования системы обеспечения безопасности информации. Межсетевой экран. Антивирусная защита.

    дипломная работа [1,9 M], добавлен 05.11.2016

  • Возможные каналы утечки информации. Особенности и организация технических средств защиты от нее. Основные методы обеспечения безопасности: абонентское и пакетное шифрование, криптографическая аутентификация абонентов, электронная цифровая подпись.

    курсовая работа [897,9 K], добавлен 27.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.