Система информационной безопасности
Современное значение криптографии на различных уровнях обмена информацией, сущность блочных и потоковых шифров, их основные различия и особенности функционирования. Назначение криптографической хеш-функции и электронной подписи, проверка парольной фазы.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 19.05.2015 |
Размер файла | 377,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Содержание
Введение
1. Блочные шифры
2. Потоковый шифр
3. Основные различия поточных шифров от блочных
4. Криптографическая хеш-функция
Заключение
Введение
Криптография (что в переводе с греческого означает “тайнопись”) издавна использовалась при обмене самой разнообразной информацией. Самые ранние упоминания об использовании криптографии: Египет - 1900 г. до н.э., Месопотамия - 1500 г. до н.э., при написании Библии - 500 г. до н.э.
Одним из наиболее известных в древней истории деятелей, постоянно пользовавшийся тайнописью, был Юлий Цезарь. Он придумал шифр, носящий название шифр Цезаря (Caesar cipher). Тайнописью пользовались на протяжении средних веков в Европе, на Ближнем Востоке и в Северной Америке. Во время гражданской войны в США тайнопись использовалась и северянами и южанами. С тех пор она использовалась в каждой значительной войне. Во время Второй мировой войны польские и британские дешифровальщики раскрыли секрет немецкой шифровальной машины Энигма.
В результате было уничтожено множество немецких подводных лодок, потоплен линкор Бисмарк, и вооруженные силы Германии понесли тяжелые потери в ряде операций. Теперь, в XXI веке, вследствие огромной популярности Web и использование ее в электронной коммерции, технология шифрования и сопутствующие ей алгоритмы шифрования стали доступны массовому потребителю. В сетевом бизнесе для защиты безопасности финансовых сделок, сетевых услуг и потребительской информации основной упор делается на цифровые сертификаты и технологии шифрования как с открытым так и с секретным ключами.
Значение криптографии сегодня на самых различных уровнях обмена информации трудно переоценить. В своей курсовой работе я опишу несколько простых алгоритмов шифрования, таких как шифр цезаря, подстановочный шифр, шифр Виженера, дам математическую основу нескольким сложным алгоритмам, а также опишу такие понятия, как дайджест сообщения, цифровая подпись и сертификат. Выясним, какими методам шифрования и защиты информации пользуются в данный момент и почему.
1. Блочные шифры
Блочный шифр -- разновидность симметричного шифра , оперирующего группами бит фиксированной длины -- блоками, характерный размер которых меняется в пределах 64 -- 256 бит. Если исходный текст (или его остаток) меньше размера блока, передшифрованием его дополняют. Фактически, блочный шифр представляет собой подстановку на алфавите блоков, которая, как следствие, может быть моно- или полиалфавитной. Блочный шифр является важной компонентой многихкриптографических протоколов и широко используется для защиты данных, передаваемых по сети.В отличие от шифроблокнота, где длина ключа равна длине сообщения, блочный шифр способен зашифровать одним ключом одно или несколько сообщений, суммарной длиной больше, чем длина ключа. Передача малого по сравнению с сообщением ключа по зашифрованному каналу -- задача значительно более простая и быстрая, чем передача самого сообщения или ключа такой же длины, что делает возможным его повседневное использование. Однако, при этом шифр перестает быть невзламываемым. От поточных шифров работа блочного отличается обработкой бит группами, а не потоком. При этом блочные шифры надёжней, но медленее поточных. Симметричные системы обладают преимуществом над асимметричными в скорости шифрования, что позволяет им оставаться актуальными, несмотря на более слабый механизм передачи ключа (получатель должен знать секретный ключ, который необходимо передать по уже налаженному зашифрованному каналу. В то же время, в асимметричных шифрах открытый ключ, необходимый для шифрования, могут знать все, и нет необходимости в передаче ключа шифрования).
К достоинствам блочных шифров относят сходство процедур шифрования и расшифрования, которые, как правило, отличаются лишь порядком действий. Это упрощает создание устройств шифрования, так как позволяет использовать одни и те же блоки в цепях шифрования и расшифрования. Гибкость блочных шифров позволяет использовать их для построения других криптографических примитивов: генератора псевдослучайной последовательности,поточного шифра, имитовставки и криптографических хэшей.
Блочный шифр состоит из двух парных алгоритмов: шифрования и расшифрования. Оба алгоритма можно представить в виде функций. Функция шифрования E (англ. encryption -- шифрование) на вход получает блок данных M (англ. message -- сообщение) размером n бит и ключ K (англ. key -- ключ) размером k бит и на выходе отдает блок шифротекста C (англ. cipher -- шифр) размером n бит:
Для любого ключа K, EK является биективной функцией (перестановкой) на множестве n-битных блоков. Функция расшифрования D (англ. decryption -- расшифрование) на вход получает шифр C, ключ K и на выходе отдает M:
являясь, при этом, обратной к функции шифрования:
и
Заметим, что ключ, необходимый для шифрования и дешифрования, один и тот же -- следствие симметричности блочного шифра.
Режимы функционирования блоковых шифров.
Сам по себе блочный шифр позволяет шифровать только одиночные блоки данных предопределенной длины. Если длина сообщения меньше длины блока (англ. blocklength), то оно дополняется до нужной длины. Однако, если длина сообщения больше, возникает необходимость его разделения на блоки. При этом существуют несколько способов шифрования таких сообщений, называемые режимами работы блочного шифра.
Простейшим режимом работы блочного шифра является режим электронной кодовой книги или режим простой замены (англ. Electronic CodeBook, ECB), где все блоки открытого текста зашифровываются независимо друг от друга. Однако, при использовании этого режима статистические свойства открытых данных частично сохраняются, так как каждому одинаковому блоку данных однозначно соответствует зашифрованный блок данных. При большом количестве данных (например, видео или звук) это может привести к утечке информации о их содержании и дать больший простор для криптоанализа. Удаление статистических зависимостей в открытом тексте возможно с помощью предварительного архивирования, но оно не решает задачу полностью, так как в файле остается служебная информация архиватора, что не всегда допустимо.
Шифрование, зависящее от предыдущих блоков:
Шифрование в режиме сцепления блоков шифротекста
Чтобы преодолеть эти проблемы, были разработаны иные режимы работы, установленные международным стандартом ISO/IEC 10116 и определеные национальными рекомендациями, такие, как NIST 800-38A и BSI TR-02102 Общая идея заключается в использовании случайного числа, часто называемого вектором инициализации (англ. initialization vector, IV). В популярном режиме сцепления блоков (англ. Cipher Block Chaining, CBC) для безопасности IV должен быть случайным или псевдослучайным. После его определения, он складывается при помощи операции исключающее ИЛИ с первым блоком открытого текста. Следующим шагом шифруется результат и получается первый шифроблок, который используем как IV для второго блока и так далее.
В режиме обратной связи по шифротексту (англ. Cipher Feedback, CFB) непосредственному шифрованию подвергается IV, после чего складывается по модулю два (XOR, исключающее ИЛИ) с первым блоком. Полученный шифроблок используется как IV для дальнейшего шифрования. У режима нет особых преимуществ по сравнению с остальными. В отличие от предыдущих режимов, режим обратной связи вывода (англ. Output Feedback, OFB) циклически шифрует IV, формируя поток ключей, складывающихся с блоками сообщения.
Преимуществом режима является полное совпадение операций шифрования и расшифрования. Режим счетчика (англ. Counter, CTR) похож на OFB, но позволяет вести параллельное вычисление шифра: IV объединяется с номером блока без единицы и результат шифруется. Полученный блок складывается с соответствующим блоком сообщения.
Следует помнить, что вектор инициализации должен быть разным в разных сеансах. В противном случае приходим к проблеме режима ECB. Можно использовать случайное число, но для этого требуется достаточно хороший генератор случайных чисел. Поэтому обычно задают некоторое число -- метку, известную обеим сторонам (например, номер сеанса) и называемое nonce (англ. Number Used Once -- однократно используемое число). Секретность этого числа обычно не требуется. Далее IV -- результат шифрования nonce. В случае режима счетчика, nonce используется для формирования раундого ключа Ki:
где i -- номер раунда.
Дополнение до целого блока
Как уже упоминалось выше, в случае, если длина самого сообщения, либо последнего блока, меньше длины блока, то он нуждается в дополнении (англ. padding). Простое дополнение нулевыми битами не решает проблемы, так как получатель не сможет найти конец полезных данных. К тому же, такой вариант приводит к атакам Оракула дополнения (англ. padding oracle attack).
Поэтому на практике применимо решение, стандартизованное как «Метод дополнения 2» (англ. padding method 2) в ISO/IEC 9797-1, добавляющее единичный бит в конец сообщения и заполняющее оставшееся место нулями. В этом случае была доказана стойкость к подобным атакам.
2. Потоковый шифр
Потоковый шифр -- это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к симметричному шифрованию, нежели блочные шифры.
Допустим, например, что в режиме гаммирования для потоковых шифров при передаче по каналу связи произошло искажение одного знака шифротекста. Очевидно, что в этом случае все знаки, принятые без искажения, будут расшифрованы правильно. Произойдёт потеря лишь одного знака текста. А теперь представим, что один из знаков шифротекста при передаче по каналу связи был потерян. Это приведёт к неправильному расшифрованию всего текста, следующего за потерянным знаком. Практически во всех каналах передачи данных для потоковых систем шифрования присутствуют помехи. Поэтому для предотвращения потери информации решают проблему синхронизации шифрования и расшифрования текста. По способу решения этой проблемы шифросистемы подразделяются на синхронные и системы с самосинхронизацией.
Синхронные потоковые шифры (СПШ) -- шифры, в которых поток ключей генерируется независимо от открытого текста и шифротекста.
При шифровании генератор потока ключей выдаёт биты потока ключей, которые идентичны битам потока ключей при дешифровании. Потеря знака шифротекста приведёт к нарушению синхронизации между этими двумя генераторами и невозможности расшифрования оставшейся части сообщения. Очевидно, что в этой ситуации отправитель и получатель должны повторно синхронизоваться для продолжения работы.
Обычно синхронизация производится вставкой в передаваемое сообщение специальных маркеров. В результате этого пропущенный при передаче знак приводит к неверному расшифрованию лишь до тех пор, пока не будет принят один из маркеров.
Заметим, что выполняться синхронизация должна так, чтобы ни одна часть потока ключей не была повторена. Поэтому переводить генератор в более раннее состояние не имеет смысла.
Плюсы СПШ:
* отсутствие эффекта распространения ошибок (только искажённый бит будет расшифрован неверно);
* предохраняют от любых вставок и удалений шифротекста, так как они приведут к потере синхронизации и будут обнаружены.
Минусы СПШ:
* уязвимы к изменению отдельных бит шифрованного текста. Если злоумышленнику известен открытый текст, он может изменить эти биты так, чтобы они расшифровывались, как ему надо.
Самосинхронизирующиеся потоковые шифры (асинхронные потоковые шифры (АПШ)) - шифры, в которых ключевой поток создаётся функцией ключа и фиксированного числа знаков шифротекста.
Итак, внутреннее состояние генератора потока ключей является функцией предыдущих N битов шифротекста. Поэтому расшифрующий генератор потока ключей, приняв N битов, автоматически синхронизируется с шифрующим генератором. Реализация этого режима происходит следующим образом: каждое сообщение начинается случайным заголовком длиной N битов; заголовок шифруется, передаётся и расшифровывается; расшифровка является неправильной, зато после этих N бит оба генератора будут синхронизированы.
Плюсы АПШ:
* Размешивание статистики открытого текста. Так как каждый знак открытого текста влияет на следующий шифротекст, статистические свойства открытого текста распространяются на весь шифротекст. Следовательно, АПШ может быть более устойчивым к атакам на основе избыточности открытого текста, чем СПШ.
Минусы АПШ:
* распространение ошибки (каждому неправильному биту шифротекста соответствуют N ошибок в открытом тексте);
* чувствительны к вскрытию повторной передачей.
3. Основные различия поточных шифров от блочных
Большинство существующих шифров с секретным ключом однозначно могут быть отнесены либо к поточным, либо к блочным шифрам. Но теоретическая граница между ними является довольно размытой. Например, используются алгоритмы блочного шифрования в режиме поточного шифрования (пример: для алгоритма DES режимы CFB и OFB).
Рассмотрим основные различия между поточными и блочными шифрами не только в аспектах их безопасности и удобства, но и с точки зрения их изучения в мире:
* важнейшим достоинством поточных шифров перед блочными является высокая скорость шифрования, соизмеримая со скоростью поступления входной информации; поэтому, обеспечивается шифрование практически в реальном масштабе времени вне зависимости от объема и разрядности потока преобразуемых данных.
* в синхронных поточных шифрах (в отличие от блочных) отсутствует эффект размножения ошибок, то есть число искаженных элементов в расшифрованной последовательности равно числу искаженных элементов зашифрованной последовательности, пришедшей из канала связи.
* структура поточного ключа может иметь уязвимые места, которые дают возможность криптоаналитику получить дополнительную информацию о ключе (например, при малом периоде ключа криптоаналитик может использовать найденные части поточного ключа для дешифрования последующего закрытого текста).
* ПШ в отличие от БШ часто могут быть атакованы при помощи линейной алгебры (так как выходы отдельных регистров сдвига с обратной линейной связью могут иметь корреляцию с гаммой). Также для взлома поточных шифров весьма успешно применяется линейный и дифференциальный анализ.
Теперь о положении в мире:
* в большинстве работ по анализу и взлому блочных шифров рассматриваются алгоритмы шифрования, основанные на стандарте DES; для поточных же шифров нет выделенного направления изучения; методы взлома ПШ весьма разнообразны.
* для поточных шифров установлен набор требований, являющихся критериями надёжности (большие периоды выходных последовательностей, постулаты Голомба, нелинейность); для БШ таких чётких критериев нет.
* исследованием и разработкой поточных шифров в основном занимаются европейские криптографические центры, блочных - американские.
* исследование поточных шифров происходит более динамично, чем блочных; в последнее время не было сделано никаких заметных открытий в сфере DES-алгоритмов, в то время как в области поточных шифров случилось множество успехов и неудач (некоторые схемы, казавшиеся стойкими, при дальнейшем исследовании не оправдали надежд изобретателей).
4. Криптографическая хеш-функция
· Криптографическая хеш-функция -- всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований, специфичных для криптографических приложений.
· Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:
· Необратимость или стойкость к восстановлению прообраза: для заданного значения хеш-функции m должно быть вычислительно невозможно найти блок данных X, для которого
· Стойкость к коллизиям первого рода или восстановлению вторых прообразов: для заданного сообщения M должно быть вычислительно невозможно подобрать другое сообщение N, для которого
· Стойкость к коллизиям второго рода: должно быть вычислительно невозможно подобрать пару сообщений имеющих одинаковый хеш.
Данные требования не являются независимыми:
· Обратимая функция нестойка к коллизиям первого и второго рода.
· Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.
Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.
Атака «дней рождения» позволяет находить коллизии для хеш-функции с длиной значений n битов в среднем за примерно вычислений хеш-функции. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для неё близка.
Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов хеширования пользовательских паролей для получения ключей.
Итеративная последовательная схема.
В общем случае в основе построения хеш-функции лежит итеративная последовательная схема. Ядром алгоритма является сжимающая функция -- преобразование k входных в nвыходных бит, где n -- разрядность хеш-функции, а k -- произвольное число, большее n. При этом сжимающая функция должна удовлетворять всем условиям криптостойкости.
Входной поток разбивается на блоки по (k ? n) бит. Алгоритм использует времменную переменную размером в n бит, в качестве начального значения которой берется некое общеизвестное число. Каждый следующий блок данных объединяется с выходным значением сжимающей функции на предыдущей итерации. Значением хеш-функции являются выходные n бит последней итерации. Каждый бит выходного значения хеш-функции зависит от всего входного потока данных и начального значения. Таким образом достигается лавинный эффект.
При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен(k ? n). Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.
Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.
Сжимающая функция на основе симметричного блочного алгоритма:
В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.
Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис.
A, B и C могут принимать значения или быть константой, где -- i-й блок входного потока, -- сложение по модулю 2, -- результат i-й итерации.
Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.
Основным недостатком хеш-функций, спроектированных на основе блочных алгоритмов, является низкая скорость работы. Необходимую криптостойкость можно обеспечить и за меньшее количество операций над входными данными. Существуют более быстрые алгоритмы хеширования, спроектированных самостоятельно, с нуля, исходя из требований криптостойкости (наиболее распространенные из них -- MD5, SHA-1, SHA-2 и ГОСТ Р 34.11-94).
Электронная подпись.
Электронная подпись (ЭП) -- по сути шифрование сообщения алгоритмом с открытым ключом. Текст, зашифрованный секретным ключом, объединяется с исходным сообщением. Тогда проверка подписи -- расшифрование открытым ключом; если получившийся текст аналогичен исходному тексту -- подпись верна.
Использование хеш-функции позволяет оптимизировать данный алгоритм. Производится шифрование не самого сообщения, а значение хеш-функции, взятой от сообщения. Данный метод обеспечивает следующие преимущества:
· Понижение вычислительной сложности. Как правило, документ значительно больше его хеша.
· Повышение криптостойкости. Криптоаналитик не может, используя открытый ключ, подобрать подпись под сообщение, а только под его хеш.
· Обеспечение совместимости. Большинство алгоритмов оперирует со строками бит данных, но некоторые используют другие представления. Хеш-функцию можно использовать для преобразования произвольного входного текста в подходящий формат.
Проверка парольной фразы.
В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.
Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP. В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.
Данная система подразумевает передачу сообщения по защищенному каналу, то есть каналу, из которого криптоаналитику невозможно перехватить сообщения или послать свое. Иначе он может перехватить хеш-значение парольной фразы, и использовать его для дальнейшей нелегальной аутентификации. Защищаться от подобных атак можно при помощи метода «вызов-ответ».
Пусть некий клиент, с именем name, производит аутентификацию по парольной фразе, pass, на некоем сервере. На сервере хранится значение хеш-функции H(pass, R2), где R2 -- псевдослучайное, заранее выбранное число. Клиент посылает запрос (name, R1), где R1 -- псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R2. Клиент вычисляет значение хеш-функции H(R1, H(pass, R2)) и посылает его на сервер. Сервер также вычисляет значение H(R1, H(pass, R2)) и сверяет его с полученным. Если значения совпадают -- аутентификация верна.
В такой ситуации пароль не хранится открыто на сервере и, даже перехватив все сообщения между клиентом и сервером, криптоаналитик не может восстановить пароль, а передаваемое хеш-значение каждый раз разное.
Заключение
Значение криптографии в современном информационном обществе трудно переоценить. Новая информационная инфраструктура создает новые опасности для информации. Открытые каналы Internet могут стать серьезной угрозой безопасности передачи данных. Однако и криптография не стоит на месте. Теперь она стала доступна широким массам пользователей. При помощи широкодоступных алгоритмов шифрования, а также цифровых подписей и сертификатов, пользователи могут добиться безопасности и скрытности передачи своих данных. Сейчас криптография снимает с себя исторические покровы тайны. Криптография набирает всё большую популярность. Официальная криптография охватывает не только государственные службы, но и финансовые, коммерческие и другие организации. Появляется заметный спрос на специалистов знакомых с принципами криптографической защиты информации. В многочисленных высших учебных заведениях организуются специальные потоки подготовки соответствующих специалистов. И содержательное изучение истории криптографии должно стать необходимой частью в этой подготовке. Так как история учит не только прошлому, но и пониманию настоящего, а также прогнозированию будущего.
Список литературы
криптография шифр информация электронный
1. Джим Яворски, Пол Дж. Перроун Система безопасности Java. Спб 2001 г.
2. М. Холл Сервлеты и Java Server Pages. Спб 2001 г.
3. М. Холл, Л Браун Программирование для Web. Спб 2002 г.
4. Баричев С.В. Криптография без секретов. М.: Наука, 1998. -120 с.
Размещено на Allbest.ru
...Подобные документы
Определения криптографии как практической дисциплины, изучающей и разрабатывающей способы шифрования сообщений. История развития шифров. Хэш-функции и понятие электронной подписи. Системы идентификации, аутентификации и сертификации открытых ключей.
реферат [77,1 K], добавлен 10.12.2011Основные алгоритмы реализации электронной цифровой подписи. Понятие секретного и открытого ключа. Программные модули, сроки действия и порядок функционирования электронной подписи. Технология работы с информационной системой "ЭЦП", перспективы развития.
курсовая работа [1,1 M], добавлен 07.12.2010Анализ характеристик средств криптографической защиты информации для создания электронной цифровой подписи. Этапы генерации ключевого контейнера и запроса при помощи Удостоверяющего центра с целью получения сертификата проверки подлинности клиента.
реферат [604,6 K], добавлен 14.02.2016Организационно-правовое обеспечение электронной цифровой подписи. Закон "Об электронной цифровой подписи". Функционирование ЭЦП: открытый и закрытый ключи, формирование подписи и отправка сообщения. Проверка (верификация) и сфера применения ЭЦП.
курсовая работа [22,9 K], добавлен 14.12.2011Общая схема цифровой подписи. Особенности криптографической системы с открытым ключом, этапы шифровки. Основные функции электронной цифровой подписи, ее преимущества и недостатки. Управление ключами от ЭЦП. Использование ЭЦП в России и других странах.
курсовая работа [288,2 K], добавлен 27.02.2011Общая характеристика электронной подписи, ее признаки и составляющие, основные принципы и преимущества применения. Использование электронной цифровой подписи в России и за рубежом. Правовое признание ее действительности. Сертификат ключа проверки ЭЦП.
курсовая работа [27,2 K], добавлен 11.12.2014История электронной подписи в мире. Создание электронной цифровой подписи в электронном документе с использованием закрытого ключа. Модели атак и их возможные результаты. Алгоритм генерации ключевых пар пользователя. Новые направления в криптографии.
курсовая работа [106,1 K], добавлен 07.06.2014Закон "Об электронной подписи". Определение, технологии применения и принципы формирования электронной подписи. Стандартные криптографические алгоритмы. Понятие сертификата ключа подписи и проверка его подлинности. Системы электронного документооборота.
презентация [219,0 K], добавлен 19.01.2014Основные источники угроз безопасности информационных систем. Особенности криптографической защиты информации. Понятие электронной цифровой подписи. Признаки заражения компьютера вирусом. Уровни доступа к информации с точки зрения законодательства.
реферат [795,8 K], добавлен 03.10.2014Назначение электронной цифровой подписи. Использование хеш-функций. Симметричная и асимметричная схема. Виды асимметричных алгоритмов электронной подписи. Создание закрытого ключа и получение сертификата. Особенности электронного документооборота.
реферат [43,2 K], добавлен 20.12.2011Правовое регулирование отношений в области использования электронной цифровой подписи. Понятие и сущность электронной цифровой подписи как электронного аналога собственноручной подписи, условия ее использования. Признаки и функции электронного документа.
контрольная работа [34,5 K], добавлен 30.09.2013Алгоритм функции формирования и проверки подписи. Интерфейс как аппаратная или программная система сопряжения объектов с различными характеристиками. Разработка программы, которая реализует процедуру подписи сообщения и процедуру проверки подписи.
курсовая работа [150,0 K], добавлен 13.11.2009История алгоритмов симметричного шифрования (шифрования с закрытым ключом). Стандарты на криптографические алгоритмы. Датчики случайных чисел, создание ключей. Сфера интересов криптоанализа. Системы электронной подписи. Обратное преобразование информации.
краткое изложение [26,3 K], добавлен 12.06.2013Циклы обмена информацией в режиме прямого доступа к памяти. Управляющие сигналы, формируемые процессором и определяющие моменты времени. Запросы на обмен информацией по прерываниям. Мультиплексирование шин адреса и данных. Протоколы обмена информацией.
лекция [29,0 K], добавлен 02.04.2015Назначение и применение электронной цифровой подписи, история ее возникновения и основные признаки. Виды электронных подписей в Российской Федерации. Перечень алгоритмов электронной подписи. Подделка подписей, управление открытыми и закрытыми ключами.
курсовая работа [604,0 K], добавлен 13.12.2012Понятие информационной безопасности. История развития криптографии. Функции информационных моделей. Переменные, используемые при разработке прикладной программы для шифрования и дешифрования сообщений с помощью шифра Цезаря. Блок-схема общего алгоритма.
курсовая работа [975,5 K], добавлен 11.06.2014Основные проблемы технологии управления документооборотом и ведение регистрационно-контрольных форм. Автоматизация делопроизводства компании путем внедрения информационной системы документационного обеспечения. Использование электронной цифровой подписи.
курсовая работа [492,6 K], добавлен 20.10.2010Понятие, цели и задачи информационной безопасности. Угрозы информационной безопасности и способы их реализации. Управление доступом к информации и информационным системам. Защита сетей и информации при работе в Интернете. Понятие об электронной подписи.
контрольная работа [37,1 K], добавлен 15.12.2015Сфера правоотношений по применению электронной подписи в новом федеральном законе. Шифрование электронного документа на основе симметричных алгоритмов. Формирование цифровой подписи, схема процесса проверки, ее равнозначность бумажным документам.
курсовая работа [224,2 K], добавлен 12.11.2013Системный анализ существующих угроз информационной безопасности. Математическая модель оценки стойкости криптографической системы защиты информации. Разработка псевдослучайной функции повышенной эффективности с доказанной криптографической стойкостью.
дипломная работа [1,3 M], добавлен 30.11.2011