Криптографические методы защиты информации и их применение в современных операционных системах

Рассмотрение проблемы защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом. Характеристика криптографического метода защиты как самого надежного метода защиты информации в операционных системах. Обзор понятия шифрования.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 25.05.2015
Размер файла 30,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский университет)

Факультет «Компьютерные технологии, управление и радиоэлектроника»

Кафедра «Безопасность информационных систем»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине «Безопасность операционных систем»

Тема: Криптографические методы защиты информации и их применение в современных ОС

Руководитель

В.А. Окороков

Автор работы/ В.Р. Аубакиров

студент группы КТУР-302

Челябинск 2015 г.

Содержание

Введение

1. Что такое шифрование

2. Основные понятия и определения криптографии

3. Требования к криптографическим системам

4. Симметричные криптосистемы

4.1 Метод Цезаря

4.2 Системы шифрования Вижинера

4.3 Гаммирование

5. Криптосистемы с открытым ключом

5.1 Система RSA

5.2 Алгоритм Эль - Гамаля

6. Практическое применение

6.1 Цифровая подпись

6.2 Алгоритм DSA

6.3 Алгоритм DES

Заключение

Список литературы

Введение

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

Криптографические методы защиты информации - это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты реализуется в виде программ или пакетов программ.

информация защита шифрование криптографический

1. Что такое шифрование

Шифрование -- это способ изменения сообщения или другого документа, обеспечивающее искажение (сокрытие) его содержимого. (Кодирование - это преобразование обычного, понятного, текста в код. При этом подразумевается, что существует взаимно однозначное соответствие между символами текста(данных, чисел, слов) и символьного кода - в этом принципиальное отличие кодирования от шифрования. Часто кодирование и шифрование считают одним и тем же, забывая о том, что для восстановления закодированного сообщения, достаточно знать правило подстановки(замены). Для восстановления же зашифрованного сообщения помимо знания правил шифрования, требуется и ключ к шифру. Ключ понимается нами как конкретное секретное состояние параметров алгоритмов шифрования и дешифрования. Знание ключа дает возможность прочтения секретного сообщения. Впрочем, как вы увидите ниже, далеко не всегда незнание ключа гарантирует то, что сообщение не сможет прочесть посторонний человек.). Шифровать можно не только текст, но и различные компьютерные файлы - от файлов баз данных и текстовых процессоров до файлов изображений.

Шифрование используется человечеством с того самого момента, как появилась первая секретная информация, т. е. такая, доступ к которой должен быть ограничен.

Идея шифрования состоит в предотвращении просмотра истинного содержания сообщения(текста, файла и т.п.) теми , у кого нет средств его дешифрования. А прочесть файл сможет лишь тот, кто сможет его дешифровать.

Шифрование появилось примерно четыре тысячи лет тому назад. Первым известным применением шифра (кода) считается египетский текст, датированный примерно 1900 г. до н. э., автор которого использовал вместо обычных (для египтян) иероглифов не совпадающие с ними знаки.

Один из самых известных методов шифрования носит имя Цезаря, который если и не сам его изобрел, то активно им пользовался. Не доверяя своим посыльным, он шифровал письма элементарной заменой А на D, В на Е и так далее по всему латинскому алфавиту. При таком кодировании комбинация XYZ была бы записана как АВС, а слово «ключ» превратилось бы в неудобоваримое «нобъ»(прямой код N+3).

Спустя 500 лет шифрование стало повсеместно использоваться при оставлении текстов религиозного содержания, молитв и важных государственных документов.

Со средних веков и до наших дней необходимость шифрования военных, дипломатических и государственных документов стимулировало развитие криптографии. Сегодня потребность в средствах, обеспечивающих безопасность обмена информацией, многократно возросла.

Большинство из нас постоянно используют шифрование, хотя и не всегда знают об этом. Если у вас установлена операционная система Microsoft, то знайте, что Windows хранит о вас (как минимум) следующую секретную информацию:

* пароли для доступа к сетевым ресурсам (домен, принтер, компьютеры в сети и т.п.);

* пароли для доступа в Интернет с помощью DialUр;

* кэш паролей (в браузере есть такая функция -- кэшировать пароли, и Windows сохраняет все когда-либо вводимые вами в Интернете пароли);

* сертификаты для доступа к сетевым ресурсам и зашифрованным данным на самом компьютере.

Эти данные хранятся либо в рwl-файле (в Windows 95), либо в SAM-файле (в Windows NT/2000/XР). Это файл Реестра Windows, и потому операционная система никому не даст к нему доступа даже на чтение. Злоумышленник может скопировать такие файлы, только загрузившись в другую ОС или с дискеты. Утилит для их взлома достаточно много, самые современные из них способны подобрать ключ за несколько часов.

2. Основные понятия и определения криптографии

Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны. Криптография занимается поиском и исследованием математических методов преобразования информации.

Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

Итак, криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

В качестве информации, подлежащей шифрованию и дешифрованию, рассматриваются тексты, построенные на некотором алфавите. Под этими терминами понимается следующее.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита.

В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

? алфавит Z33 - 32 буквы русского алфавита и пробел;

? алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;

? бинарный алфавит - Z2 = {0,1};

? восьмеричный алфавит или шестнадцатеричный алфавит;

Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство T преобразований открытого текста. Члены этого семейства индексируются, или обозначаются символом k; параметр k является ключом. Пространство ключей K - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптосистемы разделяются на симметричные и с открытым ключом.

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.

Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа(т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:

-количество всех возможных ключей;

-среднее время, необходимое для криптоанализа.

Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

3. Требования к криптографическим системам

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.

Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста,

должно быть не меньше общего числа возможных ключей;

число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);

знание алгоритма шифрования не должно влиять на надежность защиты;

незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;

структурные элементы алгоритма шифрования должны быть неизменными;

дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;

длина шифрованного текста должна быть равной длине исходного текста;

не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;

любой ключ из множества возможных должен обеспечивать надежную защиту информации;

алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

4. Симметричные криптосистемы

Долгое время традиционной криптографической схемой была схема с симметричным ключом. В этой схеме имеется один ключ, который участвует в шифровании и дешифровании информации. Шифрующая процедура при помощи ключа производит ряд действий над исходными данными, дешифрующая процедура при помощи того же ключа производит обратные действия над кодом. Дешифрование кода без ключа предполагается практически неосуществимым. Если зашифрованная таким образом информация передается по обычному, т.е. незащищенному, каналу связи, один и тот же ключ должен иметься у отправителя и получателя, вследствие чего возникает необходимость в дополнительном защищенном канале для передачи ключа, повышается уязвимость системы и увеличиваются организационные трудности.

Открытый текст обычно имеет произвольную длину если его размер велик и он не может быть обработан вычислительным устройством шифратора целиком, то он разбивается на блоки фиксированной длины, и каждый блок шифруется в отдельности, не зависимо от его положения во входной последовательности. Такие криптосистемы называются системами блочного шифрования.

На практике обычно используют два общих принципа шифрования: рассеивание и перемешивание. Рассеивание заключается в распространении влияния одного символа открытого текста на много символов шифртекста: это позволяет скрыть статистические свойства открытого текста. Развитием этого принципа является распространение влияния одного символа ключа на много символов шифрограммы, что позволяет исключить восстановление ключа по частям. Перемешивание состоит в использовании таких шифрующих преобразований, которые исключают восстановление взаимосвязи статистических свойств открытого и шифрованного текста. Распространенный способ достижения хорошего рассеивания состоит в использовании составного шифра, который может быть реализован в виде некоторой последовательности простых шифров, каждый из которых вносит небольшой вклад в значительное суммарное рассеивание и перемешивание. В качестве простых шифров чаще всего используют простые подстановки и перестановки.

Все многообразие существующих криптографических методов можно свести к следующим классам преобразований:

Многоалфавитная подстановка - наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. Для обеспечения высокой криптостойкости требуется использование больших ключей.

Перестановки - несложный метод криптографического преобразования. Используется как правило в сочетании с другими методами.

Гаммирование - этот метод заключается в наложении на исходный текст некоторой псевдослучайной последовательности, генерируемой на основе ключа.

Блочные шифры представляют собой последовательность (с возможным повторением и чередованием) основных методов преобразования, применяемую к блоку (части) шифруемого текста. Блочные шифры на практике встречаются чаще, чем “чистые” преобразования того или иного класса в силу их более высокой криптостойкости, а также потому, что этот метод позволяет шифровать тексты практически любой длины, разбивая их на блоки. Российский и американский стандарты шифрования основаны именно на этом классе шифров.

4.1 Метод Цезаря

Метод Цезаря является самым простым вариантом шифрования.

Он назван по имени римского императора Гая Юлия Цезаря, который поручал Марку Туллию Цицерону составлять послания с использованием 50-буквенного алфавита, сдвигая его на 3 символа вперед.

Подстановка определяется по таблице замещения, содержащей пары соответствующих букв “исходный текст - шифрованный текст”.

Например, ВЫШЛИТЕ_НОВЫЕ_УКАЗАНИЯ посредством подстановки преобразуется в еюыолхиврсеюивцнгкгрлб.

Таблица 1.1: Применение подстановки Цезаря.

А?г

Й?м

Т?х

Ы?ю

Б?д

К?н

У?ц

Ь?я

В?е

Л?о

Ф?ч

Э?_

Г?ж

М?п

Х?ш

Ю?а

Д?з

Н?р

Ц?щ

Я?б

Е?и

О?с

Ч?ъ

_?в

Ж?й

П?т

Ш?ы

З?к

Р?у

Щ?ь

И?л

С?ф

Ъ?э

При своей несложности система легко уязвима. Если злоумышленник имеет

1) шифрованный и соответствующий исходный текст или

2) шифрованный текст выбранного злоумышленником исходного текста, то определение ключа и дешифрование исходного текста тривиальны.

Эту систему не представляет труда взломать с помощью современной вычислительной техники, используя простой перебор. Поэтому криптостойкость этого метода не велика.

Более эффективны обобщения подстановки Цезаря - шифр Хилла и шифр Плэйфера. Они основаны на подстановке не отдельных символов, а 2-грамм (шифр Плэйфера) или n-грамм (шифр Хилла). При более высокой криптостойкости они значительно сложнее для реализации и требуют достаточно большого количества ключевой информации.

4.2 Системы шифрования Вижинера

Метод Вижинера является следствием подстановки Цезаря. В системе Вижинера задается некая конечная последовательность ключа

k = (k0 ,k1 ,...,kn),

которая называется ключом пользователя, она продолжается до бесконечной последовательности, повторяя цепочку. Таким образом, получается рабочий ключ

Например, при ключе пользователя 15 8 2 10 11 4 18 рабочий ключ будет периодической последовательностью:

15 8 2 10 11 4 18 15 8 2 10 11 4 18 15 8 2 10 11 4 18 ...

Таким образом:

При длине пользовательского ключа R

1) исходный текст x делится на R фрагментов

xi = (xi , xi+r , ..., xi+r(n-1)), 0 ? i < r;

2) i-й фрагмент исходного текста xi шифруется при помощи подстановки Цезаря в зависимости от пользовательского ключа :

(xi , xi+r , ..., xi+r(n-1)) ? (yi , yi+r , ..., yi+r(n-1)),

Очень распространена плохая с точки зрения секретности практика использовать слово или фразу в качестве ключа для того, чтобы k=(k0 ,k1 ,...,kк-1) было легко запомнить. В информационных системах для обеспечения безопасности информации это недопустимо. Для получения ключей должны использоваться программные или аппаратные средства случайной генерации ключей.

Пример. Преобразование текста с помощью подстановки Вижинера (r=4)

Исходный текст (ИТ1):

НЕ_СЛЕДУЕТ_ВЫБИРАТЬ_НЕСЛУЧАЙНЫЙ_КЛЮЧ

Ключ: КЛЮЧ

Разобьем исходный текст на блоки по 4 символа:

НЕ_С ЛЕДУ ЕТ_В ЫБИР АТЬ_ НЕСЛ УЧАЙ НЫЙ_ КЛЮЧ

и наложим на них ключ (используя таблицу Вижинера):

H+К=Ч, Е+Л=Р и т.д.

Получаем зашифрованный (ЗТ1) текст:

ЧРЭЗ ХРБЙ ПЭЭЩ ДМЕЖ КЭЩЦ ЧРОБ ЭБЮ_ ЧЕЖЦ ФЦЫН

Криптостойкость метода резко убывает с уменьшением длины ключа.

Тем не менее такая система как шифр Вижинера допускает несложную аппаратную или программную реализацию и при достаточно большой длине ключа может быть использован в современных ИС.

4.3 Гаммирование

Гаммирование является также широко применяемым криптографическим преобразованием. На самом деле граница между гаммированием и использованием бесконечных ключей и шифров Вижинера, о которых речь шла выше, весьма условная.

Принцип шифрования гаммированием заключается в генерации гаммы шифра с помощью датчика псевдослучайных чисел и наложении полученной гаммы на открытые данные обратимым образом.

Процесс дешифрования данных сводится к повторной генерации гаммы шифра при известном ключе и наложении такой гаммы на зашифрованные данные.

Полученный зашифрованный текст является достаточно трудным для раскрытия в том случае, если гамма шифра не содержит повторяющихся битовых последовательностей. По сути дела гамма шифра должна изменяться случайным образом для каждого шифруемого слова. Фактически же, если период гаммы превышает длину всего зашифрованного текста и неизвестна никакая часть исходного текста, то шифр можно раскрыть только прямым перебором (пробой на ключ). Криптостойкость в этом случае определяется размером ключа.

Метод гаммирования становится бессильным, если злоумышленнику становится известен фрагмент исходного текста и соответствующая ему шифрограмма. Простым вычитанием по модулю получается отрезок ПСП и по нему восстанавливается вся последовательность. Злоумышленники может сделать это на основе догадок о содержании исходного текста. Так, если большинство посылаемых сообщений начинается со слов “СОВ.СЕКРЕТНО”, то криптоанализ всего текста значительно облегчается. Это следует учитывать при создании реальных систем информационной безопасности.

5. Криптосистемы с открытым ключом

В 1976 г. У.Диффи и М.Хеллманом был предложен новый тип криптографической системы - система с открытым ключом [public keycryptosystem]. В схеме с открытым ключом имеется два ключа, открытый [public] и секретный [private, secret], выбранные таким образом, что их последовательное применение к массиву данных оставляет этот массив без изменений. Шифрующая процедура использует открытый ключ, дешифрующая - секретный. Дешифрование кода без знания секретного ключа практически неосуществимо; в частности, практически неразрешима задача вычисления секретного ключа по известному открытому ключу. Основное преимущество криптографии с открытым ключом - упрощенный механизм обмена ключами. При осуществлении коммуникации по каналу связи передается только открытый ключ, что делает возможным использование для этой цели обычного канала и устраняет потребность в специальном защищенном канале для передачи ключа.

С появлением систем с открытым ключом понятие о защите информации, а вместе с ним функции криптографии значительно расширились. Если раньше основной задачей криптографических систем считалось надежное шифрование информации, в настоящее время область применения криптографии включает также цифровую подпись(аутентификацию), лицензирование, нотаризацию (свидетельствование), распределенное управление, схемы голосования, электронные деньги и многое другое . Наиболее распространенные функции криптографических систем с открытым ключом - шифрование и цифровая подпись, причем роль цифровой подписи в последнее время возросла по сравнению с традиционным шифрованием: некоторые из систем с открытым ключом поддерживают цифровую подпись, но не поддерживают шифрование.

Цифровая подпись используется для аутентификации текстов, передаваемых по телекоммуникационным каналам. Она аналогична обычной рукописной подписи и обладает ее основными свойствами: удостоверяет, что подписанный текст исходит именно от лица, поставившего подпись, и не дает самому этому лицу возможности отказаться от обязательств, связанных с подписанным текстом. Цифровая подпись представляет собой небольшое количество дополнительной информации, передаваемой вместе с подписываемым текстом. В отличие от шифрования, при формировании подписи используется секретный ключ, а при проверке - открытый.

Из-за особенностей алгоритмов, лежащих в основе систем с открытым ключом, их быстродействие при обработке единичного блока информации обычно в десятки раз меньше, чем быстродействие систем с симметричным ключом на блоке той же длины. Для повышения эффективности систем с открытым ключом часто применяются смешанные методы, реализующие криптографические алгоритмы обоих типов. При шифровании информации выбирается случайный симметричный ключ, вызывается алгоритм с симметричным ключом для шифрования исходного текста. а затем алгоритм с открытым ключом для шифрования симметричного ключа. По коммуникационному каналу передается текст, зашифрованный симметричным ключом, и симметричный ключ, зашифрованный открытым ключом. Для расшифровки действия производятся в обратном порядке: сначала при помощи секретного ключа получателя расшифровывается симметричный ключ, а затем при помощи симметричного ключа -полученный по каналу зашифрованный текст. Для формирования электронной подписи по подписываемому тексту вычисляется его однонаправленная хэш-функция(дайджест) [one-way hash function, digest], представляющая собой один короткий блок информации, характеризующий весь текст в целом; задача восстановления текста по его хэш-функции или подбора другого текста, имеющего ту же хэш-функцию, практически неразрешима. При непосредственном формировании подписи, вместо шифрования секретным ключом каждого блока текста секретный ключ применяется только к хэш-функции; по каналу передается сам текст и сформированная подпись хэш-функции. Для проверки подписи снова вычисляется хэш-функция от полученного по каналу текста, после чего при помощи открытого ключа проверяется, что подпись соответствует именно данному значению хэш-функции. Алгоритмы вычисления однонаправленных хэш-функций, как правило, логически тесно связаны с алгоритмами шифрования с симметричным ключом.

Описанные гибридные методы шифрования и цифровой подписи сочетают в себе эффективность алгоритмов с симметричным ключом и свойство независимости от дополнительных секретных каналов для передачи ключей, присущее алгоритмам с открытым ключом. Криптографическая стойкость конкретного гибридного метода определяется стойкостью слабейшего звена в цепи, состоящей из алгоритмов с симметричным и с открытым ключом, выбранных для его реализации.

5.1 Система RSA

Самым распространенным алгоритмом ассиметричного шифрования является алгоритм RSA. Он был предложен тремя исседователями-математиками Рональдом Ривестом (R.Rivest) , Ади Шамиром (A.Shamir) и Леонардом Адльманом (L.Adleman) в 1977-78 годах. Разработчикам данного алгоритма удалось эффективно воплотить идею односторонних функций с секретом. Стойкость RSA базируется на сложности факторизации больших целых чисел. Современное состояние алгоритмов факторизации (разложения на множители) позволяет решать эту задачу для чисел длиной до 430 бит; исходя из этого, ключ длиной в 512 бит считается надежным для защиты данных на срок до 10 лет, а в 1024 бита - безусловно надежным. Несмотря на то, что отсутствует математически доказанное сведение задачи раскрытия RSA к задаче разложения на множители, система выдержала испытание практикой и является признанным стандартом de-facto в промышленной криптографии, а также официальным стандартом ряда международных организаций. С другой стороны, свободное распространение программного обеспечения, основанного на RSA, ограничено тем, что алгоритм RSA защищен в США рядом патентов. RSA можно применять как для шифрования/расшифровывания, так и для генерации/проверки электронно-цифровой подписи.

5.2 Алгоритм Эль-Гамаля

В 1985 году Т.Эль-Гамаль (США) предложил следующую схему на основе возведения в степень по модулю большого простого числа P.
Задается большое простое число P и целое число A, 1 < A < P. Сообщения представляются целыми числами M из интервала 1 < M < P.

Шифрование сообщений

Протокол передачи сообщения M выглядит следующим образом.

абоненты знают числа A и P;

абоненты генерируют независимо друг от друга случайные числа:

Ka, Kb

удовлетворяющих условию:

1 < K < P

получатель вычисляет и передаёт отправителю число B, определяемое последовательностью:

В = A Kb mоd(P)

отправитель шифрует сообщение M и отправляет полученную последовательность получателю

C = M * B Ka mоd(P)

получатель расшифровывает полученное сообщение

D = ( A Ka ) -Kb mоd(P)

M = C * D mоd(P)

В этой системе открытого шифрования та же степень защиты, что для алгоритма RSA с модулем N из 200 знаков, достигается уже при модуле P из 150 знаков. Это позволяет в 5-7 раз увеличить скорость обработки информации. Однако, в таком варианте открытого шифрования нет подтверждения подлинности сообщений.

Подтверждение подлинности отправителя

Для того, чтобы обеспечить при открытом шифровании по модулю простого числа P также и процедуру подтверждения подлинности отправителя Т.ЭльГамаль предложил следующий протокол передачи подписанного сообщения M:

абоненты знают числа A и P;

отправитель генерирует случайное число и хранит его в секрете:

Ka

удовлетворяющее условию:

1 < Ka < P

вычисляет и передаёт получателю число B, определяемое последователньостью:

В = A Ka mоd(P)

Для сообщения M (1 < M < P):

выбирает случайное число L (1 < L < P), удовлетворяющее условию

( L , P - 1 ) = 1

вычисляет число

R = A L mоd(P)

решает относительно S

M = Ka * R + L * S mоd(P)

передаёт подписанное сообщение

[ M, R, S ]

получатель проверяет правильность подписи

A M = ( B R ) * ( R S ) mоd(P)

В этой системе секретным ключом для подписывания сообщений является число X, а открытым ключом для проверки достоверности подписи число B. Процедура проверки подписи служит также и для проверки правильности расшифровывания, если сообщения шифруются.

6. Практическое применение

6.1 Цифровая подпись

В чем состоит проблема аутентификации данных? В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели. Во-первых, получатель имеет возможность убедиться в истинности письма, сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязательств и т.д. Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами - техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь. С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации. В разделе криптографических систем с открытым ключом было показано, что при всех преимуществах современных систем шифрования они не позволяют обеспечить аутентификацию данных. Поэтому средства аутентификации должны использоваться в комплексе и криптографическими алгоритмами.

6.2 Алгоритм DSA

В 1991 г. в США был опубликован проект федерального стандарта цифровой подписи - DSS (Digital Signature Standard, [DSS91], описывающий систему цифровой подписи DSA (Digital Signature Algorithm). Одним из основных критериев при создании проекта была его патентная чистота.

Предлагаемый алгоритм DSA, имеет, как и RSA, теоретико-числовой характер, и основан на криптографической системе Эль-Гамаля в варианте Шнорра. Его надежность основана на практической неразрешимости определенного частного случая задачи вычисления дискретного логарифма. Современные методы решения этой задачи имеют приблизительно ту же эффективность, что и методы решения задачи факторизации; в связи с этим предлагается использовать ключи длиной от 512 до 1024 бит с теми же характеристиками надежности, что и в системе RSA. Длина подписи в системе DSA меньше, чем в RSA, и составляет 320 бит.

С момента опубликования проект получил много критических отзывов, многие из которых были учтены при его доработке. Одним из главных аргументов против DSA является то, что, в отличие от общей задачи вычисления дискретного логарифма, ее частный случай, использованный в данной схеме, мало изучен и, возможно, имеет существенно меньшую сложность вскрытия. Кроме того, стандарт не специфицирует способ получения псевдослучайных чисел, используемых при формировании цифровой подписи, и не указывает на то, что этот элемент алгоритма является одним из самых критичных по криптографической стойкости.

Функции DSA ограничены только цифровой подписью, система принципиально не предназначена для шифрования данных. По быстродействию система DSA сравнима с RSA при формировании подписи, но существенно (в 10-40 раз) уступает ей при проверке подписи

6.3 Алгоритм DES

Принятие стандарта шифрования DES явилось мощным толчком к широкому применению шифрования в коммерческих системах. Введение этого стандарта - отличный пример унификации и стандартизации средств защиты. Примером системного подхода к созданию единой крупномасштабной системы защиты информации является директива Министерства финансов США 1984 года, согласно которой все общественные и частные организации, ведущие дела с правительством США, обязаны внедрить процедуру шифрования DES; крупнейшие банки Citibank,Chase Manhattan Bank, Manufaktures Hannover Trust, Bank of America, Security Pacific Bank также внедрили эту систему.

Министерство энергетики США располагает более чем 30 действующими сетями, в которых используется алгоритм DES, Министерство юстиции устанавливает 20000 радиоустройств, располагающих средствами защиты на базе DES. Стандартизация в последнее время приобретает международный характер, подтверждение тому - международный стандарт 1987 года ISO 8372, разработанный на основе криптоалгоритма DES.

В качестве стандартной аппаратуры шифрования можно назвать устройство Cidex-НХ, базирующееся на алгоритме DES; скорость шифрования - от 56 Кбит/с до 7 Мбит/с. Серийно выпускается автономный шифровальный блок DES 2000, в нем также используется процедура шифрования DES; скорость шифрования - от 38,4 Кбит/с до 110 Кбит/с. В различных секторах коммерческой деятельности используется процессор шифрования/дешифрования данных FACOM 2151А на основе алгоритма DES; скорость - от 2,4 Кбит/с до 19,2 Кбит/с. С распространением персональных компьютеров наиболее эффективными для них стали программные средства защиты. Так, разработан пакет программ для шифрования/дешифрования информации СТА (Computer Intelligence Access), реализующий алгоритм DES. Этот же алгоритм использован в пакете SecretDisk (C F Systems) для исключения несанкционированного доступа к дискам.

Таким образом, алгоритм DES представляет собой основной механизм, применявшийся частными и государственными учреждениями США для защиты информации. В то же время Агентство национальной безопасности, выступающее как эксперт по криптографическим алгоритмам, разрабатывает новые алгоритмы шифрования данных для массового использования. В 1987 году Национальное бюро стандартов после обсуждения подтвердило действие DES; его пересмотр намечалось провести не позднее января 1992 года, и на сегодняшний день действие DES ограничивается исключительно коммерческими системами.

Заключение

Каждый из рассмотренных методов реализует собственный способ криптографической защиты информации и имеет собственные достоинства и недостатки, но их общей важнейшей характеристикой является стойкость. Под этим понимается минимальный объем зашифрованного текста, статистическим анализом которого можно вскрыть исходный текст. Таким образом, по стойкости шифра можно определить предельно допустимый объем информации, зашифрованной при использовании одного ключа. При выборе криптографического алгоритма для использования в конкретной разработке его стойкость является одним из определяющих факторов.

Все современные криптосистемы спроектированы таким образом, чтобы не было пути вскрыть их более эффективным способом, чем полным перебором по всему ключевому пространству, т.е. по всем возможным значениям ключа. Ясно, что стойкость таких шифров определяется размером используемого в них ключа.

Библиографический список

1. Петров А.А Компьютерная безопасность. Криптографические методы защиты. ДМК Москва, 2000 г.

2. "Методы и средства защиты информации" (курс лекций) Авторские права: Беляев А.В. (http://www.citforum.ru/internet/infsecure/index.shtml)

3. Криптография (http://www.citforum.ru/internet/securities/crypto.shtml)

Размещено на Allbest.ru

...

Подобные документы

  • Препятствие, управление доступом, маскировка и регламентация как меры защиты информации в автоматизированных информационных системах. Особенности криптографического метода защиты информации. Изучение системы управления электронным документооборотом.

    контрольная работа [38,4 K], добавлен 20.05.2019

  • Проблемы защиты информации в информационных и телекоммуникационных сетях. Изучение угроз информации и способов их воздействия на объекты защиты информации. Концепции информационной безопасности предприятия. Криптографические методы защиты информации.

    дипломная работа [255,5 K], добавлен 08.03.2013

  • История возникновения и развития шифрования от древних времен и до наших дней. Анализ современных проблем обеспечения секретности и целостности передаваемых или хранимых данных, наиболее часто используемые криптографические методы защиты информации.

    контрольная работа [961,5 K], добавлен 23.04.2013

  • Необходимость защиты информации. Виды угроз безопасности ИС. Основные направления аппаратной защиты, используемые в автоматизированных информационных технологиях. Криптографические преобразования: шифрование и кодирование. Прямые каналы утечки данных.

    курсовая работа [72,1 K], добавлен 22.05.2015

  • Сущность проблемы и задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации, способы их воздействия на объекты. Концепция информационной безопасности предприятия. Криптографические методы и средства защиты информации.

    курсовая работа [350,4 K], добавлен 10.06.2014

  • Виды умышленных угроз безопасности информации. Методы и средства защиты информации. Методы и средства обеспечения безопасности информации. Криптографические методы защиты информации. Комплексные средства защиты.

    реферат [21,2 K], добавлен 17.01.2004

  • Развитие новых информационных технологий и всеобщая компьютеризация. Информационная безопасность. Классификация умышленных угроз безопасности информации. Методы и средства защиты информации. Криптографические методы защиты информации.

    курсовая работа [25,9 K], добавлен 17.03.2004

  • Организация системы защиты информации во всех ее сферах. Разработка, производство, реализация, эксплуатация средств защиты, подготовка соответствующих кадров. Криптографические средства защиты. Основные принципы инженерно-технической защиты информации.

    курсовая работа [37,5 K], добавлен 15.02.2011

  • Современные физические и законодательные методы защиты информации. Внедрение системы безопасности. Управление доступом. Основные направления использования криптографических методов. Использование шифрования, кодирования и иного преобразования информации.

    реферат [17,4 K], добавлен 16.05.2015

  • Обоснование актуальности проблемы защиты информации. Концепция защиты информации в адвокатской фирме "Юстина". Каналы и методы несанкционированного доступа к защищаемой информации. Организация комплексной системы защиты информации в адвокатской конторе.

    курсовая работа [92,4 K], добавлен 21.10.2008

  • Проблемы защиты информации человеком и обществом. Использование информации. Организация информации. Угроза информации. Вирусы, характеристика и классификация. Проблемы защиты информации в Интернете. Анализ и характеристики способов защиты информации.

    реферат [36,5 K], добавлен 17.06.2008

  • Комплексный подход в обеспечении информационной безопасности. Анализ процессов разработки, производства, реализации, эксплуатации средств защиты. Криптографические средства защиты информации. Основные принципы инженерно-технической защиты информации.

    курсовая работа [725,1 K], добавлен 11.04.2016

  • Основные положения теории защиты информации. Сущность основных методов и средств защиты информации в сетях. Общая характеристика деятельности и корпоративной сети предприятия "Вестел", анализ его методик защиты информации в телекоммуникационных сетях.

    дипломная работа [1,1 M], добавлен 30.08.2010

  • Анализ нормативно-правовой базы, обоснование направлений создания обеспечения комплексной защиты информации в автоматизированных системах. Разработка методики оценки, выбор путей повышения эффективности защитных мероприятий в автоматизированных системах.

    дипломная работа [368,5 K], добавлен 17.09.2009

  • Изучение эшелонированной системы защиты информации в компьютерных системах офисного типа. Классификация антивирусных продуктов. Уровень защиты приложений и хостов. Аутентификация по многоразовым паролям. Требования, предъявляемые к межсетевым экранам.

    курсовая работа [394,6 K], добавлен 22.01.2015

  • Виды угроз безопасности в экономических информационных системах, проблема создания и выбора средств их защиты. Механизмы шифрования и основные виды защиты, используемые в автоматизированных информационных технологиях (АИТ). Признаки современных АИТ.

    курсовая работа [50,8 K], добавлен 28.08.2011

  • Способы и средства защиты информации от несанкционированного доступа. Особенности защиты информации в компьютерных сетях. Криптографическая защита и электронная цифровая подпись. Методы защиты информации от компьютерных вирусов и от хакерских атак.

    реферат [30,8 K], добавлен 23.10.2011

  • Классификация информации по значимости. Категории конфиденциальности и целостности защищаемой информации. Понятие информационной безопасности, источники информационных угроз. Направления защиты информации. Программные криптографические методы защиты.

    курсовая работа [1,1 M], добавлен 21.04.2015

  • Понятие компьютерной преступности. Основные понятия защиты информации и информационной безопасности. Классификация возможных угроз информации. Предпосылки появления угроз. Способы и методы защиты информационных ресурсов. Типы антивирусных программ.

    курсовая работа [269,7 K], добавлен 28.05.2013

  • Исследование понятия и классификации видов и методов несанкционированного доступа. Определение и модель злоумышленника. Организация защиты информации. Классификация способов защиты информации в компьютерных системах от случайных и преднамеренных угроз.

    реферат [115,1 K], добавлен 16.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.