Современное состояние, характеристики и перспективы развития в области создания видеокарт и звуковых карт
История возникновения графических адаптеров (видео- и звуковых карт), их устройство, пользовательский интерфейс. Характеристика современных устройств. Перспективы развития компьютерных карт. Характеристика видеопамяти, принцип ее работы и особенности.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 28.05.2015 |
Размер файла | 36,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»
Гуманитарный факультет
Кафедра прикладной экономики и маркетинга
Реферат
«Современное состояние, характеристики и перспективы развития в области создания видеокарт и звуковых карт»
Выполнил: Студент группы № 1050
Фатуллаев Ульви Расим оглы
Преподаватель: кандидат технических наук
доцент, старший научный сотрудник
Петров Вадим Юрьевич
Санкт-Петербург
2013
Оглавление
- Введение
- 1. История
- 2. Устройство карт
- 2.1 Устройство видеокарт
- 2.2 Устройство звуковых карт
- 3. Характеристика современных устройств
- 3.1 Современные видеокарты
- 3.2 Соврменные звуковые карты
- 4. Перспективы развития
- 4.1 Развитие видеокарт
- 4.2 Развитие звуковых карт
- 5. Видеопамять
- Заключение
- Литература
Введение
Видеокарта--устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа.
В настоящее время мы не можем представить себе компьютер без звукового сопровождения. Мы привыкли, что музыка сопровождает нас во время работы с персональной машиной, и даже не задумываемся: откуда же, собственно, берутся эти звуки? Встроенная звуковая плата - явление настолько привычное, что этим уже никого не удивишь. И в то же время процессы звукозаписи и воспроизведения и особенности работы звуковых карт известны далеко не каждому.
Звуковая карта-- дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека.
графический адаптер видеопамять интерфейс
1. История
1.1 История видеокарт
Одним из первых графических адаптеров для IBM PC стал MDA (Monochrome Display Adapter) в 1981 году. Он работал только в текстовом режиме с разрешением 80Ч25 символов, физически 720Ч350 точек, и поддерживал пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью использовавшегося монитора. Обычно они были белыми, янтарными или изумрудными на чёрном фоне. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер HGC (Hercules Graphics Controller -- графический адаптер Геркулес), который имел графическое разрешение 720Ч348 точек и поддерживал две графические страницы. Но он всё ещё не позволял работать с цветом.
Первой цветной видеокартой стала CGA (Color Graphics Adapter), выпущенная IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40Ч25 знакомест и 80Ч25 знакомест (матрица символа -- 8Ч8), либо в графическом с разрешениями 320Ч200 точек или 640Ч200 точек. В текстовых режимах доступно 256 атрибутов символа -- 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графическом режиме 320Ч200 было доступно четыре палитры по четыре цвета каждая, режим высокого разрешения 640Ч200 был монохромным. В развитие этой карты появился EGA (Enhanced Graphics Adapter) -- улучшенный графический адаптер, с расширенной до 64 цветов палитрой, и промежуточным буфером. Было улучшено разрешение до 640Ч350, в результате добавился текстовый режим 80Ч43 при матрице символа 8Ч8. Для режима 80Ч25 использовалась большая матрица -- 8Ч14, одновременно можно было использовать 16 цветов, цветовая палитра была расширена до 64 цветов. Графический режим также позволял использовать при разрешении 640Ч350 16 цветов из палитры в 64 цвета. Был совместим с CGA и MDA.
Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3 или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.
В ранних моделях компьютеров от IBM PS/2, появляется новый графический адаптер MCGA (Multicolor Graphics Adapter -- многоцветный графический адаптер). Текстовое разрешение было поднято до 640x400, что позволило использовать режим 80x50 при матрице 8x8, а для режима 80x25 использовать матрицу 8x16. Количество цветов увеличено до 262144 (64 уровня яркости по каждому цвету), для совместимости с EGA в текстовых режимах была введена таблица цветов, через которую выполнялось преобразование 64-цветного пространства EGA в цветовое пространство MCGA. Появился режим 320x200x256, где каждый пиксел на экране кодировался соответствующим байтом в видеопамяти, никаких битовых плоскостей не было, соответственно с EGA осталась совместимость только по текстовым режимам, совместимость с CGA была полная. Из-за огромного количества яркостей основных цветов возникла необходимость использования уже аналогового цветового сигнала, частота строчной развертки составляла уже 31,5 кГц.
Потом IBM пошла ещё дальше и сделала VGA (Video Graphics Array -- графический видео массив), это расширение MCGA, совместимое с EGA и введённое в средних моделях PS/2. Это фактический стандарт видеоадаптера с конца 80-х годов. Добавлены: текстовое разрешение 720x400 для эмуляции MDA и графический режим 640x480 с доступом через битовые плоскости. Режим 640x480 замечателен тем, что в нём используется квадратный пиксел, то есть соотношение числа пикселов по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана -- 4:3. Дальше появился IBM 8514/a с разрешениями 640x480x256 и 1024x768x256, и IBM XGA с текстовым режимом 132x25 (1056x400) и увеличенной глубиной цвета (640x480x65K).
С 1991 года появилось понятие SVGA (Super VGA -- «сверх» VGA) -- расширение VGA с добавлением более высоких режимов и дополнительного сервиса, например возможности поставить произвольную частоту кадров. Число одновременно отображаемых цветов увеличивается до 65 536 (High Color, 16 бит) и 16 777 216 (True Color, 24 бита), появляются дополнительные текстовые режимы. Из сервисных функций появляется поддержка VBE (VESA BIOS Extention -- расширение BIOS стандарта VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.
Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся: перемещение больших блоков изображения из одного участка экрана в другой (например, при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс, несомненно, удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.
1.2 История звуковых карт
Поскольку IBM PC проектировался не как мультимедийная машина, а инструмент для решения научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер, был звук встроенного динамика, сообщавший о неисправностях. (На компьютерах фирмы Apple звук присутствовал изначально.)
В 1986 году в продажу поступило устройство фирмы Covox Inc. Оно присоединялось к принтерному порту IBM PC и позволяло воспроизводить монофонический цифровой звук. Пожалуй, Covox можно считать первой внешней звуковой платой. Covox был очень дёшев и прост по устройству (практически простейший резистивный ЦАП) и оставался популярным в течение 90-х годов. Появилось большое количество модификаций, в том числе -- для воспроизведения стереофонического[1] звучания.
В 1988 году фирма Creative Labs выпустила устройство Creative Music System (С/MS, позднее также продавалась под названием Game Blaster) на основе двух микросхем звукогенератора Philips SAA 1099, каждая из которых могла воспроизводить по 6 тонов одновременно. Примерно в это же время компания AdLib выпустила свою карту, одноимённую с названием фирмы, на основе микросхемы YM3812 фирмы Yamaha. Данный синтезатор для генерации звука использовал принцип частотной модуляции (FM, frequency modulation). Данный принцип позволял получить более естественное звучание инструментов, чем у Game Blaster.
Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания. Эта плата стала основой стандарта Sound Blaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.
Одним из методов сокращения объёмов, занимаемых музыкой, является MIDI (Musical Instrument Digital Interface) -- способ записи команд, посылаемых инструментам. MIDI-файл (обычно это файл с расширением mid) содержит ссылки на ноты. Когда MIDI-совместимая звуковая карта получает эту ссылку, она ищет необходимый звук в таблице (Wave Table). Стандарт General MIDI описывает около 200 звуков. Карты, поддерживающие этот стандарт, обычно имеют память, в которой хранятся звуки, либо используют для этого память компьютера. Creative, стремясь упрочить своё положение на рынке, выпустила собственный звуковой процессор EMU8000 (EMU8K) и музыкальную плату на его основе Sound Blaster AWE32, которая была, несомненно, лучшей картой того времени. «32» -- это количество голосов MIDI-синтезатора в карточке.
С возрастанием мощности процессоров, постепенно стала отмирать шина ISA, на которой работали все предыдущие звуковые карты, и многие производители переключились на выпуск карты для шины PCI. В 1998 году компания Creative вновь делает широкий шаг в развитии звука и выпуском карты Sound Blaster Live! на аудиопроцессоре EMU10K, который поддерживал технологию EAX, устанавливает новый стандарт для IBM PC, который остаётся (в усовершенствованном виде) актуален и по сей день.
2. Устройство карт
2.1 Устройство видеокарт
Современная видеокарта состоит из следующих частей:
1)Графический процессор (Graphics processing unit -- графическое процессорное устройство) -- занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков.
2)видеоконтроллер -- отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.
3)видеопамять -- выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5.
4)цифро-аналоговый преобразователь -- служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока -- три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал -- получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется.
4)Видео-ПЗУ (Video ROM) -- постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую -- к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.
5)Система охлаждения -- предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.
Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера -- специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.
2.2 Устройство звуковых карт
Звуковая карта состоит из двух независимых трактов, тракта записи и тракта воспроизведения:
1)Тракт записи: аналогово-цифровой преобразователь (АЦП) работает только во время записи и отвечает за превращения звукового сигнала от микрофона или линейного входа карты в цифровую последовательность байт. Эта последовательность байт поступает в звуковой процессор карты (DSP), который формирует из него окончательный звуковой поток. Этот звуковой поток передается программе, с помощью которой вы записываете сигнал. Программа формирует из него звуковой файл и "укладывает" результат на жесткий диск вашего компьютера. Таким образом, блоки АЦП и DSP и определяют качество записи той или иной карты.
2)Тракт воспроизведения: звуковой файл, взятый программой-проигрывателем с диска, в виде звукового потока поступает в DSP. Сформировав из содержимого этого потока последовательность байт, DSP передает ее микросхеме цифро-аналогового преобразователя (ЦАП). Микросхема ЦАП совершает работу обратную той, что делает АЦП, а именно превращает последовательность байт обратно в аналоговый звуковой сигнал. Сигнал с ЦАП - а поступает на специальный предусилитель фильтр. В задачи этого блока входит удаление из полезного сигнала высокочастотных шумов. Шумы вносит в сигнал ЦАП в процессе преобразования сигнала из цифрового в аналоговый вид. Помимо этого, фильтр также согласовывает уровень сигнала таким образом, чтобы его можно было выдать на линейный выход карты. Большинство звуковых карт, помимо линейного выхода, оснащены еще и выходом на наушники. В этом случае на карте присутствует и блок усилителя телефонов, в задачи которого входит сопряжение выходного сигнала с низкоомной нагрузкой динамиков наушников.
3. Характеристика современных устройств
3.1 Современные видеокарты
Современные видеокарты различаются многими характеристиками, важнейшими из которых являются: тип и тактовая частота графического процессора; тип, объем и разрядность шины памяти; число блоков шейдеров (отвечающих за визуализацию сложных эффектов и придающих трехмерному изображению большую реалистичность), внешним интерфейсом. Указанные характеристики и определяют общую производительность видеокарты.
Тактовая частота GPU, измеряемая в мегагерцах, определяет количество операций, которые графический процессор может выполнить за 1с. Помимо тактовой частоты реальная скорость выполнения операций зависит от архитектуры процессора (например, количества конвейеров), а также от скорости обмена процессора с видеопамятью. Причем, объем видеопамяти (от 64 до 512 Мб на 2006) оказывает меньшее влияние на производительность видеосистемы, чем ширина (разрядность) шины видеопамяти, которая указывает на количество одновременно (за 1 такт) передаваемых сигналов и в современных видеокартах обычно составляет 64, 128, 256 или 512 бит. Пропускная способность шины памяти, определяющая ее производительность, зависит не только от разрядности, но и от ее тактовой частоты. Тип видеопамяти также оказывает влияние на производительность. Если ранее в видеокартах использовалась одноканальная память типа SDRAM, то сегодня используется более быстрая двухканальная DDR SDRAM, DDR2 SDRAM или GDDR. Использование современных интерфейсов с более высокой пропускной способностью теоретически должно повышать производительность системы, но на практике производительность видеокарт стандарта PCI-Express не намного отличается от производительности видеокарт на шине AGP. Тем не менее, большинство современных видеокарт изготавливается для шины PCI-Express.
На производительность видеокарты большое значение оказывает также технологический процесс (техпроцесс) изготовления ее микросхем (прежде всего, графического процессора). Чем меньше размер одного полупроводникового элемента (транзистора), являющегося основным «кирпичиком» микросхемы, тем больше таких элементов может быть задействовано в микросхеме, тем меньше расстояние между ними и больше скорость взаимодействия, выше тактовая частота, меньше потребляемое напряжение и выделяемое тепло (что является весьма чувствительным моментом). Современные видеокарты производятся на основе техпроцесса 130, 90нм и менее.
Для увеличения производительности видеосистемы ПК ведущие производители графических чипов -- nVidia и ATI предложили технологии (SLI и Crossfire соответственно), обеспечивающие возможность одновременного использования двух видеокарт на одной материнской плате. Впрочем, согласно тестам при использовании двух идентичных видеокарт двукратного увеличения производительности не наблюдается.
В зависимости от назначения и сферы применения все видеокарты можно условно разделить на три класса:
1) бюджетные офисные видеокарты;
2) игровые карты;
3) профессиональные карты (их также называют OpenGL-ускорителями).
С начала 2000-х на мировом рынке видеокарт первых двух классов лидируют фирмы ATi и nVIDIA (семейства GeForce). Одной из особенностей современных видеокарт является реализация в них технологии коррекции инерционности жидкокристаллических мониторов за счет искусственного формирования дополнительного промежуточного изображения между воспроизводимыми кадрами -- Overdrive. Среди профессиональных видеокарт в 2008-2010-х бесспорным лидером являлась карта фирмы nVIDIA.
Для современных игр большое значение имеют пиковая скорость заполнения в пикселях и текселях, так же очень важна пропускная способность видеопамяти (скорость памяти). Чем выше эти значения, тем быстрее сможет работать видеокарта в высоких разрешениях и тем быстрее на ней будут выполняться 3D-сцены при включении различных опций, улучшающих качество (FSAA, анизотропная фильтрация). Хотя, из этого правила много исключений. К примеру, Matrox Parhelia работает не настолько быстро, насколько большой являются её скорость заполнения и скорость памяти. Так же видеочипы Radeon 9700 более эффективно обрабатывают сцены при включённых опциях FSAA и анизотропной фильтрации. Вот почему в нашу таблицу мы включили ссылки на наши обзоры видеокарт, где вы сможете прочитать о том, как работает та, или иная видеокарта на том, или ином графическом чипе. Ссылки установлены на названиях видеочипов.
3.2 Современные звуковые карты
Современная периферийная звуковая карта по командам центрального процессора синтезирует звуковой сигнал с помощью цифро-аналогового преобразователя (ЦАП) и преобразовывает аналоговый сигнал с помощью аналого-цифрового преобразователя (АЦП). Все эти функции выполняет одна микросхема -- аудиопроцессор.
Любая звуковая карта характеризуется следующими параметрами:
1)типом интерфейса (PCI, PCI-Express);
2)разрядностью (карты подразделяются на 8-, 16- и 32-разрядные);
3)частотой дискредитации, чем выше частота дискретизации, тем более естественным кажется воспроизводимый звук (8000 Гц -- телефон, 22000 Гц -- радио, 44000 Гц -- аудио CD);
4)количеством одновременно воспроизводимых голосов;
совместимостью со стандартами (Sound Blaster, Sound Blaster PRO, Adlib и т.д.);
5)выходной мощностью усилителя;
наличием DSP-процессора и его возможностями.
Все современные карты поддерживают 16-битное синтезирование и оцифровку звука.
Причем некоторые карты предоставляют возможность синтезировать и оцифровывать звук с большей разрядностью -- 18 и 24 бит и большей частотой -- 96 кГц. Все современные карты являются стереофоническими, а большинство имеют также возможность создания ЗО-звука.
Наиболее распространенные современные звуковые карты-- карты фирмы Creative: Sound Blaster Live, Sound Blaster Audigy, Sound Blaster Audigy 2.
Профессиональные карты начального уровня -- M-Audio Audiophile 2496, Egosys WaveTerminal, Hoontech Audio DSP24 Value, Echo MIA. Для работы можно рекомендовать M-Audio Audiophile 2496, как наилучшую (по мнению авторов) по соотношению цена/качество.
4. Перспективы развития
4.1 Развитие видеокарт
Объём памяти большого количества современных видеокарт варьируется от 33 МБ (напр. Matrox G550)[1] до 6 ГБ (напр. NVIDIA Quadro 6000).[2] Поскольку доступ к видеопамяти GPU и другими электронным компонентами должен обеспечивать желаемую высокую производительность всей графической подсистемы в целом, используются специализированные высокоскоростные типы памяти, такие как SGRAM, двухпортовые (англ. dual-port) VRAM, WRAM, другие. Приблизительно с 2003 года, видеопамять, как правило, базировалась на основе DDR технологии памяти SDRAM, с удвоенной эффективной частотой (передача данных синхронизируется не только по нарастающему фронту тактового сигнала, но и ниспадающему). И в дальнейшем DDR2, GDDR3, GDDR4 и GDDR5. Пиковая скорость передачи данных (пропускная способность) памяти современных видеокарт достигает 327 ГБ/с (напр. у NVIDIA GeForce GTX 580 или 320 ГБ/с у AMD Radeon™ HD 6990.
В ближайшей перспективе ожидается массовое внедрение новой спецификации PCI-Express 3.0 с увеличенной вдвое пропускной способностью. При этом PCIe 3.0 совместим с PCIe 1.1, то есть старые видеокарты будут нормально работать в новых системных платах, появление которых ожидается уже в 2014 году. Кроме того, спецификация PCI-Express 3.0 расширяет возможности энергоснабжения до 250 Вт на видеокарту, для чего на видеокартах вводится новый 2 x 4-штырьковый разъем питания.
Видеопамять используется для временного сохранения, помимо непосредственно данных изображения, и другие: текстуры, шейдеры, вершинные буферы (en:vertex buffer objects, VBO), Z-буфер (удалённость элементов изображения в 3D графике), и тому подобные данные графической подсистемы (за исключением, по большей части данных Video BIOS, внутренней памяти графического процессора и т. п.) и коды.
рофессиональные графические карты -- видеокарты, ориентированные на работу в графических станциях и использования в математических и графических пакетах 2D- и 3D-моделирования, на которые ложится значительная нагрузка при расчёте и прорисовке моделей проектируемых объектов.
Ядра профессиональных видеоускорителей основных производителей, AMD и NVIDIA, «изнутри» мало отличаются от их игровых собратьев. Они давно унифицировали свои GPU и используют их в разных областях. Именно такой ход и позволил этим фирмам вытеснить с рынка компании, занимавшиеся разработкой и продвижением специализированных графических чипов для профессиональных применений.
Особое внимание уделяется подсистеме видеопамяти, поскольку это -- особо важная составляющая профессиональных ускорителей, на долю которой выпадает основная нагрузка при работе с моделями гигантского объёма.
4.2 Развитие звуковых карт
Обилие всевозможных новинок и ожесточенная конкуренция среди производителей привели к уменьшению доли на рынке компании Creative. Главный конек бывшего монополиста - новейшая технология ЕАХ, аж в 5-й версии, оказалась никому не нужна. Дело в том, что авторы игрушек - главного двигателя прогресса - особо не переживают по поводу звука, а сосредотачиваются, главным образом, вокруг графики. Отсюда и слабый интерес к дорогим звуковым картам. Современные звуковые кодеки поддерживают все необходимые технологии типа Dolby и DTS. А рядовому потребителю больше и не надо. Возьмем, к примеру, не самую известную компанию Auzentech. Именно она, а не Creative, первой смогла представить звуковую карту для шины PCI с полноценной поддержкой Dolby Digital Live и DTS. Теперь же Auzentech оказалась первой компанией, которая в качестве стороннего производителя будет выпускать звуковые карты на основе процессоров от Creative с собственным дизайном.
По данным 3Dnews, первенцем в новой серии продуктов станет Auzen X-F Prelude 7.1. Ее уже можно лицезреть на прилавках, но пока не наших магазинов. Карта полностью поддерживает технологию EAX 5.0, а уже к 4-му кварталу этого года появится поддержка режима декодирования Dolby Digital Live в реальном времени для ОС Vista. Как уже было отмечено, решение "оформлено" на основе такого процессора, как Creative X-Fi. Так что, в данном случае и Creative доволен, и Auzentech на ходу.
Сама Creative Labs в последнее время сосредоточилась на серии X-Fi для дорогих мультимедийных ноутбуков, наступая на пятки Audigy. Именно Sound Blaster Audigy 2 ZS Notebook до сей поры являлась основным решением для ноутбуков. Новая штучка под названием Sound Blaster X-Fi Extreme Audio Notebook от Creative снабжена разъемом PCMCIA и предлагает пользователям 7,1-канальное 24-битное HD-аудио. Карта оснащена оптическим коннектором ввода-вывода и портом для подключения коммутатора сигналов. К недостаткам и одновременно достоинствам новинки стоит отнести ориентир на слот Express Card. Пока в абсолютном большинстве мобильных ПК стоит классический PCMCIA. Тогда как Express Card находится в периоде развития. Собственно, к недостаткам-достоинствам можно отнести и оптический коннектор. У всех же стандартные аналоговые разъемы. Оптика - удел избранных.
Как и было отмечено ранее, другие производители звуковых карт сосредоточились на выпуске совмещенных звуковидеокарт. Так, ATI представила звуковидеокарту RV6xx. Видеокарты, построенные на основе нового чипа, позволят обрабатывать звуковой сигнал высокого разрешения без использования ресурсов материнской платы и центрального процессора. Новинка поддерживает и Microsoft DirectX10, и High Definition Video. Как сказано в относящемся к продукту пресс-релизе: "встроенный звуковой процессор, поддерживающий инструкции High Definition, обеспечит пользователям видеокарт ATI возможность создать домашний кинотеатр с видео и звуком высокого разрешения без использования дополнительной звуковой платы".
Там же, на CeBIT-2007, отпрезентовалась и ASUS. Компания, ранее не замеченная в производстве звуковых карт, представила 2 продукта - Xonar D2X и Xonar D2. Модели идентичны по функционалу, но первая подключается через PCI Express x1, а вторая задействует старый PCI. У Xonar отмечены хорошее соотношение сигнал-шум и поддержка Dolby Digital, Dolby Live, DTS Connect, DTS 5.1. Модель подойдет для всех операционных систем, свидетельствует PCnews.
Что касается стратегических тенденций, то они оформились уже года 2-3 назад. Все движется к логическому концу звуковых карт как таковых. Рынок в целом смещается в сторону интегрированных решений. С другой стороны, в данном сегменте и уровень конкуренции жестче. Лидер прежний - Creative Labs. Однако в спину ему дышит сингапурский Genius, по крайней мере, в дешевом сегменте. На рынке же интегрированных аудиокодеков наблюдается столпотворение. Здесь дерутся не на жизнь, а на смерть такие монстры, как Intel, C-Media, Realtek и VIA Technologies. Параллельно массовый сегмент звуковых плат плавно переходит в профессиональную среду или узкоспециализированную нишу. Часть моделей жестко позиционируются для воспроизведения качественного звука при прослушивании музыкальных композиций и просмотре фильмов. Другая часть специализируется на игрушках. Третья - в области звукозаписи. Отдельное направление - внешние аудиомодули, соединяемые с ПК посредством интерфейсов USB и FireWire.
5. Видеопамять
Кроме шины данных, второе узкое место любого видеоадаптера -- это пропускная способность (англ. bandwidth) памяти самого видеоадаптера. Причём, изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного «голода» видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC'а. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024x768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём, ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц, номинально потребная пропускная составляет уже 550 МБ/с, для сравнения, процессор Pentium-2 имел пиковую скорость работы с памятью 528 МБ/с. Проблему можно было решать двояко -- либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниж
FPM DRAM (Fast Page Mode Dynamic RAM -- динамическое ОЗУ с быстрым страничным доступом) -- основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхронный доступ, при котором управляющие сигналы не привязаны жёстко к тактовой частоте системы. Активно применялся примерно до 1996 г.
VRAM (Video RAM -- видео ОЗУ) -- так называемая двухпортовая DRAM. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств, то есть есть возможность одновременно писать данные в какую-либо ячейку памяти, и одновременно с этим читать данные из какой-нибудь соседней ячейки. За счёт этого позволяет совмещать во времени вывод изображения на экран и его обработку в видеопамяти, что сокращает задержки при доступе и увеличивает скорость работы. То есть RAMDAC может свободно выводить на экран монитора раз за разом экранный буфер ничуть не мешая видеопроцессору осуществлять какие-либо манипуляции с данными. Но это всё та же DRAM и скорость у неё не слишком высокая.
WRAM (Window RAM) -- вариант VRAM, с увеличенной на 25% пропускной способностью и поддержкой некоторых часто применяемых функций, таких как отрисовка шрифтов, перемещение блоков изображения и т. п. Применяется практически только на акселераторах фирмы Matrox и Number Nine, поскольку требует специальных методов доступа и обработки данных. Наличие всего одного производителя данного типа памяти (Samsung) сильно сократило возможности её использования. Видеоадаптеры, построенные с использованием данного типа памяти, не имеют тенденции к падению производительности при установке больших разрешений и частот обновления экрана, на однопортовой же памяти в таких случаях RAMDAC всё большее время занимает шину доступа к видеопамяти и производительность видеоадаптера может сильно упасть.
EDO DRAM (Extended Data Out DRAM -- динамическое ОЗУ с расширенным временем удержания данных на выходе) -- тип памяти с элементами конвейеризации, позволяющий несколько ускорить обмен блоками данных с видеопамятью приблизительно на 25 %.
SDRAM (Synchronous Dynamic RAM -- синхронное динамическое ОЗУ) пришёл на замену EDO DRAM и других асинхронных однопортовых типов памяти. После того, как произведено первое чтение из памяти или первая запись в память, последующие операции чтения или записи происходят с нулевыми задержками. Этим достигается максимально возможная скорость чтения и записи данных.
DDR SDRAM (Double Data Rate) -- вариант SDRAM с передачей данных по двум срезам сигнала, получаем в результате удвоение скорости работы. Дальнейшее развитие пока происходит в виде очередного уплотнения числа пакетов в одном такте шины -- DDR2 SDRAM (GDDR2), DDR3 SDRAM (GDDR3) и т. д.
SGRAM (Synchronous Graphics RAM -- синхронное графическое ОЗУ) вариант DRAM с синхронным доступом. В принципе, работа SGRAM полностью аналогична SDRAM, но дополнительно поддерживаются ещё некоторые специфические функции, типа блоковой и масочной записи. В отличие от VRAM и WRAM, SGRAM является однопортовой, однако может открывать две страницы памяти как одну, эмулируя двухпортовость других типов видеопамяти.
MDRAM (Multibank DRAM -- многобанковое ОЗУ) -- вариант DRAM, разработанный фирмой MoSys, организованный в виде множества независимых банков объёмом по 32 КиБ каждый, работающих в конвейерном режиме.
RDRAM (RAMBus DRAM) память использующая специальный канал передачи данных (Rambus Channel), представляющий собой шину данных шириной в один байт. По этому каналу удаётся передавать информацию очень большими потоками, наивысшая скорость передачи данных для одного канала на сегодняшний момент составляет 1600 МиБ/с (частота 800 МГц, данные передаются по обоим срезам импульса). На один такой канал можно подключить несколько чипов памяти. Контроллер этой памяти работает с одним каналом Rambus, на одной микросхеме логики можно разместить четыре таких контроллера, значит теоретически можно поддерживать до 4 таких каналов, обеспечивая максимальную пропускную способность в 6,4 ГБ/с. Минус этой памяти -- нужно читать информацию большими блоками, иначе её производительность резко падает.
Заключение
Видеосистема не всегда была неотъемлемой частью компьютеров. Последние существовали уже тогда, когда еще не было телевидения в его сегодняшнем понимании. Первые процессоры в качестве выходных устройств использовали принтеры, которые позволяли получить твердую копию выходного результата, что тоже очень важно в нашем переменчивом мире.
Стандартными средствами для отображения текста являются дисплеи, работающие с картами символов. Специальная область памяти зарезервирована для хранения символа, который предстоит изобразить на экране. И программы пишут текст на экран, заполняя символами эту область памяти. Экран чаще всего представляется матрицей 80 на 25 символов.
Образ каждого символа, который появляется на экране, хранится в специальной микросхеме ПЗУ. Эта память относится к видеоцепям компьютера.
Каждый символ на экране формируется множеством точек. Несколько видеостандартов, используемых IBM и другими фирмами, отличаются количеством точек, используемых при формировании символов.
Программы, заносящие информацию на экран, должны знать, какую память они должны использовать для этого. Нужную информацию можно получить, прочтя информацию из специального байта памяти - флага видеорежима. Он предназначается для указания: какого вида адаптер дисплея установлен внутри компьютера и используется в настоящее время. Он позволяет компьютеру знать, с каким дисплеем - монохромным или цветным он имеет дело.
С развитием компьютерных технологий звуковые платы также претерпевали изменения. Они снабжались все новыми разъемами, дополнительными устройствами, менялись материалы изготовления. В настоящее время на рынке существует огромное количество разновидностей звуковых карт от различных производителей, находящихся в различных ценовых категориях. Звуковая карта может превратить компьютер в самую настоящую аудиостудию, где можно микшировать звук, добавлять различные звуковые эффекты, накладывать фоновую мелодию и так далее.
Развитие самих акустических систем также не стоит на месте. Dolby Digital внедряется в домашний обиход посредством технологии DVD, ведь звук, записанный в AC-3, можно найти и на DVD-Video, и на обычных DVD-ROM. При записи фильмов на DVD применяют три основных звуковых стандарта: PCM, Dolby Digital и MPEG. Поэтому, принимая во внимание, что практически любой современный DVD-проигрыватель имеет встроенный декодер AC-3, оказывается, что звуковые дорожки в формате Dolby Digital имеются почти на всех дисках DVD.
Литература
1)Н.В. Макаровой. - М.: Финансы и статистика информационных технологий, 2010. - 768 с.
2)Кураков Л.П., Лебедев Е.К. Информатика. - М.: Вуз и школа, 2011 - 636с.
3)Могилев и др. Информатика: Учебное пособие для вузов / А.В.Могилев, Н.И.Пак, Е.К.Хеннер; Под ред. Е.К. Хеннера. - М.: Изд. центр "Академия", 2011.- 534-546с.
4)Острейковский В.А. Информатика. - м.: Высшая школа, 2012.- 512с.
5)Першиков В.И., Савинков В.М. Толковый словарь по информатике. -
Фигурнов В.Э. IBM PC для пользователей. - М.: 2007.
Размещено на Allbest.ru
...Подобные документы
Модели звуковых карт, их возможности, качество звука и размеры. Устройство звуковых карт и принципы их функционирования. Методы генерации звука, применяющиеся в звуковых платах. Особенности системы пространственного звуковоспроизведения Dolby Digital.
реферат [34,8 K], добавлен 13.03.2011История появления первых счетных машин и создание персонального компьютера. Базовая аппаратная конфигурация ПК, устройство системного блока, виды видеоадаптеров и звуковых карт. Особенности технологии 3DNow. История возникновения компьютерных вирусов.
презентация [1,5 M], добавлен 23.08.2010История развития графических адаптеров и их характеристики. Конкуренция изготовителей ATI и NVIDIA как "двигатель прогресса" графических адаптеров. Обзор основных моделей: ATI Radeon, Nvidia GeForce FX. Критерии выбора графических адаптеров при покупке.
реферат [134,7 K], добавлен 14.11.2013Общая характеристика игровых движков, история их создания и совершенствования, современное состояние и перспективы. Сущность и значение шейдерных эффектов, программирование данных программ. Механизм и этапы разработки 3D-приложения, его тестирование.
дипломная работа [2,2 M], добавлен 16.06.2011Особенности создания цифровых топографических карт и планов. Используемые технические средства, программное обеспечение. Создание цифровых карт по материалам полевых измерений. Цифрование картографических изображений. Прикладные задачи картографии.
курсовая работа [5,3 M], добавлен 31.05.2014Описание существующих графических программ, их сравнительная характеристика, оценка преимуществ и недостатков, условия практического применения. Принцип работы и особенности системы AutoCAD, ее функции. Пользовательский интерфейс и составление чертежа.
курсовая работа [1,7 M], добавлен 15.05.2016История видеокарт, их назначение и устройство. Принципы обеспечения работы графического адаптера. Характеристики и интерфейс видеокарт. Сравнительный анализ аналогов производства компаний NVIDIA GeForce и AMD Radeon. Направления их совершенствования.
контрольная работа [295,6 K], добавлен 04.12.2014Ознакомление с комплектацией и классификацией звуковых карт; рассмотрение их основных характеристик - частоты дискретизации, разрядности, динамического диапазона, коэффициента нелинейных искажений, поддерживаемых спецэффектов. Диапазон цен на аудиоплаты.
презентация [647,5 K], добавлен 17.11.2011Опис додаткового обладнання персонального комп'ютера, що дозволяє обробляти звук. Порівняння основних технічних характеристик звукових карт різних виробників. Аналіз особливостей вбудованих, мультимедійних, напівпрофесійних та професійних звукових карт.
курсовая работа [1,9 M], добавлен 08.01.2014История создания нетбука — субноутбука с относительно невысокой производительностью, предназначенного в основном для выхода в Интернет и работы с офисными приложениями. Программное обеспечение нетбука, его внешний вид. Выбор ТВ-тюнера, оцифровка видео
реферат [1,5 M], добавлен 29.07.2013Назначение и разновидности постоянных запоминающих устройств (ПЗУ). Конструкция и виды полупроводниковых ПЗУ. История разработки и типы Flash-памяти, ее программирование и структурная организация. Характеристика современных стандартов карт памяти.
презентация [933,6 K], добавлен 11.12.2013Способы переноса информации с карты памяти на компьютер. Знакомство с картоводам-универсалами. Картридеры - устройство, позволяющее считывать информацию с карт памяти различных устройств. Их классификация, технические характеристики и преимущества работы.
статья [727,0 K], добавлен 30.04.2010Рынок карт памяти стандарта SD. Накопители стандарта SD как незаменимые "помощники" в сфере информации. Рост объема памяти и скорости передачи данных. Классы скорости, вид и размер карт памяти. Рейтинг карт памяти по разным техническим показателям.
реферат [1,6 M], добавлен 05.06.2015Изучение корреляционных методов стереозрения для получения плотных карт глубины, особенности и главные ограничения их использования. Исследование характера влияния используемых размеров окна корреляции и диапазона допустимых стереодиспаратностей.
лабораторная работа [5,7 M], добавлен 20.05.2014Общая характеристика дисковых приводов и оптических носителей информации, история их появления и развития. Особенности их конструкции. Приводы CD и DVD. Интерфейсы, форматы и стандарты, устройство и принцип работы. Форматы BLU-RAY и HD-DVD. Образы дисков.
курсовая работа [990,2 K], добавлен 12.11.2013История создания твердотельного накопителя на основе флэш-памяти. Назначение, область применения, плюсы и минусы устройств, перспективы их развития. Объем флэш-накопителей. Скорость обмена данными. Концепция компьютерной памяти на фазовых переходах.
доклад [26,9 K], добавлен 04.11.2014Оборудование для локальной сети: коммутатор, маршрутизатор, адаптер. Функции и характеристики сетевых адаптеров, их классификация, графическое и структурное описание. Характеристика сетевых карт ISA и PCI, разъемов BNC (коаксиальный кабель) и RJ-45.
реферат [95,9 K], добавлен 20.08.2009Анализ развития и производства микропроцессоров. История их появления. Типология основные пользовательские характеристики и принцип их действия. Перспективы развития современных микропроцессорных технологий и особенности мирового рынка полупроводников.
курсовая работа [337,5 K], добавлен 17.03.2015Основные сведения о звуковых волнах, их характеристики и спектральное представление звука. Виды искажений, помехи и шумы. Состав звуковых плат. Назначение и стандарты midi-систем. Запись и передача звука, формат mp3. Основные программные интерфейсы.
курс лекций [811,6 K], добавлен 08.07.2010История PC-совместимых персональных компьютеров с адаптером Monochrome Display Adapter. Устройство и основные характеристики видеокарты. Разъёмы для подключения устройств вывода. Описание видеокарт 3DMark, Metro 2033 Benchmark, Unigine Tropics Demo.
курсовая работа [7,9 M], добавлен 11.12.2014