Характеристика запоминающих флеш-устройств
Основная классификация запоминающих устройств. Характеристика архитектуры флеш-памяти. Сущность работы жестких магнитных и оптических дисков. Особенность функционирования и защищенности информации. Анализ типологии угроз и защиты флеш-накопителей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.06.2015 |
Размер файла | 949,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН
ГАОУ СПО САЛАВАТСКИЙ КОЛЛЕДЖ ОБРАЗОВАНИЯ
И ПРОФЕССИОНАЛЬНЫХ ТЕХНОЛОГИЙ
Курсовая работа
Тема: Запоминающие флеш устройства. Особенности функционирования и защищенности информации
Выполнил: Галимов А.
Специальность: 09.05.02
Курс 3 группа И
Руководитель: Кочетова Т.А.
Салават 2015 г
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
ГЛАВА 1. КЛАССИФИКАЦИЯ ЗАПОМИНАЮЩИХ УСТРОЙСТВ
1.1 Виды устройств
1.2 Flash-память
1.3 Архитектура флэш-памяти
ГЛАВА 2. ОРГАНИЗАЦИЯ FLASH ПАМЯТИ
2.1 Структура флеш-памяти
2.2 Типы карт памяти
2.3 Типология угрозы
2.4 Защита информации на флеш-картах
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ
ВВЕДЕНИЕ
Технология флэш-памяти появилась около 20-ти лет назад. В конце 80-х годов прошлого столетия флэш-память начали использовать в качестве альтернативы UV-EPROM. С этого момента интерес к флэш-памяти с каждым годом неуклонно возрастает. Внимание, которое уделяется флэш-памяти, вполне объяснимо - ведь это самый быстрорастущий сегмент полупроводникового рынка. Ежегодно рынок флэш-памяти растет более чем на 15%, что превышает суммарный рост всей остальной полупроводниковой индустрии.
Сегодня флэш-память можно найти в самых разных цифровых устройствах. Её используют в качестве носителя микропрограмм для микроконтроллеров HDD и CD-ROM, для хранения BIOS в ПК. Флэш-память используют в принтерах, КПК, видеоплатах, роутерах, брандмауэрах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, микроволновых печах и стиральных машинах... список можно продолжать бесконечно. А в последние годы флэш становится основным типом сменной памяти, используемой в цифровых мультимедийных устройствах, таких как mp3-плееры и игровые приставки. А все это стало возможным благодаря созданию компактных и мощных процессоров. Однако при покупке какого-либо устройства, помещающегося в кармане, не стоит ориентироваться лишь на процессорную мощность, поскольку в списке приоритетов она стоит далеко не на первом месте.
Начало этому было положено в 1997 году, когда флэш-карты впервые стали использовать в цифровых фотокамерах.
При выборе портативных устройств самое важное, на мой взгляд - время автономной работы при разумных массе и размерах элемента питания. Во многом это от памяти, которая определяет объем сохраненного материала, и, продолжительность работы без подзарядки аккумуляторов. Возможность хранения информации в карманных устройствах ограничивается скромными энергоресурсами Память, обычно используемая в ОЗУ компьютеров, требует постоянной подачи напряжения. Дисковые накопители могут сохранять информацию и без непрерывной подачи электричества, зато при записи и считывании данных тратят его за троих. Хорошим выходом оказалась флэш-память, не разряжающаяся самопроизвольно. Носители на ее основе называются твердотельными, поскольку не имеют движущихся частей. Отсутствие движущихся частей повышает надежность флэш-памяти: стандартные рабочие перегрузки равняются 15g, а кратковременные могут достигать 2000g, т. е. теоретически карта должна превосходно работать при максимально возможных космических перегрузках, и выдержать падения с трёхметровой высоты. Причем в таких условиях гарантируется функционирование карты до 100 лет.
Многие производители вычислительной техники видят память будущего исключительно твердотелой. Следствием этого стало практически одновременное появление на рынке комплектующих нескольких стандартов флэш-памяти.
Цель курсовой работы: рассмотреть виды флеш накопителей, типологию угроз и защиту флеш накопителей.
Объект исследования: запоминающее флеш устройства и их особенность функционирования и защиты информации.
Предмет исследования: флеш накопители и их защита.
ГЛАВА 1. КЛАССИФИКАЦИЯ ЗАПОМИНАЮЩИХ УСТРОЙСТВ
1.1 Виды устройств
По устойчивости записи и возможности перезаписи ЗУ делятся на:
? постоянные ЗУ (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, DVD-ROM). ПЗУ в рабочем режиме допускает только считывание информации.
? записываемые ЗУ, в которые конечный пользователь может записать информацию только один раз (например, DVD-R).
? многократно перезаписываемые ЗУ (например, DVD-RW).
? оперативные ЗУ (ОЗУ) обеспечивает режим записи, хранения и считывания информации в процессе её обработки. [9 стр 46]
По типу доступа ЗУ делятся на:
? устройства с последовательным доступом (например, магнитные ленты).
? устройства с произвольным доступом (RAM) (например, оперативная память).
? устройства с прямым доступом (например, жесткие магнитные диски).
? устройства с ассоциативным доступом (специальные устройства, для повышения производительности БД)
По геометрическому исполнению:
? дисковые (магнитные диски, оптические, магнитооптические);
? ленточные (магнитные ленты, перфоленты);
? барабанные (магнитные барабаны);
? карточные (магнитные карты, перфокарты, флэш-карты, и др.)
? печатные платы (карты DRAM).
По физическому принципу:
? перфорационные (перфокарта; перфолента);
? с магнитной записью (ферритовые сердечники, магнитные диски, магнитные ленты, магнитные карты);
? оптические (CD, DVD, HD-DVD, Blu-ray Disc);
? использующие эффекты в полупроводниках (флэш-память) и другие.
По форме записанной информации выделяют аналоговые и цифровые запоминающие устройства.[1 стр 59]
Постоянное запоминающее устройство
ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять.
В ПЗУ находятся:
? программа управления работой процессора;
? программа запуска и останова компьютера;
? программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков;
? программы управления дисплеем, клавиатурой, принтером, внешней памятью;
? информация о том, где на диске находится операционная система.
ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется.
Оперативное запоминающее устройство
Оперативная память (также оперативное запоминающее устройство, ОЗУ) - предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций (рисунок 1). Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.
ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера.
Рисунок 1 - Внешний вид оперативной памяти
На сегодня наибольшее распространение имеют два вида ОЗУ: SRAM (Static RAM) и DRAM (Dynamic RAM).
SRAM - ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны навентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи.
DRAM - более экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени - для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени.
Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах.[2 стр 64]
Жесткий магнитный диск
Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard (Magnetic) Disk Drive), жёсткий диск -устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.
Информация в НЖМД (рисунок 2) записывается на жёсткие (алюминиевые, керамические или стеклянные)пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров, а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.
Рисунок 2- Устройство НЖМД
Основные характеристики жестких дисков:
Интерфейс (англ. interface) - совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Серийно выпускаемые жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, SCSI, SAS, FireWire, USB,SDIO и Fibre Channel.
Ёмкость (англ. capacity) - количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 Гб (2 Тб). В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ.[10 стр 134]
Физический размер (форм-фактор) (англ. dimension). Почти все современные накопители дляперсональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма. Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.
Время произвольного доступа (англ. random access time) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс.
Скорость вращения шпинделя (англ. spindle speed) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).
Надёжность (англ. reliability) - определяется как среднее время наработки на отказ (MTBF).
Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./с при последовательном доступе.
Потребление энергии - важный фактор для мобильных устройств.
Уровень шума - шум, который производит механика накопителя при его работе. Указывается вдецибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.
Сопротивляемость ударам (англ. G-shock rating) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.
Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:
- внутренняя зона диска: от 44,2 до 74,5 Мб/с;
- внешняя зона диска: от 60,0 до 111,4 Мб/с.
Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.
Жёсткий диск состоит из гермозоны и блока электроники.
Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.
Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.
Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа, марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с бомльшим числом пластин.
Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трехфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные звездой с отводом посередине, а ротор - постоянный секционный магнит. Для обеспечения малого биения на высоких оборотах в двигателе используются гидродинамические подшипники.
Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки на подвижном блоке головок. Вопреки расхожему мнению, внутри гермозоны нетвакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы.
Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.
В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.
Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.
Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).
Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.
Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.
Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и егодекодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.
На заключительном этапе сборки устройства поверхности пластин форматируются - на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.
С целью адресации пространства поверхности пластин диска делятся на дорожки - концентрические кольцевые области (рисунок 3). Каждая дорожка делится на равные отрезки - секторы.
Цилиндр - совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора - конкретный сектор на дорожке.
Рисунок 3 - Геометрия магнитного диска
При способе адресации CHS сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра, номером головки и номером сектора
При способе адресации LBA адрес блоков данных на носителе задаётся с помощью логического линейного адреса.
Оптические диски
Оптический диск (англ. optical disc) - собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помощью оптического излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками (питами, от англ. pit - ямка, углубление, рисунок 4) на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация. Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3,5мкм. Промежутки между питами называются лендом. Шаг дорожек в спирали составляет 1,6 мкм.
Рисунок 4 - CD под электронным микроскопом
Существует несколько видов оптических дисков: CD, DVD, Blu-Ray и др. (рисунок 5).
CD-ROM (англ. compact disc read-only memory) - разновидность компакт-дисков с записанными на них данными, доступными только для чтения. Изначально диск был разработан для хранения аудиозаписей, но впоследствии был доработан для хранения и других цифровых данных. В дальнейшем на базе CD-ROM были разработаны диски как с однократной, так и с многократной перезаписью (CD-R и CD-RW).
Рисунок 5 - Дисковод для чтения оптических дисков
Диски CD-ROM - популярное и самое дешёвое средство для распространения программного обеспечения, компьютерных игр, мультимедиа и данных. CD-ROM (а позднее и DVD-ROM) стал основным носителем для переноса информации между компьютерами.
Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм, покрытого тончайшим слоем металла (алюминий, золото, серебро и др.) и защитным слоем лака, на котором обычно наносится графическое представление содержания диска. Принцип считывания через подложку был принят, поскольку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет приблизительно 15,7 гр. Вес диска в обычной коробке приблизительно равен 74 гр.
Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации. Однако, начиная приблизительно с 2000 года, всё большее распространение стали получать диски объёмом 700 Мбайт, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также 8-сантиметровые диски, на которые вмещается около 140 или 210 Мб данных.
Различают диски только для чтения («алюминиевые»), CD-R - для однократной записи, CD-RW - для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах.
Дальнейшим развитием CD-ROM-дисков стали диски DVD-ROM.
DVD (англ. Digital Versatile Disc) - цифровой многоцелевой диск - носитель информации, выполненный в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт-дисков.
Blu-ray Disc, BD (англ. blue ray disk) - формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциумом BDA.
Blu-ray (буквально «синий-луч») получил своё название от использования для записи и чтениякоротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Однослойный диск Blu-ray (BD) может хранить 23,3/25/27 или 33 Гб, двухслойный диск может вместить 46,6/50/54 или 66 Гб.[ 6 стр 89]
Твердотельный накопитель
Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) - энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся механических частей. Следует различать твердотельные накопители, основанные на использовании энергозависимой (RAM SSD) и энергонезависимой (NAND или Flash SSD) памяти.
Накопители RAM SSD, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.
Накопители NAND SSD, построенные на использовании энергонезависимой памяти появились относительно недавно, но в связи с гораздо более низкой стоимостью начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью оперативной памяти). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, сопоставимой с традиционными, и разработаны модели, существенно их превосходящие. Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.
Преимущества по сравнению с жёсткими дисками:
? меньше время загрузки системы;
? отсутствие движущихся частей;
? производительность: скорость чтения и записи до 270 МБ/с;
? низкая потребляемая мощность;
? полное отсутствие шума от движущихся частей и охлаждающих вентиляторов;
? высокая механическая стойкость;
? широкий диапазон рабочих температур;
? практически устойчивое время считывания файлов вне зависимости от их расположения или фрагментации;
? малый размер и вес.
Флеш-память
Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.
Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW.
Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.
Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах (рисунок 6).
Рисунок 6 Защита Flash памяти
Самый распространенный аксессуар у современного бизнес-пользователя -- компактный модуль флэш-памяти. При этом, согласно исследованиям SanDisk, 77% респондентов используют личные флэш-накопители для хранения и переноса служебных данных. Полностью запретить использование флэшек нереально -- USB-порты есть у подавляющего числа современных компьютеров. ИТ-подразделениям компаний разной величины остается только внедрять системы контроля и безопасности, учитывающие особенности этих персональных систем -- такие, как высокие риск заражения вирусами и вероятность потери самих носителей.
1.2 Flash-память
Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти.
Энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи).
Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных.
Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip).
В отличие от многих других типов полупроводниковой памяти, ячейка флэш - памяти не содержит конденсаторов - типичная ячейка флэш-памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации. Флэш-память исторически происходит от ROM (Read Only Memory) памяти, и функционирует подобно RAM (Random Access Memory). Данные флэш хранит в ячейках памяти, похожих на ячейки в DRAM. В отличие от DRAM, при отключении питания данные из флэш-памяти не пропадают. Замены памяти SRAM и
DRAM флэш-памятью не происходит из-за двух особенностей флэш-памяти: флэш работает существенно медленнее и имеет ограничение по количеству циклов перезаписи (от 10.000 до 1.000.000 для разных типов).
Надёжность/долговечность: информация, записанная на флэш-память, может храниться очень длительное время (от 20 до 100 лет), и способна выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков). Основное преимущество флэш-памяти перед жёсткими дисками и носителями CD-ROM состоит в том, что флэш-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы. В устройствах CD-ROM, жёстких дисках, кассетах и других механических носителях информации, большая часть энергии уходит на приведение в движение механики этих устройств. Кроме того, флэш-память компактнее большинства других механических носителей. Флэш-память исторически произошла от полупроводникового ROM, однако ROM-памятью не является, а всего лишь имеет похожую на ROM организацию. Множество источников (как отечественных, так и зарубежных) зачастую ошибочно относят флэш-память к ROM. Флэш никак не может быть ROM хотя бы потому, что ROM
(Read Only Memory) переводится как "память только для чтения". Ни о какой возможности перезаписи в ROM речи быть не может! Небольшая, по началу, неточность не обращала на себя внимания, однако с развитием технологий, когда флэш-память стала выдерживать до 1 миллиона циклов перезаписи, и стала использоваться как накопитель общего назначения, этот недочет в классификации начал бросаться в глаза. Среди полупроводниковой памяти только два типа относятся к "чистому" ROM - это Mask-ROM и PROM. В отличие от них EPROM, EEPROM и Flash относятся к классу энергонезависимой перезаписываемой памяти (английский эквивалент - nonvolatile read-write memory или NVRWM).
ROM:
ROM (Read Only Memory) - память только для чтения. Русский эквивалент
- ПЗУ (Постоянно Запоминающее Устройство). Если быть совсем точным, данный вид памяти называется Mask-ROM (Масочные ПЗУ). Память устроена в виде адресуемого массива ячеек (матрицы), каждая ячейка которого может кодировать единицу информации. Данные на ROM записывались во время производства путём нанесения по маске (отсюда и название) алюминиевых соединительных дорожек литографическим способом. Наличие или отсутствие в соответствующем месте такой дорожки кодировало "0" или "1". Mask-ROM отличается сложностью модификации содержимого (только путем изготовления новых микросхем), а также длительностью производственного цикла (4-8 недель). Поэтому, а также в связи с тем, что современное программное обеспечение зачастую имеет много недоработок и часто требует обновления, данный тип памяти не получил широкого распространения.
Преимущества:
1. Низкая стоимость готовой запрограммированной микросхемы (при больших объёмах производства).
2. Высокая скорость доступа к ячейке памяти.
3. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.
Недостатки:
1. Невозможность записывать и модифицировать данные после изготовления.
2. Сложный производственный цикл.
PROM - (Programmable ROM), или однократно Программируемые ПЗУ. В качестве ячеек памяти в данном типе памяти использовались плавкие перемычки. В отличие от Mask-ROM, в PROM появилась возможность кодировать ("пережигать") ячейки при наличии специального устройства для записи (программатора). Программирование ячейки в PROM осуществляется разрушением ("прожигом") плавкой перемычки путём подачи тока высокого напряжения. Возможность самостоятельной записи информации в них сделало их пригодными для штучного и мелкосерийного производства. PROM практически полностью вышел из употребления в конце 80-х годов.
Преимущества:
1. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.
2. Возможность программировать готовую микросхему, что удобно для штучного и мелкосерийного производства.
3. Высокая скорость доступа к ячейке памяти.
Недостатки:
1. Невозможность перезаписи
2. Большой процент брака
3. Необходимость специальной длительной термической тренировки, без которой надежность хранения данных была невысокой
NVRWM:EPROM
Различные источники по-разному расшифровывают аббревиатуру EPROM - как Erasable Programmable ROM или как Electrically Programmable ROM (стираемые программируемые ПЗУ или электрически программируемые ПЗУ). флеш память диск накопитель
В EPROM перед записью необходимо произвести стирание (соответственно появилась возможность перезаписывать содержимое памяти). Стирание ячеек EPROM выполняется сразу для всей микросхемы посредством облучения чипа ультрафиолетовыми или рентгеновскими лучами в течение нескольких минут. Микросхемы, стирание которых производится путем засвечивания ультрафиолетом, были разработаны Intel в 1971 году, и носят название UV-EPROM (приставка UV (Ultraviolet) - ультрафиолет).[3 стр 44]
Они содержат окошки из кварцевого стекла, которые по окончании процесса стирания заклеивают.
Достоинство: Возможность перезаписывать содержимое микросхемы
Недостатки:
1. Небольшое количество циклов перезаписи.
2. Невозможность модификации части хранимых данных.
3. Высокая вероятность "недотереть" (что в конечном итоге приведет к сбоям) или передержать микросхему под УФ-светом (т.н. overerase - эффект избыточного удаления, "пережигание"), что может уменьшить срок службы микросхемы и даже привести к её полной негодности.
EEPROM (EEPROM или Electronically EPROM) - электрически стираемые ППЗУ были разработаны в 1979 году в той же Intel. В 1983 году вышел первый 16Кбит образец, изготовленный на основе FLOTOX-транзисторов (Floating
Gate Tunnel-OXide - "плавающий" затвор с туннелированием в окисле).
Главной отличительной особенностью EEPROM (в т.ч. Flash) от ранее рассмотренных нами типов энергонезависимой памяти является возможность перепрограммирования при подключении к стандартной системной шине микропроцессорного устройства. В EEPROM появилась возможность производить стирание отдельной ячейки при помощи электрического тока.
Для EEPROM стирание каждой ячейки выполняется автоматически при записи в нее новой информации, т.е. можно изменить данные в любой ячейке, не затрагивая остальные. Процедура стирания обычно существенно длительнее процедуры записи.
Преимущества EEPROM по сравнению с EPROM:
1. Увеличенный ресурс работы.
2. Проще в обращении.
Недостаток: Высокая стоимость
Flash (полное историческое название Flash Erase EEPROM):
Изобретение флэш-памяти зачастую незаслуженно приписывают Intel, называя при этом 1988 год. На самом деле память впервые была разработана компанией Toshiba в 1984 году, и уже на следующий год было начато производство 256Кбит микросхем flash-памяти в промышленных масштабах. В 1988 году Intel разработала собственный вариант флэш- памяти.
Во флэш-памяти используется несколько отличный от EEPROM тип ячейки - транзистора. Технологически флэш-память родственна как EPROM, так и EEPROM. Основное отличие флэш-памяти от EEPROM заключается в том, что стирание содержимого ячеек выполняется либо для всей микросхемы, либо для определённого блока (кластера, кадра или страницы). Обычный размер такого блока составляет 256 или 512 байт, однако в некоторых видах флэш-памяти объём блока может достигать 256КБ. Следует заметить, что существуют микросхемы, позволяющие работать с блоками разных размеров (для оптимизации быстродействия). Стирать можно как блок, так и содержимое всей микросхемы сразу. Таким образом, в общем случае, для того, чтобы изменить один байт, сначала в буфер считывается весь блок, где содержится подлежащий изменению байт, стирается содержимое блока, изменяется значение байта в буфере, после чего производится запись измененного в буфере блока. Такая схема существенно снижает скорость записи небольших объёмов данных в произвольные области памяти, однако значительно увеличивает быстродействие при последовательной записи данных большими порциями.
Преимущества флэш-памяти по сравнению с EEPROM:
1. Более высокая скорость записи при последовательном доступе за счёт того, что стирание информации во флэш производится блоками.
2. Себестоимость производства флэш-памяти ниже за счёт более простой организации.
Недостаток: Медленная запись в произвольные участки памяти.
1.3 Архитектура флэш-памяти
Существует несколько типов архитектур (организаций соединений между ячейками) флэш-памяти. Наиболее распространёнными в настоящее время являются микросхемы с организацией NOR и NAND.
Архитектура NOR (NOT OR, ИЛИ-НЕ)
Каждая ячейка в такой микросхеме подключена к двум перпендикулярным линиям - битов (bit line) и слов (word line)(Рисунок 7). Суть логической операции NOR - в переходе линии битов в состояние "0", если хотя бы один из транзисторов-ячеек, подсоединенных к ней, включен или, говоря иначе, проводит ток. Селекция читаемой ячейки осуществляется с помощью линии слов. Все ячейки памяти NOR, согласно правилам, подключены к своим битовым линиям параллельно.
Рисунок 7
Интерфейс параллельный. Произвольное чтение и запись.
Преимущества: быстрый произвольный доступ, возможность побайтной записи.
Недостатки: относительно медленная запись и стирание.
Из перечисленных здесь типов имеет наибольший размер ячейки, а потому плохо масштабируется. Единственный тип памяти, работающий на двух разных напряжениях. Идеально подходит для хранения кода программ (PC BIOS, сотовые телефоны), идеальная замена обычному EEPROM.[8 стр 60]
Основные производители: AMD, Intel, Sharp, Micron, Ti, Toshiba, Fujitsu, Mitsubishi, SGS-Thomson, STMicroelectronics, SST, Samsung, Winbond, Macronix, NEC, UMC.
Программирование: методом инжекции "горячих" электронов
Стирание: туннеллированием FN архитектура NAND (NOT AND, И-НЕ)
В этом случае битовая линия переходит в состояние "0", если все транзисторы, подключенные к ней, проводят ток. Теперь ячейки подсоединяются к битовой линии сериями, что снижает эффективность и скорость операции чтения (поскольку уменьшается ток каждой ячейки), зато повышает скорость стирания и программирования. Чтобы приуменьшить негативный эффект низкой скорости чтения, чипы NAND снабжаются внутренним регистровым кэшем. Благодаря гирляндному принципу подсоединения ячеек в этом варианте удается добиться более компактной упаковки, чем в случае с параллельной архитектурой NOR-чипов.
Доступ произвольный, но небольшими блоками (наподобие кластеров жёсткого диска). Последовательный интерфейс.
Преимущества: быстрая запись и стирание, небольшой размер блока.
Недостатки: относительно медленный произвольный доступ, невозможность побайтной записи.
Наиболее подходящий тип памяти для приложений, ориентированных на блочный обмен: MP3 плееров, цифровых камер и в качестве заменителя жёстких дисков.
Основные производители: Toshiba, AMD/Fujitsu, Samsung, National
Программирование: туннеллированием FN
Стирание: туннеллированием FN
AND (И)
Доступ к ячейкам памяти последовательный, архитектурно напоминает NOR и NAND, комбинирует их лучшие свойства. Небольшой размер блока, возможно быстрое мультиблочное стирание. Подходит для потребностей массового рынка.
Основные производители: Hitachi и Mitsubishi Electric.
Программирование: туннеллированием FN
Стирание: туннеллированием FN архитектура DiNOR (Divided bit-line NOR, ИЛИ-НЕ с разделёнными разрядными линиями)
Тип памяти, комбинирующий свойства NOR и NAND. Доступ к ячейкам произвольный. Использует особый метод стирания данных, предохраняющий ячейки от пережигания (что способствует большей долговечности памяти). Размер блока в DiNOR всего лишь 256 байт.
Основные производители: Mitsubishi Electric, Hitachi, Motorola.
Программирование: туннеллированием FN
Стирание: туннеллированием FN
Доступ к флэш-памяти
Существует три основных типа доступа:
· обычный (Conventional): произвольный асинхронный доступ к ячейкам памяти. пакетный (Burst): синхронный, данные читаются параллельно, блоками по 16 или 32 слова.
· Считанные данные передаются последовательно, передача синхронизируется. Преимущество перед обычным типом доступа - быстрое последовательное чтение данных. Недостаток - медленный произвольный доступ.
· Страничный (Page): асинхронный, блоками по 4 или 8 слов. Преимущества: очень быстрый произвольный доступ в пределах текущей страницы. Недостаток: относительно медленное переключение между страницами.
ГЛАВА 2. ОРГАНИЗАЦИЯ FLASH ПАМЯТИ
2.1 Структура флеш-памяти
Рисунок 8
Ячейки флэш-памяти бывают как на одном, так и на двух транзисторах.
В простейшем случае каждая ячейка хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью ("плавающим" затвором - floating gate), способной хранить заряд многие годы. Наличие или отсутствие заряда кодирует один бит информации. (Рисунок 8)
При записи заряд помещается на плавающий затвор одним из двух способов (зависит от типа ячейки): методом инжекции "горячих" электронов или методом туннелирования электронов. Стирание содержимого ячейки (снятие заряда с "плавающего" затвора) производится методом тунеллирования.
Как правило, наличие заряда на транзисторе понимается как логический "0", а его отсутствие - как логическая "1". Современная флэш-память обычно изготавливается по 0,13- и 0,18-микронному техпроцессу.
Общий принцип работы ячейки флэш-памяти
Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во flash-памяти с NOR архитектурой, а также в микросхемах EPROM. Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор играет ту же роль, что и конденсатор в DRAM, т. е. хранит запрограммированное значение. Помещение заряда на "плавающий" затвор в такой ячейке производится методом инжекции "горячих" электронов (CHE - channel hot electrons), а снятие заряда осуществляется методом квантомеханического туннелирования Фаулера-Нордхейма (Fowler-Nordheim [FN]).
При чтении, в отсутствие заряда на "плавающем" затворе, под воздействием положительного поля на управляющем затворе, образуется n-канал в подложке между истоком и стоком, и возникает ток. |
||
Наличие заряда на "плавающем" затворе меняет вольт-амперные характеристики транзистора таким образом, что при обычном для чтения напряжении канал не появляется, и тока между истоком и стоком не возникает. |
||
При программировании на сток и управляющий затвор подаётся высокое напряжение (причём на управляющий затвор напряжение подаётся приблизительно в два раза выше). "Горячие" электроны из канала инжектируются на плавающий затвор и изменяют вольт-амперные характеристики транзистора. Такие электроны называют "горячими" за то, что обладают высокой энергией, достаточной для преодоления потенциального барьера, создаваемого тонкой плёнкой диэлектрика. |
||
При стирании высокое напряжение подаётся на исток. На управляющий затвор (опционально) подаётся высокое отрицательное напряжение. Электроны туннелируют на исток. |
Эффект туннелирования - один из эффектов, использующих волновые свойства электрона. Сам эффект заключается в преодолении электроном потенциального барьера малой "толщины". Для наглядности представим себе структуру, состоящую из двух проводящих областей, разделенных тонким слоем диэлектрика (обеднённая область). Преодолеть этот слой обычным способом электрон не может - не хватает энергии. Но при создании определённых условий (соответствующее напряжение и т.п.) электрон проскакивает слой диэлектрика (туннелирует сквозь него), создавая ток.[5 стр 176]
Важно отметить, что при туннелировании электрон оказывается "по другую сторону", не проходя через диэлектрик. Такая вот "телепортация".
2.2 Типы карт памяти
Существуют несколько типов карт памяти, используемых в портативных устройствах:
CF (Compact Flash): карты памяти CF являются старейшим стандартом карт флеш-памяти. Первая CF карта была произведена корпорацией SanDisk в 1994 году. Этот формат памяти очень распространен. Чаще всего в наши дни он применяется в профессиональном фото и видео оборудовании, так как ввиду своих размеров (43Ч36Ч3,3 мм) слот расширения для Compact Flash-карт физически проблематично разместить в мобильных телефонах или MP3-плеерах. Зато ни одна карта не может похвастаться такими скоростями, объемами и надежностью, как CF.
MMC (Multimedia Card): карта в формате MMC имеет небольшой размер -- 24Ч32Ч1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.
RS-MMC (Reduced Size Multimedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24Ч18Ч1,4 мм, а вес -- около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.[4 стр 85]
DV-RS-MMC (Dual Voltage Reduced Size Multimedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24Ч18Ч1,4 мм.
MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14Ч12Ч1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.
SD Card (Secure Digital Card): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32Ч24Ч2,1 мм). Основное отличие от MMC -- технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.
SDHC (SD High Capacity, SD высокой ёмкости): Старые карты SD (SD 1.0, SD 1.1) и новые SDHC (SD 2.0) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 4 Гб для SD и 32 Гб для SDHC. Устройства чтения SDHC обратно совместимы с SD, то есть SD-карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SD карта SDHC не будет читаться вовсе. Оба варианта могут быть представлены в любом из трёх форматов физических размеров (стандартный, mini и micro).
miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5Ч20Ч1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.
microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11Ч15Ч1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.
Memory Stick Duo: данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент -- это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20Ч31Ч1,6 мм).
Memory Stick Micro (M2): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.
xD-Picture Card: используются в цифровых фотоаппаратах фирм Olympus, Fujifilm и некоторых других.[7 стр 234]
2.3 Типология угрозы
Борьба с этими проблемами в целом ограничивается стандартными мерами безопасности. “Поскольку информация, которая хранится на мобильных съемных накопителях, обычно включает конфиденциальные данные, -- признает технический директор компании Imation в Европе Джордж Пьюрио, -- то шифрование важной информации является основным элементом политики безопасности. В принципе можно ограничить или полностью запретить использование незнакомых устройств в сети и ИТ-системе компании. В любом случае, желательно подключить и процедуры синхронизации, криптографию “на лету”, авторизацию и идентификацию пользователей”.
Еще один класс проблем для модулей внешней памяти -- это уязвимость для заражения вредоносным кодом. Причем они являются легким источником заражения уже для самой операционной системы. “Связано это с “замечательной” особенностью определения внешних устройств памяти ОС Windows, -- уточняет ситуацию технический специалист Symantec в России и СНГ Кирилл Керценбаум, -- на них распространяются правила, которые мы привыкли видеть для CD/DVD-приводов и всегда считали очень удобными, т. е. автоматический запуск какого-либо приложения при подключении устройства. Именно этим и пользуются авторы вредоносного ПО, ведь достаточно лишь скопировать на съемный носитель, например, exe-файл, а все остальное уже сделает сама Windows”.
При этом специального антивирусного ПО для данного вида устройств не существует, с этой задачей без проблем справляются стандартные антивирусные продукты, однако некоторые из них могут работать с внешними модулями памяти более эффективно, считает технический директор Eset Software Григорий Васильев, например запрещать с них автоматический запуск приложений, блокировать операции записи-чтения или ограничивать пользователей в эксплуатации только определенных типов присоединяемых устройств памяти.[10 стр 76]
Стоит обратить внимание и на угрозы ИТ-системе компании. Повсеместное использование флэш-накопителей, устройств iPod делает их хорошим инструментом для скрытого проникновения зловредного ПО (malware/spyware) в ИТ-системы. Таким образом, под угрозой оказываются все компьютеры предприятия, оснащенные USB-портом, уверен инженер по безопасности Check Point Алексей Андрияшин. Возможность копирования огромных объемов конфиденциальных корпоративных данных на многочисленные съемные носители создает серьезный риск не поддающейся обнаружению утечки данных.
...Подобные документы
Типы запоминающих устройств. Характеристика жестких дисков. Основные разновидности флеш-накопителей. Краткая информация о IT в медицине, их возможности и перспективы. Персональные компьютеры в медицинской практике. Создание интерактивной презентации.
курсовая работа [986,2 K], добавлен 17.12.2014Современные достижения в разработке накопителей информации. Принципы работы запоминающих устройств ЭВМ и голографической памяти. Возможности персональных компьютеров и мультимедийных систем. Перспективы развития оптических накопителей и жестких дисков.
презентация [4,0 M], добавлен 27.02.2012Характеристика внешней памяти компьютера. Виды памяти компьютера и накопителей. Классификация запоминающих устройств. Обзор внешних магнитных носителей: накопители прямого доступа, на жестких магнитных дисках, на оптических дисках и карты памяти.
курсовая работа [88,6 K], добавлен 27.02.2015Основные принципы работы и назначение флеш-памяти, история ее создания, технология изготовления и применение в цифровых устройствах. Обзор и характеристика существующих стандартов: удобство и польза. Флеш-память: особенности туннелирования и стирания.
реферат [90,3 K], добавлен 27.11.2011Описание особенностей работы устройств для стирания записей с носителей на жестких магнитных дисках, а также с неоднородных полупроводниковых носителей. Изучение способов стирания информации с флеш–памяти. Выбор системы виброакустического зашумления.
контрольная работа [2,9 M], добавлен 23.01.2015Память для вычислительных систем ее создание и характеристика особенностей. Создание устройств памяти и основные эксплуатационные характеристики. Функциональные схемы и способ организации матрицы запоминающих элементов. Виды магнитной и флеш памяти.
презентация [184,9 K], добавлен 12.01.2009Характеристика флэш-памяти, особого вида энергонезависимой перезаписываемой полупроводниковой памяти. Исследование особенностей организации флэш-памяти. Общий принцип работы ячейки. Обзор основных типов карт памяти. Защита информации на флеш-накопителях.
презентация [9,3 M], добавлен 12.12.2013Поняття і архітектура флеш-пам'яті як засобу збереження інформації, визначення переваг її використання. Відмінності основних способів програмування інформації в комірках - методів квантового тунелювання Фаулера-Нордхейма і інжекції "гарячих" електронів.
реферат [748,2 K], добавлен 06.11.2010Характеристика процесса восстановления максимального объёма удалённых файлов с физически исправных жестких дисков и флеш-накопителей. Исследование особенностей программ для восстановления данных после вирусных атак, сбоев питания и программных ошибок.
курсовая работа [6,2 M], добавлен 31.03.2012Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.
презентация [1,2 M], добавлен 11.12.2013Классификация и важнейшие принципы организации запоминающих устройств и систем памяти. Микросхемы оперативных (статических и динамических) и постоянных носителей информации. Их внутренняя структура, основы функционирования и тактовая диаграмма.
реферат [706,5 K], добавлен 09.08.2011История развития твердотельных накопителей - компьютерных немеханических запоминающих устройств на основе микросхем памяти. Архитектура, функционирование и преимущества NAND и RAM SSD. Microsoft Windows и компьютеры данной платформы, Mac OS X и Macintosh.
презентация [1,7 M], добавлен 25.02.2015Анализ принципа действия накопителей на жестких магнитных дисках персональных компьютеров. Перфокарта как носитель информации в виде карточки из бумаги, картона. Основные функции файловой системы. Способы восстановления информации с RAID-массивов.
дипломная работа [354,2 K], добавлен 15.12.2012Исследование процессов, методов и средств технологии хранения информации. Изучение единиц измерения памяти и классификации запоминающих устройств. Характеристика основных способов кодирования данных на компьютере на сегодняшний день, таблиц кодировок.
курсовая работа [86,9 K], добавлен 07.12.2011Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).
презентация [324,3 K], добавлен 20.12.2015Алгоритм створення інтернет-магазину по продажу товарів з Італії на локальному або віддаленому сервері: розробка клієнтської та адміністративної частини сайту засобами PHP і MySQL, розбиття сторінок на тематичні блоки і розміщення на них флеш-аплікацій.
курсовая работа [7,4 M], добавлен 12.05.2011Понятие и функциональные особенности запоминающих устройств компьютера, их классификация и типы, сравнительная характеристика: ROM, DRAM и SRAM. Оценка преимуществ и недостатков каждого типа оперативной памяти, направления и пути их использования.
презентация [118,1 K], добавлен 20.11.2013Основные и специализированные виды компьютерной памяти. Классификация устройств долговременного хранения информации, их характеристика: накопители на жестких магнитных дисках; оптические диски, дисководы. Расчет налога на доходы физических лиц в MS Excel.
курсовая работа [4,6 M], добавлен 27.04.2013История появления "флешек". Устройство и технические характеристики USB-флеш-памяти, принцип ее действия, дополнительные опции и программное обеспечение, типы разъемов. Карты памяти, их виды и форматы. Способы организации записи информации в ячейку.
реферат [439,2 K], добавлен 21.12.2010Технические характеристики накопителей на жестких магнитных дисках и их устройство. Питание и охлаждение накопителей. Неисправности аппаратной и программной частей. Программы для проведения диагностики поверхности накопителя, его головок и электроники.
курсовая работа [483,6 K], добавлен 19.05.2013