Применение цифровых моделей местности
Основные принципы цифрового моделирования местности, способы графической передачи пространственной и координатной информации, характеристика кодовых обозначений. Особенности развития современных геоинформационных технологий, анализ главных проблем.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 12.06.2015 |
Размер файла | 414,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Цифровое моделирование местности
2. Виды цифровых моделей местности
3. Построение цифровых моделей местности
4. Необходимость создания единой цифровой модели местности
Заключение
Список литературы
цифровой графический координатный информация
Введение
Любая информация, которая определяет географическое положение и свойства объектов, является информацией пространственной. Без неё не мыслимы ни полнота описания объектов и систем материального мира, ни адекватное реагирование на чрезвычайные ситуации, будь то стихийные бедствия или вооружённые конфликты. Она являет собой альфу и омегу, начало и конец, стержень всякой геоинформационной технологии.
Однако для того, чтобы разработать конкретную геоинформационную технологию, необходимо обратиться к компьютерному моделированию. В широком смысле слова модель - это «… любой образ (мысленный или условный: изображение, описание, схема, чертеж, график, план, карта и т.п.) какого-либо объекта, процесса или явления, используемый в качестве его “заместителя”, “представителя”». В нашем случае требуется смоделировать пространство Земли с находящимися на нем различного рода объектами. Такая модель называется цифровой моделью местности, она является краеугольным камнем современных геоинформационных систем.
Целью данной работы является рассмотрение принципов создания цифровых моделей местности.
1. Цифровое моделирование местности
Цифровой моделью местности (ЦММ) называют совокупность точек местности с известными трехмерными координатами и различными кодовыми обозначениями, предназначенную для аппроксимации местности с ее природными характеристиками, условиями и объектами.
Кодовые обозначения характеризуют связи между соответствующими точками ЦММ.
Общая ЦММ - это многослойная модель, которая в зависимости от назначения может быть представлена сочетанием частных цифровых моделей (слоев): рельефа, ситуационных особенностей, почвенно-грунтовых, гидрогеологических, инженерно-геологических, гидрометеорологических условий, технико-экономических показателей и других характеристик местности.
Математической моделью местности (МММ) называют математическую интерпретацию цифровых моделей для компьютерного решения конкретных инженерных задач.
В зависимости от инженерного назначения математической модели для одной и той же ЦММ может быть использовано несколько различных МММ.
В рамках системного автоматизированного проектирования (САПР) рациональным образом распределяются функции между инженером-проектировщиком, компьютером и другими средствами автоматизации. Поэтому при решении ряда инженерных задач строительства инженер работает с доступными ему топографическими картами и планами, поручая компьютеру работу с доступными ему цифровыми и математическими моделями тех же участков местности.
Конечным результатом инженерных изысканий при проектировании (САПР) по этой причине является получение крупномасштабных топографических планов и ЦММ на один и тот же участок местности в единой системе координат. Однако нужно иметь в виду, что информационная емкость обшей ЦММ при этом существенно больше информационной емкости самых подробных крупномасштабных топографических планов.
ЦММ и МММ используют, прежде всего, для получения необходимой исходной информации для автоматизированного проектирования (продольного профиля земли по оси трассы («черного» профиля), поперечных профилей, инженерно-геологических разрезов и т.д.).
Возможности цифрового и математического моделирования позволили, в частности, в корне изменить технологию проектирования автомобильных дорог и потребовали изменения технологии и методов сбора, регистрации и представления исходных данных при изысканиях.
2. Виды цифровых моделей местности
Конечной целью изысканий автомобильных дорог при проектировании на уровне САПР-АД является, прежде всего, получение крупномасштабного топографического плана местности в пределах широкой полосы варьирования конкурентных вариантов трассы и цифровой модели рельефа, геологического и гидрогеологического строения того же участка местности (ЦММ) в единой системе координат. По ЦММ и получаемым на их основе математическим моделям местности (МММ) в конечном итоге осуществляют системное, автоматизированное проектирование конкурентных вариантов трассы автомобильных дорог. Трудовые затраты на получение с помощью ЦММ необходимой для проектирования информации (профили земли по оси трассы, поперечные профили земли, инженерно-геологические разрезы и т.д.) оказываются в несколько десятков раз меньшими, по сравнению с получением той же информации при использовании топографических планов и стереоскопических моделей по традиционной технологии.
При цифровом моделировании рельефа, геологического и гидрогеологического строения местности в зависимости от сложности рельефа, ситуационных особенностей местности; способа производства изысканий, задач проектирования, наличия парка современных геодезических приборов, приборов спутниковой навигации, средств геофизической подповерхностной разведки, средств автоматизации и вычислительной техники могут быть сформированы ЦММ с использованием самых разнообразных принципов.
Вопросами разработки различных видов ЦММ было посвящено большое количество исследований. При этом, все известные виды ЦММ можно разбить на три большие группы: регулярные, нерегулярные и статистические.
Регулярные ЦММ создают путем размещения точек в узлах геометрически правильных сеток различной формы (треугольных, прямоугольных, шестиугольных), накладываемых на аппроксимируемую поверхность с заданным шагом.
Наиболее часто применяют ЦММ с размещением исходных точек в узлах сеток квадратов (рис. 1, а) или равносторонних треугольников (рис. 1, б). Регулярные ЦММ в узлах правильных шестиугольных сеток (рис. 1, в) нашли применение при проектировании нефтепромысловых дорог в условиях равнинного рельефа Западной Сибири.
Массив исходных данных для регулярных ЦММ (рис. 1. а-в) может быть представлен в следующем виде:
F= m, п, х0, у0, Н 11,…, Н1 m,…, Н nm (1)
F - шаг сетки;
m - число точек по горизонтали;
п - число строк по вертикали;
Н 11,…, Н1 m,…, Н nm - высоты точек в узлах сетки.
Рис. 1. Виды цифровых моделей местности: а - в узлах правильных прямоугольных сеток; б - в узлах треугольных сеток; в - в узлах шестиугольных сеток; г - на поперечниках к магистральному ходу; д - на горизонталях; е - на структурных линиях; ж - статистическая; з - на линиях, параллельных оси фотограмметрических координат
Регулярные модели (1) весьма эффективно использовать при проектировании вертикальной планировки городских улиц, площадей, аэродромов и других инженерных объектов на участках местности с равнинным рельефом. Опыт использования ЦММ с регулярным массивом исходных данных показал, что требуемая точность аппроксимации рельефа достигается лишь при очень высокой плотности исходных точек местности, которая в зависимости от категории рельефа должна быть в 5-20 раз выше по сравнению с нерегулярными ЦММ. Появление высокопроизводительных дигитайзеров и коордиметров с автоматической регистрацией информации по заданным интервалам длины или времени, тем не менее, делает использование регулярных моделей (1) весьма перспективным.
Нерегулярные ЦММ, представленные большим числом типов нашли широкое применение в практике автоматизированного проектирования объектов строительства. Весьма часто используют ЦММ, построенные по поперечникам к магистральному ходу (рис. 1, г). Массив исходных данных для ЦММ этого типа представляют в следующем виде:
(2)
Где у 1, у2, …, у i - расстояние между началом трассы и точками пересечения ее оси и соответствующими поперечниками; х 11, х12, …, xil - расстояния между исходными точками ЦММ на поперечниках и осью трассы, принимаемые положительными влево от трассы и отрицательными -- вправо; Н11, Н12, …, Hil - высоты исходных точек.
Поскольку магистральный ход в общем случае может иметь углы поворота для представления нерегулярного массива (2) необходимо еще задавать и координаты вершин углов поворота. Информацию для криволинейной трассы представляют уже в трехкоординатном виде.
ЦММ, построенные по поперечникам к оси магистрального хода или к оси трассы, находили широкое применение в начальный период перехода на системное автоматизированное проектирование линейных инженерных объектов, когда исходная изыскательская информация собирается в соответствии со старой традиционной технологией изысканий, а также при разработке проектов реконструкции автомобильных дорог.
При наличии крупномасштабных топографических планов и карт часто оказывается весьма эффективным создание ЦММ с массивом исходных точек, размещаемых на горизонталях с регистрацией их плановых координат дигитайзером через определенные интервалы длины (рис. 1, д). Массив исходных данных модели записывают в следующем виде:
(3)
Где Н1, Н2, …, Hi - высоты соответствующих горизонталей;
х 11, y 11,…, х21, y 21,…, xij, yij - плановые координаты точек на горизонталях.
Массив точек (3) может быть сформирован также в ходе рисовки горизонталей на стереофотограмметрическом приборе. Весьма перспективным для создания ЦММ данного типа является использование сканирующих дигитайзеров - автоматов и коордиметров.
При автоматизированном проектировании инженерных сооружений широко используют также цифровые модели на структурных линиях (структурные ЦММ), размещаемых по характерным изломам местности и с учетом ее ситуационных особенностей. Эти ЦММ обладают наименьшей исходной информационной плотностью точек местности (рис 1, е).
Массив исходных точек структурных ЦММ задают:
в явном виде
xi, yi, H i, j, k, l, (4)
где xi, yi, H i - координаты i -й точки массива характерных точек рельефа и ситуации;
j, k, l - номера других точек того же массива, в направлении которых можно вести линейную интерполяцию высот; в неявном виде
(5)
Где ПР - признак, определяющий ту или иную последовательность исходных точек той или иной структурной линии рельефа.
Структурные ЦММ (5, 6) используют главным образом при невысокой степени автоматизации процесса сбора и регистрации исходной информации (например, при использовании материалов обычной тахеометрической съемки, при ручной, либо полуавтоматической фотограмметрической обработке снимков, при дигитализации топографических планов и карт и т.д.).
В зависимости от вида исходного материала, используемого для формирования ЦММ, в практике автоматизированного проектирования применяют и другие виды нерегулярных цифровых моделей, например, ЦММ, построенные на линиях, параллельных координатным осям стереофотограмметрического прибора (рис. 1, ж), при использовании для формирования массивов точек материалов аэрофотосъемок.
Статистические ЦММ (6) предполагают в своей основе нелинейную интерполяцию второго и третьего и т.д. порядков. При создании массива исходных данных статистической ЦММ точки для ее формирования выбирают в зависимости от случайного распределения, близкого к равномерному (рис. 1, д).
Статистические модели являются во многом универсальными. Сфера их применения весьма широка и не ограничивается какими-либо категориями рельефа местности, наличием того или иного исходного материала для создания ЦММ и наличием тех или иных приборов.
Массив исходных данных статистической ЦММ представляют в виде:
х 1, y 1, Н2, х 2, y 2, Н2, …, хп, y п, Н п (6)
где х 1, y 1, Н2, …, хп, y п, Н п - координаты точек статистической модели.
3. Построение цифровых моделей местности
Топографические планы могут быть представлены в виде цифровой модели местности. Цифровая модель местности представляет собой отображение в виде пространственных координат множества точек земной поверхности, объединенных в единую систему по определенным математическим законам.
Построение цифровых моделей местности осуществляется ЭВМ. Исходная топографо-геодезическая информация о местности, необходимая для создания цифровых моделей, получается методами, указанными в соответствующих разделах Инструкции, а также путем преобразования в цифровую форму картографического изображения.
Представление цифровых моделей местности на носителях информации осуществляется посредством их вывода из ЭВМ в графическом или цифровом виде в зависимости от способа дальнейшего использования.
Применение цифровых моделей местности позволяет автоматизировать составление топографических планов в разных масштабах, их обновление и тиражирование (издание); инженерные расчеты и проектирование по ним.
Топографо-геодезическая информация, используемая для построения цифровых моделей местности, переводится в цифровую форму, индексируется, наносится на машинный носитель и вводится в ЭВМ для обработки по программам, составленным на языках программирования.
Точность цифровых моделей местности должна соответствовать точности топографического плана соответствующего масштаба. При построении и преобразовании цифровой модели местности точность исходной информации должна сохраняться, чтобы обеспечить возможность использования цифровых моделей местности для создания планов производных (от исходного) масштабов.
Цифровая модель местности должна быть построена так, чтобы из нее могли быть выделены независимые модели в принятых для топографических планов условных знаках:
- рельефа местности;
- коммуникаций;
- зданий и сооружений;
- гидрографии;
- почвенно-растительного покрова.
Запись исходной топографо-геодезической информации, используемой для построения цифровых моделей местности, осуществляется на специальных формах, утверждаемых ГУГК.
Графическое представление цифровых моделей местности производится в соответствии с действующими инструкциями и условными обозначениями, утверждаемыми ГУГК.
Технической базой для построения цифровых моделей местности являются ЭВМ Единой серии с комплектом периферийного и дополнительного оборудования.
Комплекс алгоритмов (программ) построения цифровых моделей местности должен обеспечивать преобразование моделей в заданный масштаб и однозначное совмещение фрагментов цифровых моделей местности. В основу построения программ должен закладываться модульный принцип организации структуры. Модули, как правило, должны получать информацию с устройств прямого доступа и выдавать результаты на дисковые запоминающие устройства.
Для создания, хранения и обновления цифровых моделей местности создаются автоматизированные системы и банки данных на машинных носителях.
4. Необходимость создания единой цифровой модели местности
При проведении инженерно-геодезических изысканий на территориях, где уже ведется какая-либо деятельность, работа начинается с изучения существующих материалов и проведения полевого исследования с целью подтверждения и уточнения имеющихся данных.
Следует отметить, что даже в условиях динамично развивающихся компьютерных технологий в недостаточной степени решенными остаются некоторые вопросы компьютерного моделирования и структурирования данных, появляются новые возможности развития в каждой отрасли, разрабатываются новые программные продукты, позволяющие оптимизировать работу, сократить время проведения работ и увеличить их точность.
Спрос на создание и реалистичное представление пространственной информации стимулирует развитие и широкое распространение новых программных продуктов, технологий и методов, позволяющих моделировать объекты и пространство в трёхмерном виде.
Развитие автоматизированных систем проектирования, а также возрастающая необходимость решения инженерно-геодезических задач в все более короткие сроки в различных отраслях народного хозяйства обуславливают необходимость внедрения структуры цифровой модели местности для инженерного назначения.
Моделирование местности, ее анализ и изучение по построенным моделям постепенно становятся неотъемлемой частью исследований в науках о Земле (геология, тектоника, гидрология, океанология, климатология и т. д.), в экологии, прикладной географии, земельном кадастре и инженерных проектах. Компьютерная обработка и представление в виде цифровых моделей местности пространственных данных находит широкое применение при анализе распространения участков загрязнений, в метеорологии и климатологии, в моделировании месторождений, коммуникаций, сооружений, видимости и затопления территорий, в изучении склоновых процессов, водного стока, миграции химических элементов, а также во многих проектах по устойчивому развитию территорий.
Основой для представления данных для ГИС являются цифровые модели. Под цифровой моделью географического объекта понимается определенная форма представления исходных данных и способ их структурного описания, позволяющий «вычислять» объект путем интерполяции, аппроксимации или экстраполяции.
Топографическая ЦММ характеризует ситуацию и рельеф местности. Она состоит из цифровой модели рельефа местности (ЦМРМ) и цифровой модели контуров (ситуации) местности (ЦМКМ). Кроме этого ЦММ может дополняться моделью специального инженерного назначения (ЦМИН). В инженерной практике часто используют сочетание цифровых моделей, характеризующих ситуацию, рельеф, гидрологические, инженерно-геологические, технико-экономические и другие показатели.
Существует множество методик сбора и обработки информации для последующего построения цифровой модели, но по-прежнему нет четкого определения цифровой модели местности. Проанализировав существующую информацию, можно прийти к выводу, что цифровая модель местности - это, прежде всего, базовая основа, обладающая способностью накопления информации и использования ее для изменения своих возможностей и адаптации к изменениям, т. е. ресурсностью и интеллектуальностью.
Помимо этого, ЦММ должна обладать способностью построения и визуализации аналитической трехмерной топографической поверхности; математическим аппаратом моделирования процессов в трехмерном географическом пространстве. Исходя из этого определения, ЦММ содержит цифровую модель рельефа (ЦМР), как необходимую платформу для всего остального множества объектов.
При решении инженерно-геодезических задач на ЭВМ применяют математическую интерпретацию цифровых моделей, ее называют математической моделью местности (МММ). Автоматизированное проектирование на основе ЦММ и МММ сокращает затраты труда и времени в десятки раз по сравнению с использованием для этих целей бумажных топографических карт и планов.
Процесс цифрового моделирования местности включает создание ЦММ, ее обработку и использование. Исходными данными для создания цифровых моделей местности являются результаты топографической съемки, данные о геологии и гидрографии местности.
Единые правила кодирования и цифрового описания объектов местности позволят существенно улучшить информационное взаимодействие программных средств и информационных систем, используемых для обработки и анализа результатов инженерных изысканий. Появляется необходимость создания структуры ЦММ, применимой для всех ситуаций и отражающей весь объем информации.
Рис. 2. Единая структура цифровой модели местности
Исходными данными для создания цифровых моделей местности является совокупность метрической (геодезические пространственные координаты характерных точек рельефа и ситуации), атрибутивной (символы; названия; статистическая информация; коды объектов; графические признаки, например, цвет и т. п.), семантической (технические параметры инженерных сооружений, геологическая характеристика грунтов, данные о деревьях в лесных массивах и т. п.), структурной (описывает связи между различными объектами -- отношения объектов к какому-либо множеству: раздельные пункты железнодорожной линии, здания и сооружения населенного пункта, строения и конструкции соответствующих производств и т. п.) и параметрической информации (трехмерная модель, в которой осями координат являются параметр X, пространство N и время Т, причем под пространством понимается упорядоченное множество источников информации, в частности измеряемых величин). Исходя из вышесказанного, необходима разработка единой структуры ЦММ (рис.1).
Цифровые модели местности должны содержать максимально точное описание расположения реальных объектов местности в принятой государственной системе координат и их семантических характеристик (свойств). Свойства объектов описываются с применением единых классификаторов (справочников), обеспечивающих автоматизированный обмен и обработку данных.
Цифровые модели местности являются базой для создания широкого спектра картографической продукции, используемой землеустроительными и кадастровыми службами. Это цифровые (электронные) карты, фотопланы, контурные фотопланы, топографические фотопланы, ортофотопланы, фотокарты и топографические планы.
Сейчас на рынке представлено множество программных средств для создания, обработки и обновления цифровых моделей местности. Открытым остается вопрос, что следует выбрать для выполнения поставленных задач.
Система CREDO ТОПОПЛАН предназначена для создания цифровой модели местности инженерного назначения, выпуска чертежей топографических планов и планшетов, подготовки цифровой модели местности для дальнейшей работы над ней. Для построения цифровой модели местности система позволяет различным образом выполнить геометрические построения. В построениях используется разнообразные геометрические элементы точка, прямая, окружность, а также гладкая сопрягающая кривая на основе сплайна. Использование гладкой сопрягающей кривой обеспечивает более качественное и точное отображение объектов ЦММ, позволяет уменьшить количество исходных данных, увеличить скорость визуализации, упростить процедуры создания и редактирования объектов. Сегменты геометрических элементов объединяются в полилинии, плановая геометрия которых дополняется профилем, что позволяет построить трехмерную модель местности. (Визуализация происходит «мягко» при средней по мощности видео карте).
В отличие от программного комплекса CREDO, ArcGIS не является специализированным программным продуктом для проведения и обработки геодезических и топографических работ. Целью использования данной программы для создания ЦММ явилась возможность более наглядной визуализации территории съемки и представление макета местности с наземными строениями и насаждениями, а также подземными коммуникациями в трехмерном виде.
Прежде чем начать работу по созданию цифровой модели местности, необходимо поставить задачи, требующие выполнения, и уяснить требования к результату выполнения этих задач. Таким образом, создание ЦММ в программном комплексе CREDO обеспечивает передачу результатов работы между подразделениями или организациями в едином электронном формате. Это является необходимым условием в современных информационных технологиях, т. к. значительно ускоряет процесс обработки и выпуска данных. В свою очередь, создание ЦММ в ArcGIS, несет в себе более широкие возможности по трехмерному моделированию и ГИС-анализу природных и антропогенных объектов местности.
Заключение
Многие из текущих проблем геодезии и картографии могут быть решены за счет использования новых информационных и телекоммуникационных технологий. Процесс модернизации топографо-геодезических и картографических служб в последние 20 лет шел по пути автоматизации картографирования и внедрения цифровых методов сбора и обработки данных.
Одной из главных задач модернизации отрасли является обеспечение единства координатного описания пространственных объектов вне зависимости от использованных средств измерений и источников данных.
Однако на современном этапе международная практика предлагает и успешно использует новые принципы организации и управления пространственными данными на основе национальных инфраструктур пространственных данных.
Одним из важных ограничивающих факторов по-прежнему являются действующие ограничения на распространение географической информации. Мировая практика демонстрирует приверженность принципу полного снятия любых ограничений на использование координатных описаний пунктов национальных геодезических сетей для создания и актуализации картографических материалов.
Вместе с исключением из перечня сведений, подлежащих засекречиванию, координат геодезических пунктов из него должны быть исключены также сведения о ключах (параметрах) перехода от местных систем координат к государственным системам и наоборот. Без отмены секретности ключей перехода невозможно соблюсти принцип экстерриториальности, сопоставимости данных о пространственных объектах, координаты которых определены в разных местных системах координат, а также единства координатного пространства страны.
Принятие предложенных изменений в законодательстве, проведение модернизации отрасли, использование современных программных средств приведут к созданию единой цифровой модели местности, единой структуры с едиными требованиями к входящим данным и результату моделирования.
Литература
1. «Советский энциклопедический словарь», 1983.
2. Цветков В.Я. Создание интегрированной информационной основы ГИС. // «Известия вузов. Геодезия и аэрофотосъемка»: -- М.:, 2000, № 4
3. Мартыненко А.И., Варшанина Т.П., Плисенко О.А. Геоинформационное моделирование территорий.//.// Системы и средства информатики: Спец. Вып. Геоинформационные технологии / Под ред. И. А. Соколова. -- М.: ИПИ РАН, 2004.
4. Александров В.Н., Яковлева Р.Б. Геоинформация на пути к международным стандартам// Территория -- соврем, технологии упр.- 1998.- № 1.- С.52-53
5. Плисенко О.А. Цифровая модель местности, как основа для вычислительных экспериментов в ГИС//- Адыгейский государственный университет, Майкоп, Россия
6. ЦИФРОВАЯ МОДЕЛЬ МЕСТНОСТИ// Уснич Д.С. Белорусский государственный университет, г. Минск, Беларусь.
Размещено на Allbest.ru
...Подобные документы
Периоды развития геоинформационных систем. Множество цифровых данных о пространственных объектах. Преимущества растровой и векторной моделей. Функциональные возможности геоинформационных систем, определяемые архитектурным принципом их построения.
курсовая работа [2,9 M], добавлен 14.01.2016Технология и задачи геоинформационных систем (ГИС), предъявляемые к ним требования и основные компоненты. Способы организации и обработки информации в ГИС с применением СУБД. Формы представления объектов и модели организации пространственных данных.
курсовая работа [709,9 K], добавлен 24.04.2012Предмет и задачи теории информации, ее функции при создании АСУ. Определение пропускной способности дискретных (цифровых) каналов при отсутствии шумов. Расчет скорости передачи информации. Вычисление значения энтропии - среднего количества информации.
контрольная работа [112,0 K], добавлен 18.01.2015Характеристика растровой, векторной и демонстрационной графики. Способы формирования изображений. Обзор современных программ обработки и просмотра графической информации: Paint, Adobe Photoshop, MS Power Point. Основные функции графических редакторов.
курсовая работа [36,8 K], добавлен 07.04.2015Новые подходы к поиску и обработке информации в справочно-правовых системах. Основные возможности программных технологий СПС. Способы передачи информации. Основные поисковые и сервисные возможности. Экономическая эффективность информационных технологий.
контрольная работа [34,4 K], добавлен 19.11.2013Выполнение геометрической коррекции сканированного листа карты Украины масштаба 1:1000000 в среде Erdas. Возможности выявления объектов с использованием радиолокационных снимков. Создание цифровых моделей рельефа и перспективных изображений местности.
курсовая работа [2,0 M], добавлен 17.12.2013Коды Боуза-Чоудхури-Хоквингема как широкий класс циклических кодов, применяемых для защиты информации от ошибок. Особенности коаксиальных магистральных кабелей КМ-4, основное назначение. Способы моделирования передачи информации по кабельной линии связи.
курсовая работа [1,7 M], добавлен 07.01.2013Современная терминология, технологии получения и типы данных цифровых моделей рельефа, методы их интерполяции. Анализ норм и правил градостроительства; критерии для проведения оценки территории; создание цифровой модели местности в среде ArcGIS 9.3.
дипломная работа [2,3 M], добавлен 13.07.2011Анализ современных технологий моделирования организационных систем. Основные понятия теории мультимножеств и операции над ними. Использование мультимножеств для представления UFO-моделей. Представление операций над UFO-моделями в Microsoft Excel.
дипломная работа [1018,4 K], добавлен 17.03.2012Монитор PC как важнейшее устройство отображения текстовой и графической информации. Описание разновидностей и принципа действия мониторов. Описание современных моделей. Устройство и особенности разных видов принтеров, различия в затратных материалах.
реферат [20,4 K], добавлен 27.03.2010Изучение существующих методов и программного обеспечения для извлечения числовых данных из графической информации. Программное обеспечение "graphtrace", его структура и методы обработки данных. Использование этой системы для данных различного типа.
дипломная работа [3,9 M], добавлен 06.03.2013Понятие и классификация цифровых образовательных ресурсов, особенности создания и использования в учебном процессе. Технологии защиты информации от компьютерных вирусов. Создание цифрового ресурса средствами Microsoft Office SharePoint Designer 2007.
курсовая работа [6,8 M], добавлен 25.06.2011Значение геоинформационных систем для ведения государственного земельного кадастра. Разработка трехмерной визуализации в 3D ландшафта с. Тугулук; природные и социально-экономические условия. Сравнительный анализ ГИС-продуктов MapInfo и VerticalMapper.
дипломная работа [3,0 M], добавлен 13.06.2014Технология обработки графической информации с помощью ПК, применение в научных и военных исследованиях: формы, кодирование информации, ее пространственная дискретизация. Создание и хранение графических объектов, средства обработки векторной графики.
реферат [20,7 K], добавлен 28.11.2010Система передачи информации. Использование энтропии в теории информации. Способы преобразования сообщения в сигнал. Динамический диапазон канала. Определение коэффициента модуляции. Преобразование цифровых сигналов в аналоговые. Использование USB–модемов.
курсовая работа [986,3 K], добавлен 18.07.2012Основные понятия компьютерной графики. Представление графической информации в компьютере. Внутреннее устройство персонального компьютера. История графической программы Macromedia Flash, принципы и методы работы с рисунками, технология создания фильма.
дипломная работа [5,9 M], добавлен 06.04.2012Стандартное устройство вывода графической информации в компьютере IBM - система из монитора и видеокарты. Основные компоненты видеокарты. Графическое и цветовое разрешение экрана. Виды мониторов и видеокарт. Мультимедиа-проекторы, плазменные панели.
контрольная работа [38,7 K], добавлен 09.06.2010Общая характеристика систем синтезированного обзора (видения). Разработка программного стенда, предназначенного для построения синтезированных 3D изображений местности по цифровой карте, загруженной из файла имитации полета летательного аппарата.
дипломная работа [8,7 M], добавлен 29.06.2012Сущность и особенности использования языка программирования C#. Общие сведения, назначение, условия применения и параметры программы "Визуальное моделирование местности с мельницами и крутящимися лопастями". Программа и методика испытаний программы.
курсовая работа [2,5 M], добавлен 16.01.2013Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.
реферат [29,6 K], добавлен 23.03.2010