Эволюция микропроцессоров. История развития
Понятие микропроцессора и его особенности (функции, состав, принцип работы). Эволюция процессоров: 8-битная, 16-битная эпоха и 32-битные процессоры. Архитектура RISC и развитие индустрии в 1990-е годы. Характеристика современных компьютерных процессоров.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.06.2015 |
Размер файла | 51,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Помимо этого, в процессор был добавлен блок предсказания ветвлений, а модуль вычислений с плавающей запятой стал более производительным.
Первые процессоры линейки Pentium работали на частотах 60 МГц или 66 МГц. При этом для их работы требовалось напряжение 5 В, поэтому они сильно грелись. Также первые «пни» прославились неправильной работой блока вычислений с плавающей запятой, который в некоторых случаях при выполнении деления чисел выдавал неверный результат. Поэтому вскоре Intel запустила в продажу процессоры с исправленной архитектурой P54C. Она стала своего рода работой над ошибками.
В 1996 году P5 получила последнее обновление -- P55C. Ключевым нововведением стала поддержка набора команд MMX (MultiMedia eXtension), которые значительно увеличили производительность архитектуры при работе с мультимедиа. А новые процессоры так и именовались -- Pentium MMX. Но это стало не единственным улучшением платформы. Объем кэш-памяти первого уровня был увеличен до 32 Кбайт, а производство Pentium MMX было переведено на 0,28-мкм техпроцесс. Это позволило нарастить частоту процессоров до 233 МГц. На этом развитие ядра P5 для настольных систем завершилось.
Архитектура AMD K5
В 1996 году была представлена платформа K5, которая должна была составить конкуренцию Intel Pentium. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Это было возможно благодаря наличию в процессоре транслятора, который разбивал длинные инструкции на простые RISC-операции. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Также архитектура предусматривала наличие блока предсказаний ветвлений, размер которого был в четыре раза больше, чем у Pentium. Объем кэш-памяти инструкций составлял 16 Кбайт, а данных -- 8 Кбайт. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.
Архитектура Intel P6
В 1995 году на смену архитектуре P5 пришла, архитектура P6 -- CISC-платформа с RISC-ядром. Для разбиения сложных операций на простые в процессорах имелся специальный декодер. P6 являлась суперскалярной и поддерживала изменения порядка выполнения операций. Ее конвейер имел целых 12 стадий. Также в архитектуре был предусмотрен блок предсказания ветвлений. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти. P6 имела самый производительный на то время блок вычислений с плавающей запятой.
В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150-200 МГц, имели 16 Кбайт кэш-памяти первого уровня и до 1 Мбайт кэша второго уровня. Во многом из-за этого чипы уступали в производительности процессорам Pentium в 16-битных приложениях.
Второе поколение базировалось на том же ядре P6 (с кодовым именем Klamath), которое использовалось в процессорах Pentium Pro. По сравнению с Pentium у второго поколения кристаллов объем кэш-памяти первого уровня был увеличен до 32 Кбайт. Были добавлены и инструкции MMX. Учитывая низкую производительность Pentium Pro в 16-битных приложениях, были внесены изменения в архитектуру с прицелом как раз на повседневную работу. В итоге производительность в 16-разрядных программах увеличилась на треть. Максимальная частота процессоров Klamath составляла 300 МГц.
В 1998 году в продаже появились процессоры с улучшенным ядром P6 (Deschutes). Они стали менее горячими. При этом частотный потенциал моделей увеличился. Так, Deschutes могли работать на частоте 450 МГц. В линейке Pentium II впервые произошла дифференциация: серверные и Low-End-процессоры начали продаваться под отдельными брендами: Xeon и Celeron соответственно.
В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а механизм работы с памятью был улучшен. Тактовая частота процессоров Katmai достигала 600 МГц.
В конце 1999 года на смену Katmai пришло ядро Coppermine. Новые процессоры выпускались по 180-нм техпроцессу и имели интегрированную кэш-память второго уровня. в отличие от Katmai, у которого она была вынесена за пределы процессора. Частота процессоров достигала уже 1,13 ГГц.
Архитектура AMD K6
В 1996 году фирма приобрела небольшого разработчика x86-процессоров NexGen и выпустила их проект Nx686 как K6.
Новая архитектура серьезно отличалась от K5. Процессоры K6 поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Как и K5, новая платформа являлась суперскалярной архитектурой CISC с RISC-ядром. Первые процессоры K5 производились по 350-нм и 250-нм техпроцессу, обладали 64 Кбайт кэш-памяти первого уровня и работали на частотах, разбросанных в диапазоне 166-300 МГц.
В 1998 году AMD выпустила процессоры с улучшенной архитектурой K6-2. Новые кристаллы конкурировали с самыми производительными моделями Pentium II. Процессоры получили поддержку набора SIMD-инструкций 3DNow!, который повысил производительность в вычислениях с плавающей запятой, а также увеличенный до 64 Кбайт кэш первого уровня. Максимальная частота чипа составляла 550 МГц.
В 1999 году свет увидела третья генерация архитектура K6 -- K6-III. Процессоры рассматривались как конкурент Pentium III. Решения AMD действительно обеспечивали такой же уровень производительности при меньшей стоимости. Суть архитектуры K6-III была проста. Так, кристалл сохранил все «фишки» K6-2, но при этом получил встроенную кэш-память второго уровня объемом 256 Кбайт. Объем кэша первого уровня составлял 64 Кбайт. На K6-III развитие архитектуры K6 завершилось. В том же 1999 году ее сменила платформа K7.
Итоги:
Это десятилетие положило начало долгому и интересному соперничеству AMD и Intel, которое продолжается и по сей день.
6. Эволюция процессоров. Современность
2000-е годы -- это уже современность. Первый Athlon; не самая удачная архитектура NetBurst, горячие Pentium'ы на ядре Prescott; появление двухъядерных процессоров; превосходство платформы AMD K8 и ошеломляющий успех Intel Core.
Intel NetBurst
NetBurst разрабатывалась с расчетом на высокие тактовые частоты. Поэтому в основе архитектуры лежал принцип гиперконвейеризации, которая, грубо говоря, являлась аналогом технологии суперконвейера в K7. Поэтому процессоры NetBurst аналогично имели конвейер с большим количеством стадий. В первых ревизиях NetBurst -- ядрах Willamette и Northwood -- он имел глубину в 20 стадий. В более поздних версиях -- Prescott и Cedar Mill -- мог похвастать уже 31 стадией. Сюда не входили этапы декодирования инструкций, поскольку сам декодер был вынесен за пределы конвейера. И если раньше сложные операции декодировались на лету, то в NetBurst разбиение инструкций происходило на стадии копирования кода в кэш-память 1-го уровня.
Помимо всего прочего, была изменена конструкция арифметико-логических устройств. АЛУ было разделено на 3 блока. Одним из них являлось «медленное АЛУ», работающее с всеми целочисленными операциями. Два остальных -- «2X АЛУ», выполняющие лишь элементарные операции (например, сложение). Блок предсказания ветвлений также был доработан. В сравнении с таким же модулем архитектуры P6, количество ошибок при вычислениях сократилось на 33%.
Первое ядро с архитектурой NetBurst, носившее название Willamette, работало на частоте до 2 ГГц с частотой системной шины 400 МГц. Жизненный цикл его был недолгим. В январе 2002 года ему на смену пришли процессоры Northwood. В отличие от 180-нм ядра Willamette, эти кристаллы изготавливались по 130-нм техпроцессу. Также они получили увеличенный до 512 Кбайт объем кэш-памяти 2-го уровня и поддержку технологии мультипоточности Hyper-Threading. Тактовая частота Northwood варьировалась от 1,6 ГГц до 3,4 ГГц.
Более существенные изменения получило следующее ядро в линейке -- Prescott, выпущенное в 2004 году. Производство процессоров вновь было переведено на более тонкие технологические нормы -- 90 нм. Но изменился и сам дизайн архитектуры. Так, объем кэш-памяти возрос до 1 Мбайт (а в ревизии Prescott 2M -- до 2 Мбайт), а конвейер получил 31 стадию вместо 20 в Willamette и Northwood. Был улучшен блок предсказания ветвлений, добавилась поддержка инструкций SSE3, а чуть позже -- 64-битного расширения набора команд x86.
В 2005 году Intel представила свой первый двухъядерный процессор Pentium D на базе ядра Smithfield. Такой «пень» представлял собой два ядра Prescott, расположенных на одной подложке. Решение получилось не самым удачным, хотя бы потому, что Pentium D обладал всеми недостатками Prescott (в первую очередь высоким тепловыделением). Чтобы уложиться в 130-ваттный TDP, инженерам Intel пришлось ограничить тактовую частоту Smithfield планкой в размере 2,8 ГГц. Так как производительность архитектуры NetBurst сильно зависела от частоты, то скорость первых двухъядерных процессоров Intel оставляла желать лучшего. Свою роль сыграло использование медленной DDR2-памяти, а также неоптимизированность большинства приложений под работу с двумя ядрами.
Последними процессорами с архитектурой NetBurst стали одноядерный Cedar Mill и двухъядерный Presler. Cedar Mill был полным аналогом Prescott 2M, за исключением технологии производства -- он изготавливался по 65-нм технологическим нормам. Переход на новые «рельсы» позволил снизить энергопотребление ядра, но увеличить тактовые частоты. Что касается двухъядерной модели Presler, то в плане дизайна она повторяла Smithfield, то есть на одной подложке располагались два ядра, с единственным отличием: вместо Prescott использовались Cedar Mill.
В 2008 году выпуск последних процессоров NetBurst был остановлен. На смену NetBurst пришла более совершенная микроархитектура Core.
AMD K8
В конце 2003 года AMD выпустила новую архитектуру K8 с не большим количеством изменений.
Ключевых нововведений было три: это 64-битная архитектура, встроенный контроллер памяти и шина HyperTransport. Новые продукты AMD получили название Athlon 64.
Само расширение официально именуется x86-64, но AMD назвала его по-своему -- AMD64. Была получена и обратная совместимость с 16- и 32-разрядными приложениями, 64-битные процессоры AMD без проблем работали со старыми программами. Основной прирост производительности в сравнении с K7 обеспечил встроенный контроллер памяти.
Первые модели Athlon 64 были построены на 130-нм ядре Clawhammer и устанавливались как в разъем Socket 754 (одноканальный режим работы ОЗУ), так и в Socket 939 (двухканальный режим работы ОЗУ). Рейтинги процессоров варьировались от 2600+ до 4000+.
За Clawhammer последовало ядро Newcastle, которое почти не имело отличий от предшественника. В нем было отключено 512 Кбайт кэш-памяти 2-го уровня и добавлена поддержка технологии NX Bit, которая отсутствовала в первых реализациях архитектуры K8.
В рамках следующего ядра, Winchester, выпущенного в сентябре 2004 года, все процессоры устанавливались исключительно в разъем Socket 939. Архитектурно же Winchester ничем не отличался от Newcastle.
В апреле 2005 года AMD выпустила следующее ядро архитектуры K8 -- San Diego. Процессор получил поддержку набора инструкций SSE3, а также переработанный контроллер памяти, который научился работать с модулями DDR-433/466/500.
Заключительным аккордом в линейке одноядерных процессоров K8 было ядро Orleans, представленное во втором квартале 2006 года. Кристалл получил поддержку технологии виртуализации AMD-V, но главной его особенностью стала работа исключительно через новый разъем Socket AM2. Объем кэш-памяти 2-го уровня равнялся 512 Кбайт, а максимальный рейтинг кристаллов -- 4000+. При этом уровень энергопотребления ограничился отметкой 62 Вт, тогда как все предыдущие ядра потребляли не менее 89 Вт.
В 2005 году AMD представила свои первые двухъядерные процессоры под маркой Athlon 64 X2. В основе таких моделей лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд. Плюс в процессоре располагалась дополнительная логика управления. При этом кэш-память была индивидуальной для каждого ядра.
В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти 2-го уровня и энергопотреблением. Так, Brisbane комплектовался 512 Кбайт кэша на каждое ядро и имел TDP, равный 89 Вт. Максимальный рейтинг Brisbane составлял 6000+ при частоте 3100 МГц, хотя на базе ядра Windsor выпускался процессор Athlon 64 X2 6400+ с тактовой частотой 3200 МГц.
Intel Core
Неудача архитектуры NetBurst заставила Intel вновь обдумать стратегию на ближайшее будущее. Процессоры Pentium 4 показали, что NetBurst не может достойно конкурировать с AMD K8. Даже больше: с течением времени преимущество решений конкурента лишь возрастало. Поэтому в микроархитектуре следующего поколения, получившей имя Core и представленной в начале 2006 года.
Список полученных изменений стоит начать с конвейера. Он получил «всего» 14 стадий -- примерно столько же использовал конвейер P6, в отличие от 31-стадийного дизайна NetBurst. Процессор научился обрабатывать до четырех инструкций за такт. Архитектура Core изначально проектировалась под двухъядерность, поэтому для всех «голов» была предусмотрена общая кэш-память 2-го уровня. Такой подход обеспечивал большую скорость работы и меньшее энергопотребление. В Core была добавлена поддержка различных энергосберегающих технологий, суть которых заключалась во включении необходимой процессорной логики при необходимости. Положительно на производительности сказалась и улучшенная работа с подсистемой памяти. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.
Архитектура Core отличалась от NetBurst отсутствием поддержки некоторых технологий: например, Hyper-Threading и кэш-памяти 3-го уровня.
Дебют микроархитектуры Core ознаменовали собой процессоры с кодовыми названиями Merom, Conroe, Allendale и Woodcrest. И если первый и последний предназначались для мобильных и серверных систем соответственно, то второй и третий были нацелены на настольный сегмент. Ядро Allendale было урезанной версией Conroe, в нем была уменьшена частота системной шины с 1066 МГц до 800 МГц, а также урезан объем кэш-памяти 2-го уровня с 4 Мбайт до 2 Мбайт. Плюс не было поддержки аппаратной виртуализации.
Новые процессоры получили оригинальные наименования. Intel ввела торговую марку Core 2, которая заменила Pentium в верхнем и среднем ценовом сегменте.
В сравнении с Pentium D, производительность Сonroe выросла в среднем на 40%, а энергопотребление уменьшилось на те же 40%. Кроме этого, Conroe в целом уверенно превосходил в производительности AMD Athlon 64 X2.
В 2007 году на смену Core пришла 45-нм микроархитектура Penryn. Модификации были минимальны. В производстве новых процессоров начали использоваться металлические затворы и материалы с высоким показателем диэлектрической константы. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мбайт до 6 Мбайт. Поколение Penryn было представлено двухъядерными решениями Wolfdale и четырехъядерными Yorkfield.
Nehalem, архитектура следующего поколения, была выпущена в 2008 году. В сравнении с Core и Penryn она получила множество улучшений. Как и AMD K8, процессоры обзавелись встроенным трехканальным контроллером памяти DDR3. Nehalem получила новую модульную структуру, которая позволила впоследствии добавить в процессор графическое ядро, да и вообще легче наращивать количество ядер в процессоре. Шина FSB окончательно ушла в прошлое -- вместо нее в старших процессорах для разъема Socket LGA1366 использовался интерфейс QPI (QuickPath Interconnect), а в решениях для Socket LGA1156 -- DMI (Direct Media Interface). Объем кэш-памяти 2-го уровня был уменьшен до 256 Кбайт на каждое ядро, однако добавилась поддержка L3. Решения поддерживали технологию SMT (Simultaneous Multithreading) -- аналог Hyper-Threading. Чуть больше чем через год Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere. Были выпущены решения с интегрированным графическим ядром Clarkdale, а также десктопные шестиядерные модели Gulftown.
Затем Intel выпустила 32-нм процессоры следующего поколения -- Sandy Bridge и их 22-нм модификацию Ivy Bridgeв скором временя в продаже появились новые- на базе 22-нм архитектуры Haswell.
Intel Core i7
Новейшая микроархитектура Intel® на базе 14-нм производственной технологии обеспечивает заметное улучшение рабочих характеристик -- таких как производительность, качество графики, время автономной работы и безопасность. Процессор Intel Core™ i7 5-го поколения обеспечивает максимальную производительность самых ресурсоемких приложений. Ключевые характеристики, например технология Intel Hyper-Threading 1, позволяют каждому процессорному ядру выполнять две задачи одновременно и способствуют улучшению работы в многозадачном режиме. А графическое решение Intel® Iris гарантирует ошеломляющее качество 3D-графики и непревзойденную скорость редактирования видео и фото.
Источники
http://www.ferra.ru/ru/system/review/processor-evolution/
http://www.kazreferat.info/read/istoriya-razvitiya-mikroprocessorov-MTMxNzAz
http://plusyloy.shagor5.net/2015/03/istoriya-razvitiya-mikroprocessorov-intel
http://ria.ru/infografika/20111115/489026211.html
http://www.studfiles.ru/dir/cat32/subj1315/file13621/view132062.html
http://cs.usu.edu.ru/study/chips.html
http://cs.usu.edu.ru/study/chips.html#_Toc9352975
http://cs.usu.edu.ru/study/chips.html#_Toc9352970
http://cs.usu.edu.ru/study/chips.html#_Toc9352980
http://cs.usu.edu.ru/study/chips.html#_Toc9352994
Размещено на Allbest.ru
...Подобные документы
Логические функции и структура микропроцессоров, их классификация. История создания архитектуры микропроцессоров x86 компании AMD. Описание К10, система обозначений процессоров AMD. Особенности четырёхъядерных процессоров с микроархитектурой К10 и К10.5.
курсовая работа [28,9 K], добавлен 17.06.2011Понятия и принцип работы процессора. Устройство центрального процессора. Типы архитектур микропроцессоров. Однокристальные микроконтроллеры. Секционные микропроцессоры. Процессоры цифровой обработки сигналов. Эволюция развития микропроцессоров Intel.
реферат [158,8 K], добавлен 25.06.2015История и перспективы развития производства процессоров компьютеров. Основы работы центрального процессора. Характеристика многоядерных процессоров. Ведущие производители: Intel и AMD, их планы по выпуску новых процессоров. Советы по выбору CPU.
курсовая работа [2,8 M], добавлен 03.11.2011Принцип работы ядра процессора, типы архитектур ядер операционных систем. Сокет(Socket), кэш-память, контроллер ОЗУ, северный мост. Внутренняя архитектура процессоров Intel и AMD: расшифровка названий, технологии процессоров, сравнение производительности.
реферат [214,9 K], добавлен 05.05.2014Процессоры AMD Athlon 64X2, их параметры и характеристики, возможности разгона. Двухъядерные процессоры Intel и их особенности, совместимость новых процессоров с материнскими платами. Методика, последовательность и результаты тестирования процессоров.
статья [31,6 K], добавлен 03.05.2010История создания и развития компьютерных процессоров Intel. Изучение архитектурного строения процессоров Intel Core, их ядра и кэш-память. Характеристика энергопотребления, производительности и систем управления питанием процессоров модельного рядя Core.
контрольная работа [7,6 M], добавлен 17.05.2013Описание этапов создания первых компьютеров: схема, операции и функции, принцип действия. От простого к сложному: история разработки нового поколения Intel-процессоров. Особенности устройства, архитектура и анализ различных модификаций микропроцессоров.
учебное пособие [473,6 K], добавлен 19.05.2009История развития фирмы INTEL. Развитие и выпуск процессоров INTEL. Обзор технологии ATOM. Обзор процессоров. Материнская плата Gigabyte GC230D. Ноутбуки на базе процессоров INTEL ATOM. Ноутбук MSI Wind U100-024RU, ASUS Eee 1000H, Acer One AOA 150-Bb.
курсовая работа [233,0 K], добавлен 24.11.2008Краткая история развития микропроцессора как важнейшего элемента любого персонального компьютера. Сущность, значение, функциональные возможности процессоров. Особенности микропроцессоров Pentium, Intel i80386 и i80486. Применение и значение сопроцессора.
курсовая работа [27,5 K], добавлен 09.11.2010История развития, устройство и назначение центральных процессоров Intel. Особенности архитектуры различных поколений ЦП. Характеристики и общая схема чипсетов материнских плат разных серий. Повышение их функциональности и уровня производительности.
реферат [121,4 K], добавлен 08.11.2015Исследование функциональных возможностей табличных процессоров в информационном обеспечении управления. Структура информационной системы на предприятии. Понятие электронных таблиц и табличных процессоров. Тенденции развития табличных процессоров.
курсовая работа [45,4 K], добавлен 15.03.2012Назначение, основные функции процессора, его конвейерная архитектура (pipelining) и технология изготовления. Отличительные особенности архитектуры фон Неймана. Характеристика основных видов процессоров. Структура и функционирование микропроцессоров.
курсовая работа [142,6 K], добавлен 07.05.2010Семь поколений процессоров. Технология производства микропроцессоров. Сравнительные характеристики процессоров AMD и Intel на ядре Clarkdale. Квазимеханические решения на основе нанотрубок. Одновременная работа с Firefox и Windows Media Encoder.
дипломная работа [2,2 M], добавлен 11.06.2012Краткий обзор процессоров фирмы intel. Основные характеристики i80286: режим реальной адресации, режим защиты, сопроцессор i80287, условия программирования i80287. Основные характеристики i80386: 32-битная архитектура, способы адресации.
курсовая работа [29,9 K], добавлен 23.06.2007Идея создания электронной таблицы, возникшая у студента Гарвардского университета Дэна Бриклина в 1979 г. Экранная копия VisiCalc - первая электронная таблица. Создание программ Lotus 1-2-3 и Excel. Основные функции современных табличных процессоров.
реферат [309,7 K], добавлен 23.11.2016Понятие и содержание, внутренняя структура и элементы, история появления и эволюция электронных таблиц. Области и специфика применения табличных процессоров, оценка их возможностей и функциональные особенности. Ввод и операции над основными переменными.
презентация [245,1 K], добавлен 13.08.2013Стратегия развития процессоров Intel. Структурная организация современных универсальных микропроцессоров. Особенности многоядерной процессорной микроархитектуры Intel Core, Intel Nehalem, Intel Westmere. Серверные платформы Intel c использованием Xeon.
реферат [36,5 K], добавлен 07.01.2015Характеристика одноядерных и двухъядерных процессоров линейки Intel, история их развития. Знакомство с особенностями микропроцессоров, предназначенных для систем с поддержкой симметричной многопроцессорности. Pentium II и следующие поколения Pentium.
реферат [30,0 K], добавлен 27.11.2013Понятие электронных таблиц и табличных процессоров, их основные элементы. Типы данных и функции, используемых в электронных таблицах. Сравнительный обзор наиболее популярных табличных процессоров Microsoft Excel и OpenOffice Calc, области их применения.
реферат [464,7 K], добавлен 14.12.2010Поток данных при прерывании командного цикла. Способы синхронизации ступеней конвейера. Техническая основа реализации RISC. Преимущества RISC-архитектуры процессоров по сравнению с CISC. Основные методы минимизации приостановок работы конвейера.
шпаргалка [24,1 K], добавлен 24.04.2011