Математический аппарат компьютерной графики

Элементы аналитической геометрии. Проецирование трехмерных объектов. Преобразования, связанные с системой координат. Двумерные матричные преобразования. Трехмерные матричные преобразования. Вопросы эффективности вычислений. Алгоритмы растровой графики.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 09.06.2015
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

.

Для эти уравнения определяют точки, находящиеся между и . Специальной проверки требует случай, когда отрезок параллелен стороне окна. Пусть координата x точки пересечения найдена, тогда

Рассмотрим алгоритм Коэна-Сазерленда для отсечения отрезков прямых. Этот алгоритм позволяет легко определять нахождение отрезка полностью внутри или полностью снаружи окна, и если так, то его можно рисовать или не рисовать, не заботясь об отсечении по границе окна.

Для работы алгоритма вся плоскость в которой лежит окно разбивается на девять подобластей или квадрантов, как показано на рис. 30.

Рис. 30. Разбиение на подобласти в методе Коэна-Сазерленда

Окну соответствует область обозначенная кодом 0000. Конечным точкам отрезка приписывается 4-битный код “вне/внутри” в зависимости от нахождения отрезка в соответствующей подобласти. Каждому биту присваивается значение 1 в соответствии со следующим правилом.

Бит 1 - точка находится выше окна;

Бит 2 - точка находится ниже окна;

Бит 3 - точка находится справа от окна;

Бит 4 - точка находится слева от окна;

Иначе биту присваивается нулевое значение. Значения этих битов для конечных точек отрезков легко определить по знакам соответствующих разностей: - для 1-го бита, - для 2-го бита, - для 3-го бита и - для 4-го бита. Отрезок рисуется без отсечения, то есть принимается целиком, если оба кода равны 0000, или ИЛИ, где ИЛИ - бинарная операция. Отрезок отбрасывается без вычислений если оба его конца находятся выше, ниже, правее или левее окна. В этих случаях соответствующие биты в обоих кодах равны 1 и это легко определить, умножив эти коды по бинарной операции И. Если результат операции И равен 0000, то отрезок нельзя ни принять ни отбросить, так как он может пересекаться с окном. В этом случае применяется последовательное разделение отрезка, так что на каждом шаге конечная точка отрезка с ненулевым кодом вне/внутри заменяется на точку, лежащую на стороне окна или на прямой содержащей сторону. При этом порядок перебора сторон окна не имеет значения.

Далее приводится текст процедуры на языке Паскаль, с довольно изящной реализацией этого метода. Отрезок задан граничными точками , , границы окна: xmin, xmax, ymin, ymax. Используются вызовы процедур: Accept_Check - выполняет проверку на полное принятие отрезка; Reject_Check - на полный отказ от рисования отрезка; Outcodes - вычисляет 4-х битовый код “вне/внутри”; SWAP - меняет местами координаты двух точек.

Procedure CLIP(x1,x2,y1,y2,xmin,xmax,ymin,ymax: real);

type

outcode = array[1..4] of boolean;

var

accept,reject,done: boolean;

outcode1,outcode2,

outcode3,outcode4:outcode;{коды вне/внутри}

begin

accept:= false;

reject:= false;

done:= false;

repeat

Outcodes(x1,y1,outcode1);

Outcodes(x2,y2,outcode2);

{проверка на отбрасывание}

reject:=Reject_Check(outcode1,outcode2);

if reject then done:= true

else

begin {возможно принятие целиком}

accept:=Accept_Check(outcode1,outcode2);

if accept then done:=true

else

begin {разделить отрезок}

{если P1 внутри, то с помощью SWAP сделать снаружи}

if not((outcode1[1])or(outcode1[2])or

(outcode1[3])or(outcode1[4])) then SWAP;

{теперь P1 перемещается в точку пересечения}

if outcode1[1] then

begin {отбросить верхнюю часть}

x1:=x1+(x2-x1)*(ymax-y1)/(y2-y1);

y1:=ymax;

end

else if outcode1[2] then

if outcode1[1] then

begin {отбросить нижнюю часть}

x1:=x1+(x2-x1)*(ymin-y1)/(y2-y1);

y1:=ymin;

end

else if outcode1[3] then

begin {отбросить правую часть}

y1:=x1+(y2-y1)*(ymax-x1)/(x2-x1);

x1:=xmax;

end

else if outcode1[4] then

begin {отбросить левую часть}

y1:=x1+(y2-y1)*(ymin-x1)/(x2-x1);

x1:=xmin;

end;

end;

end;

until done;

if accept then

Line(x1,y1,x2,y2); {нарисовать отрезок}

end;{procedure}

Нормирующие преобразования видимого объема

Зададим центральную перспективную проекцию с центром проекции в начале координат, как показано на рис. 31. Для реальных вычислений необходимо также определить значения минимальной и максимальной отсекающих плоскостей по координате : и , соответственно.

Границы экрана, или окна вывода задают четыре отсекающих плоскости сверху, снизу, справа и слева. Таким образом, изображение, получаемое с помощью нашей проекции может находится только внутри усеченной пирамиды образованной упомянутыми плоскостями, причем объекты вне этой пирамиды не проецируются на экран, т.е. являются невидимыми для наблюдателя. Видимым объемом называется замкнутая область пространства, объекты внутри которой проецируются на экран. В случае центральной перспективной проекции видимым объемом является усеченная пирамида.

Рис 31. Видимый объем, вид сбоку

Одной из важных задач компьютерной графики является нахождение эффективного способа отсечения трехмерных объектов по границе видимого объема и удаление невидимых ребер и граней. Например, в случае центральной перспективы, для решения задачи отсечения пришлось бы для каждой грани или ребра находить точки пересечения с плоскостями усеченной пирамиды, что в общем случае потребовало бы значительных вычислений. Решение заключается в преобразовании видимого объема к виду, в котором вычисления проводились бы значительно проще. В общем идея заключается в том, чтобы свести преобразование центральной перспективы математически к виду параллельной проекции, в которой, очевидно, операция взятия проекции сводится к простому отбрасыванию у точек координаты .

Будем решать задачу в два этапа. В начале приведем видимый объем к нормированному виду. При этом значение , а границы по осям и лежат в диапазоне , как показано на рис. 32.

Нормирующим преобразованием в этом случае будет операция масштабирования, которая для произвольной точки выражается в виде:

,

Рис. 32. Нормированный видимый объем

где , и соответственно, .

Нормированный видимый объем позволяет с большей легкостью решать задачу отсечения по границе. А именно, в этом случае может применяться модифицированный вариант алгоритма Коэна-Сазарленда в котором вместо 4-битовых используются 6-битовые коды вне/внутри для описания нахождения точки в соответствующей области пространства. Уравнения боковых граней видимого объема сильно упрощаются, например, для правой отсекающей плоскости уравнение запишется , а для левой боковой и т.д. . Тогда для некоторой точки условие установления бита в единицу будет следующим:

1-й бит:

2-й бит:

3-й бит:

4-й бит:

5-й бит:

6-й бит:

Для эффективного решения задачи удаления невидимых ребер/граней преобразуем нормированный видимый объем к каноническому виду, как показано на рис. 33.

Рис. 33. Канонический видимый объем

Это достигается с помощью матрицы

.

После применения матрицы нормированный видимый объем становится прямоугольным параллелепипедом, что позволяет перейти от центральной перспективной к параллельной проекции. Легко проверить, что как показано на рис. 32, 33: , , , , а также, например, .

Итак, нормирующие преобразования видимого объема могут производиться за два шага.

1 шаг - преобразование к нормированному видимому объему и отсечение по 3-х мерному алгоритму Коэна-Сазерленда.

2 шаг - преобразование к прямоугольному параллелепипеду с помощью матрицы и удаление скрытых поверхностей при условии равенства координат и .

Алгоритмы удаления невидимых ребер и граней

Алгоритмы удаления невидимых граней могут быть условно поделены на два класса в зависимости от принципов, заложенных для их реализации. Первый класс - это алгоритмы работающие в пространстве объекта. Это означает, что для определения видимости данной грани сравнивается ее взаимное расположение со всеми остальными гранями в трехмерной сцене. Пусть N - количество граней в трехмерной сцене. Для построения трехмерной сцены в этом случае необходимо сравнить положение каждой грани с оставшимися, что требует порядка операций. Например, пусть количество граней в трехмерной сцене , тогда время работы алгоритмов этого класса порядка 1,000,000 операций.

Другой класс алгоритмов - работающих в пространстве изображения, основан на нахождении точки ближайшей грани которую пересекает луч зрения, проходящий через заданную точку на растре. Поскольку число точек на растровом экране фиксировано, то алгоритмы этого класса менее чувствительны к увеличению количества объектов в трехмерной сцене. Пусть n - число точек на растровом экране. Тогда количество операций, необходимых для построения трехмерной сцены будет порядка . Например, для экранного разрешения 320200 точек, 64000, тогда количество операций для 1000 граней будет порядка 64,000,000. Выбор класса алгоритма может зависеть от особенностей конкретной задачи, а также от способов реализации алгоритма.

Рассмотрим алгоритм удаления невидимых граней с использованием

z-буфера, который является одним из наиболее часто используемых в современных приложениях компьютерной графики. Он работает в пространстве изображения и применяется в таких популярных графических библиотеках как OpenGL и Direct3D.

Алгоритм работает в параллельной проекции. Пусть размеры окна вывода или экрана составляют X точек в ширину и Y точек в высоту. В качестве z-буфера заведем двумерный прямоугольный массив чисел по размерности совпадающий с окном вывода или экрана, т.е. XY. В z-буфере будут храниться текущие значения z-координат каждого пиксела.

В начале работы алгоритма в z-буфер заносятся значения, соответствующие бесконечности. Каждая грань трехмерного объекта, представленная в виде многоугольника, преобразуется в растровую форму. При разложении в растр для каждой точки многоугольника вычисляется значение ее z-координаты. Если z-координата оказалась меньше чем текущее значение в z-буфере, то в z-буфер заносится z-координата точки, и на экране рисуется точка цветом текущего многоугольника. После разложения в растр всех многоугольников изображение трехмерной сцены построено.

Рассмотрим способ ускоренного вычисления z-координат при разложении многоугольников в растр. Запишем уравнение плоскости, образуемой многоугольником в пространстве:.

Выразим z-координату точки: . Пусть . Найдем z-координату для соседней точки . Для соседнего пиксела на экране , тогда , отсюда следует, что . Таким образом, вычисление z-координаты соседнего пиксела сводится к одной операции вычитания.

Рассмотрим далее алгоритм удаления невидимых граней методом сортировки по глубине (авторы: Ньюэлл, Ньюэлл, Санча). Часть этого метода работает в пространстве объекта, а часть в пространстве изображения. Он также работает для параллельной проекции, то есть с учетом того что произведено перспективное преобразование. Введем определение пространственной оболочки.

Пространственной оболочкой трехмерного объекта называется минимальный прямоугольный параллелепипед, целиком содержащий внутри себя данный объект. Аналогично можно определить двумерную и одномерную пространственные оболочки.

Метод состоит из трех основных шагов:

Упорядочение всех многоугольников в соответствии с их наибольшими z-координатами.

Разрешение всех неопределенностей, которые возникают при перекрытии z-оболочек многоугольников.

Преобразование каждого из многоугольников в растровую форму, производимое в порядке уменьшения их наибольшей z-координаты.

Ближайшие многоугольники преобразуются в растровую форму последними и закрывают более отдаленные многоугольники, так как изображаются поверх предыдущих. Реализация пунктов 1 и 3 достаточно очевидна. Рассмотрим подробнее пункт 2.

Пусть многоугольник P после упорядочения находится в конце списка, то есть является наиболее удаленным. Все многоугольники Q чьи оболочки перекрываются с z-оболочкой P должны проходить проверку по пяти тестам (шагам). Если на некотором шаге получен утвердительный ответ, то P сразу преобразуется в растровую форму.

Пять тестов:

x-Оболочки многоугольников не перекрываются, поэтому сами многоугольники тоже не перекрываются.

y-Оболочки многоугольников не перекрываются, поэтому сами многоугольники тоже не перекрываются.

P полностью расположен с той стороны от плоскости Q, которая дальше от точки зрения (этот тест дает положительный ответ как показано на рис. 36 а).

Q полностью расположен с той стороны от плоскости P, которая ближе к точке зрения. Этот тест дает положительный ответ как показано на рис. 36 b).

Проекции многоугольников на плоскости xOy, то есть на экране, не перекрываются (это определяется сравнением ребер одного многоугольника с ребрами другого).

Рис. 35. -оболочки треугольников P и Q - пересекаются

а) b)

Рис. 36. Взаимные расположения треугольников в пространстве

Если во всех пяти тестах получен отрицательный ответ, то P - действительно закрывает Q. Тогда меняем P и Q в списке местами. В случае, как показано на рис. 37, алгоритм зацикливается.

Рис. 37

Для избежания зацикливания вводится ограничение: многоугольник, перемещенный в конец списка (т.е. помеченный), не может быть повторно перемещен. Вместо этого многоугольник P или Q разделяется плоскостью другого на два новых многоугольника. Эти два новых многоугольника включаются в соответствующие места упорядоченного списка, и алгоритм продолжает работу.

В отличие от универсальных алгоритмов узкоспециализированный алгоритм удаления невидимых граней выпуклых тел позволяет производить вычисления гораздо быстрее. Он работает для центральной перспективной проекции. Рассмотрим работу этого алгоритма на примере как изображено на рис. 38.

Рис. 38. Пересечения прямой AB с плоскостями граней призмы

Пусть наблюдатель находится в точке A. Выберем точку B, которая заведомо является внутренней для выпуклой фигуры, в данном случае призмы. Выберем некоторую грань, про которую мы хотим узнать видима она из точки A, или не видима. Построим плоскость, в которой лежит выбранная грань. Найдем точку пересечения плоскости и прямой, которая образована отрезком AB. Если точка пересечения прямой и плоскости лежит внутри отрезка AB, то делаем вывод, что данная грань видима. Если точка пересечения находится вне отрезка AB, то грань не видима. В случае, когда прямая и плоскость параллельны, считаем что грань не видима.

Модели расчета освещенности граней трехмерных объектов

Основной характеристикой света в компьютерной графике является яркость. Поскольку яркость является субъективным понятием, основанным на человеческом восприятии света, то для численных расчетов применяется термин интенсивность, что соответствует яркости и является энергетической характеристикой световой волны. В расчетах интенсивность обычно принимает значения от 0 до 1. При этом интенсивность равна нулю при полном отсутствии света, а значение 1 соответствует максимальной яркости.

В компьютерной графике для расчета освещенности граней объектов зачастую применяется трехкомпонентная цветовая модель “Красный, Зеленый, Синий”, что в английском варианте записывается RGB (Red, Green, Blue). Эта модель позволяет задавать любой цвет в виде трех компонент интенсивностей базовых цветов: красного, зеленого и синего. Интенсивность отраженного света точек пространственных объектов вычисляют отдельно для каждой их трех составляющих цветовых компонент, а затем объединяют в результирующую тройку цветов. Далее будем считать что примеры расчета интенсивностей отраженного света применяются к каждому их трех базовых цветов.

При расчете освещенности граней применяют следующие типы освещения и отражения света от поверхностей.

Рассеянное

Диффузное

Зеркальное

Рис. 39. Расчет интенсивности отраженного света

Интенсивность освещения граней трехмерных объектов рассеянным светом считается постоянной в любой точке пространства. Она обусловлена множественными отражениями света от всех объектов в пространстве. При освещении трехмерного объекта рассеянным светом интенсивность отраженного света вычисляется как , где - интенсивность падающего света, - коэффициент рассеянного отражения, зависит от отражающих свойств материала грани.

Для расчета интенсивности диффузного отражения света может применяться закон косинусов Ламберта: , где - угол падения, рассчитывается как угол между направлением на источник света и нормалью к поверхности. Пусть направление на источник света представлено единичным вектором , а - единичный вектор нормали. Тогда - скалярное произведение векторов. Тогда , где - коэффициент диффузного отражения.

Вычисление зеркально отраженного света производится также с помощью различных эмпирических моделей, которые позволяют учитывать реальную шероховатость поверхностей. Например, в модели, предложенной Фонгом, интенсивность зеркально отраженного света рассчитывается в зависимости от степени отклонения от истинного значения вектора зеркально отраженного луча света. Пусть - вектор зеркально отраженного луча света, а - вектор, определяющий направление на наблюдателя. Тогда интенсивность зеркально отраженного света по модели Фонга рассчитывается так: , где - угол между векторами и . Константа n - может принимать значения от 1 до примерно 200, в зависимости от отражающей способности материала. Большим значениям n соответствует большая степень “гладкости” или “зеркальности” поверхности. Если векторы и - нормированы, то формула преобразуется к виду:

Интенсивность отраженного света уменьшается обратно пропорционально квадрату расстояния от источника до наблюдателя. Поэтому можно записать формулу расчета интенсивности отраженного луча света для трех составляющих: рассеянного, диффузного и зеркального отражения с учетом расстояния:

где - расстояние от точки отражения до наблюдателя, а - некоторая константа. Иногда, для ускорения вычислений, берут не вторую, а первую степень расстояния .

В системах компьютерной визуализации также учитываются такие свойства материалов отражающих поверхностей как прозрачность, преломление и свечение. Степень прозрачности материала грани может описываться с помощью константы, принимающей значение от нуля до единицы, причем значение 1 соответствует полной непрозрачности материала грани. Пусть интенсивности отраженного света двух перекрывающихся поверхностей равны и . Пусть первая поверхность находится ближе к наблюдателю и является полупрозрачной с коэффициентом прозрачности . Тогда суммарная интенсивность отраженного света может быть вычислена как взвешенное среднее: .

Модели для вычисления эффектов преломления и свечения здесь не рассматриваются.

Кубические сплайны

Рассмотрим задачу проведения гладких кривых по заданным граничным точкам, или задачу интерполяции. Поскольку через две точки можно провести сколь угодно много гладких кривых, то для решения этой задачи необходимо ограничить класс функций, которые будут определять искомую кривую. Математическими сплайнами называют функции, используемые для аппроксимации кривых. Важным их свойством является простота вычислений. На практике часто используют сплайны вида полиномов третьей степени. С их помощью довольно удобно проводить кривые, которые интуитивно соответствуют человеческому субъективному понятию гладкости. Термин “сплайн” происходит от английского spline - что означает гибкую полоску стали, которую применяли чертежники для проведения плавных кривых, например, для построения обводов кораблей или самолетов.

Рассмотрим в начале сплайновую функцию для построения графика функции одной переменной. Пусть на плоскости задана последовательность точек ,, причем . Определим искомую функцию , причем поставим два условия:

Функция должна проходить через все заданные точки: , .

Функция должна быть дважды непрерывно дифференцируема, то есть иметь непрерывную вторую производную на всем отрезке .

На каждом из отрезков , будем искать нашу функцию в виде полинома третьей степени:

Рис. 40. Сплайновая функция

Задача построения полинома сводится к нахождению коэффициентов . Поскольку для каждого из отрезков необходимо найти 4 коэффициента , то всего количество искомых коэффициентов будет . Для нахождения всех коэффициентов определим соответствующее количество уравнений. Первые уравнений получаем из условий совпадения значений функции во внутренних узлах ,. Следующие уравнений получаем аналогично из условий совпадения значений первых и вторых производных во внутренних узлах. Вместе с первым условием получаем уравнений. Недостающие два уравнения можно получить заданием значений первых производных в концевых точках отрезка . Так могут быть заданы граничные условия.

Перейдем к более сложному случаю - заданию кривых в трехмерном пространстве. В случае функционального задания кривой возможны многозначности в случае самопересечений и неудобства при значениях производных равных . Ввиду этого будем искать функцию в параметрическом виде. Пусть - независимый параметр, такой что . Кубическим параметрическим сплайном назовем следующую систему уравнений:

Координаты точек на кривой описываются вектором , а три производные задают координаты соответствующего касательного вектора в точке. Например, для координаты :

Одним из способов задания параметрического кубического сплайна является указание координат начальной и конечной точек, а также векторов касательных в них. Такой способ задания называется формой Эрмита. Обозначим концевые точки и , а касательные векторы в них и . Индексы выбраны таким образом с учетом дальнейшего изложения.

Будем решать задачу нахождения четверки коэффициентов , так как для оставшихся двух уравнений коэффициенты находятся аналогично. Запишем условие для построения сплайна:

, , , (*)

Перепишем выражение для в векторном виде:

.

Обозначим вектор строку и вектор столбец коэффициентов , тогда .

Из (*) следует, что , . Для касательных ,

,

. Отсюда получаем векторно-матричное уравнение:

Эта система решается относительно нахождением обратной матрицы размером .

Здесь - эрмитова матрица, - геометрический вектор Эрмита. Подставим выражение для нахождения : . Аналогично для остальных координат: , .

Выпишем в явном виде формулы для вычисления координат точек сплайна. Так как , то умножая справа на , получаем:

Четыре функции в скобках называются функциями сопряжения.

Форму кривой, заданной в форме Эрмита, легко изменять если учитывать, что направление вектора касательной задает начальное направление, а модуль вектора касательной задает степень вытянутости кривой в направлении этого вектора, как показано на рис. 41.

Рис. 41. Параметрический сплайн в форме Эрмита. Вытянутость кривой вправо обеспечивается тем, что

Рассмотрим форму Безье, которая отличается от формы Эрмита способом задания граничных условий, а именно, вместо векторов и вводятся точки (и соответствующие им радиус векторы) и , как показано на рис.42, такие что выполняются условия: и

Рис. 42. Параметрический сплайн в форме Безье

Переход от формы Эрмита к форме Безье осуществляется преобразованием:

,(*)

где - геометрический вектор Безье. Подставляя это в выражение для , получаем

.

Полезным свойством сплайнов в форме Безье является то что кривая всегда лежит внутри выпуклой оболочки, образованной четырехугольником . Это свойство можно доказать, пользуясь тем, что в выражении (*) коэффициенты принимают значения от 0 до 1 и их сумма равна единице.

Заметим, что матрица вида

- называется матрицей Безье

Список литературы

Ньюмен, Спрулл, Основы интерактивной машинной графики, М. Мир, 1976.

Энджел Й. Практическое введение в машинную графику, Радио и Связь, 1984.

А. Вэн-Дэм, Дж. Фоли, Основы интерактивной машинной графики, т.1-2, М. Мир, 1985.

Е.В. Жикин, А.В.Боресков, Компьютерная графика. Динамика, реалистические ихображения, М., Диалог-МИФИ, 1995, 1997.

Л. Аммерал, Машинная графика на языке С, в 4-х томах, изд-во Сол. Систем, 1992.

Компьютер обретает разум. Пер. с англ. Под ред. В.Л.Стефанюка, М. Мир, 1990.

Роджерс, алгоритмические основы машинной графики. М. Мир, 1989.

Грайс, Графические средства персональных компьютеров, М., Мир, 1980.

Роджерс, Адамс, Математические основы машинной графики, М. Машиностроение, 1985.

Гилой, Интерактивная машинная графика, М., Мир, 1981.

Ф. Препарата, М. Шеймос, Вычислительная геометрия: Введение, М. Мир, 1989.

А.Фокс, М. Пратт, Вычислительная геометрия, М., Мир, 1982.

А.Б.Боресков, Е.В.Шикина, Г.Е.Шикина, Компьютерная графика: первое знакомство, Под ред. Е.В.Шикина, М., Финансы и статистика, 1996.

А.В.Фролов, Г.В.Фролов, Графический интерфейс GDI в MS WINDOWS, Москва, Изд-во Диалог-МИФИ, 1994.

Майкл Ласло, Вычислительная геометрия и компьютерная графика на С++, Москва, Бином, 1997.

Ю.Тихомиров, Программирование трехмерной графики, С.-Пб.: БХВ_Санкт-Петербург,1999.

А.Хонич, Как самому создать трехмерную игру. М.:МИКРОАРТ, 1996.

М.Маров, 3D Studio MAX 2.5: справочник - СПб: «Питер», 1999. - 672 с.

А.Ла Мот, Д.Ратклифф и др. Секреты программирования игр/ Перев с англ. - СПб: Питер, 1995. - 720 с.

Н. Томпсон, Секреты программирования трехмерной графики для Windows 95. Перев с англ. - СПб: Питер, 1997. - 352 с.

Размещено на Allbest.ru

...

Подобные документы

  • Теоретический анализ сущности и видов компьютерной графики - специальной области информатики, занимающейся методами и средствами создания, преобразования, обработки, хранения и вывода на печать изображений с помощью цифровых вычислительных комплексов.

    презентация [641,9 K], добавлен 29.05.2010

  • Исследование видов программного обеспечения для мультимедиа и средств редактирования. Описания редакторов векторной и растровой графики. Анализ методов преобразования изображений. Технологии баз данных, требуемые для графики. Преобразование текста в речь.

    презентация [154,7 K], добавлен 11.10.2013

  • Рассмотрение областей применения компьютерной графики. Изучение основ получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. Ознакомление с особенностями растровой и векторной графики. Обзор программ фрактальной графики.

    реферат [192,9 K], добавлен 15.04.2015

  • Методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Основные понятия компьютерной графики. Особенности применения растровой, векторной и фрактальной графики. Обзор форматов графических данных.

    реферат [49,1 K], добавлен 24.01.2017

  • Суть принципа точечной графики. Изображения в растровой графике, ее достоинства. Обзор наиболее известных редакторов векторной графики. Средства для работы с текстом. Программы фрактальной графики. Форматы графических файлов. Трехмерная графика (3D).

    дипломная работа [764,7 K], добавлен 16.07.2011

  • Трехмерная графика как раздел компьютерной графики, совокупность приемов и инструментов, предназначенных для изображения объемных объектов. Сферы применения 3D графики. Процесс моделирования 3D объектов. Объемы вычислений при моделировании, расчет сцены.

    реферат [1,4 M], добавлен 01.01.2015

  • Понятие растра и растровой графики. Аффинные преобразования на плоскости и в пространстве. Цветовые модели RGB, MCYK. Алгоритмы вывода линий и фигур, устранения ступенчатости, удаления невидимых линий, закраски фигур. Графические эффекты, анимация.

    лекция [281,0 K], добавлен 26.07.2013

  • Представление графической информации в компьютере. Понятие пикселя и растрового изображения. Редактор растровой графики Photoshop. Инструменты выделения. Механизм выделения областей. Геометрические контуры выделения. Эффект растровой графики шум.

    контрольная работа [1,4 M], добавлен 01.02.2009

  • Определение понятия трехмерной компьютерной графики. Особенности создания 3D-объектов при помощи булевых операций, редактируемых поверхностей, на основе примитивов. Моделирование трехмерных объектов при помощи программного пакета Autodesk 3ds Max.

    дипломная работа [4,2 M], добавлен 13.04.2014

  • Рассмотрение понятия компьютерной графики; характеристика ее видов - растровой, векторной, фрактальной, трехмерной. Описание интерфейса и основных инструментов графического программного обеспечения - Adobe Photoshop, Corel Draw, Autodesk 3ds Max.

    реферат [387,8 K], добавлен 02.01.2012

  • Возможности применения растровой, векторной и фрактальной компьютерной графики. История создания рекламы. Использование интерактивных графических систем в рекламе. Создания макета календаря с помощью векторного графического редактора Adobe Illustrator.

    курсовая работа [1,6 M], добавлен 20.10.2014

  • Ознакомление с понятием компьютерной графики. Области применения конструкторской и рекламной графики, компьютерной анимации. Рассмотрение преимущества графической визуализации бизнес-процессов. Особенности кольцевой, биржевой и лепестковой диаграмм.

    реферат [94,6 K], добавлен 02.02.2016

  • Технология компьютерной графики, форматы графических файлов. Общие сведения о компании и программных продуктах Adobe Systems Inc, элементы интерфейса. Краткое описание учебника Adobe Photoshop CS3, программное обеспечение, используемое для его создания.

    дипломная работа [32,1 K], добавлен 23.06.2010

  • Ознакомление с историей возникновения логотипов, их видами, функциями, формами и влиянием цветов на человека. Создание логотипа компьютерной фирмы в программах Adobe Photoshop CS5 с помощью растровой графики и CorelDRAW X5 с помощью векторной графики.

    курсовая работа [5,6 M], добавлен 25.03.2011

  • Представление графических данных. Растровая, векторная и фрактальная виды компьютерной графики. Цвет и цветовые модели: метод кодирования цветовой информации для ее воспроизведения на экране монитора. Основные программы для обработки растровой графики.

    реферат [429,7 K], добавлен 01.08.2010

  • Общая характеристика растровой, векторной и фрактальной компьютерной графики, преимущества и недостатки. Определение параметров технической реализуемости автоматизации ввода и оцифровки изобразительной информации. Оценка фотореалистичности изображения.

    презентация [785,4 K], добавлен 26.07.2013

  • Сущность и основные принципы реализации компьютерной графики, разновидности компьютерных изображений и их отличительные признаки. Оценка достоинств и недостатков векторной и растровой графики, особенности и закономерности их применения в Интернете.

    контрольная работа [20,8 K], добавлен 05.02.2010

  • Виды и способы представления компьютерной информации в графическом виде. Отличительные особенности растровой и векторной графики. Масштабирование и сжатие изображений. Форматы графических файлов. Основные понятия трехмерной графики. Цветовые модели.

    контрольная работа [343,5 K], добавлен 11.11.2010

  • Понятие и виды компьютерной графики. Применение спецэффектов в кинематографе. История развития компьютерной графики. Изменение частоты киносъемки с помощью спецэффектов. Виды компьютерной графики как способ хранения изображения на плоскости монитора.

    реферат [34,8 K], добавлен 16.01.2013

  • Описание и изучение техники построения плоских и трехмерных изображений чертежей машиностроительных деталей средствами компьютерной графики: втулка, гайка, штуцер. Выполнение упрощенного теоретического чертежа судна на плоскости: бок, корпус, полуширота.

    курсовая работа [832,6 K], добавлен 15.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.