Структура суперскалярного микропроцессора

Преимущества конвейерной архитектуры центрального процессора. Структура и функции суперскалярного программно-управляемого универсального устройства, используемого для цифровой обработки дискретной или аналоговой информации хранящейся на компьютере.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 10.06.2015
Размер файла 419,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

по дисциплине: Компьютерные системы

СТРУКТУРА СУПЕРСКАЛЯРНОГО МИКРОПРОЦЕССОРА

Выполнил:

Голубовский О.И.

Конвейерная архитектура (англ. pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифровка команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера.

После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени.

Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по-прежнему необходимо выполнять выборку, дешифровку и т. д.), и для исполнения m команд понадобится n*m единиц времени, при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь nm единиц времени.

Факторы, снижающие эффективность конвейера:

1. Простой конвейера, когда некоторые ступени не используются (например, адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами);

2. Ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд - out-of-order execution);

3. Очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Некоторые современные процессоры имеют более 30 ступеней в конвейере, что повышает производительность процессора, но, однако, приводит к увеличению длительности простоя (например, в случае ошибки в предсказании условного перехода). Не существует единого мнения по поводу оптимальной длины конвейера: различные программы могут иметь существенно различные требования.

Рис. - Структура суперскалярного микропроцессора:

Суперскалярная архитектура выражается в способности выполнения нескольких машинных инструкций за один такт процессора путем увеличения числа исполнительных устройств. Появление этой технологии привело к существенному увеличению производительности, в то же время существует определенный предел роста числа исполнительных устройств, при превышении которого производительность практически перестает расти, а исполнительные устройства простаивают. Частичным решением этой проблемы являются, например, технология Hyper-threading.

На рис. показаны основные компоненты суперскалярного микропроцессора: функциональные модули выполнения операций с плавающей (FPU) и фиксированной (ALU) точкой, устройство загрузки/сохранения, файлы регистров, раздельная кэш-память команд и данных, а также вспомогательные модули, обеспечивающие динамическое планирование вычислительного процесса в устройстве связи с кэш-памятью 2-го уровня, блок переупорядочивания команд и блок предварительной дешифрации.

Функции блоков микропроцессора:

1. Блок выборки и декодирования команд ВД обеспечивает чтение команд их КЭШ, их декодирование, преобразование и запись в буфер команд БК. Команды обрабатываются блоком ВД в порядке их следования в программе;

2. Буфер команд БК представляет собой ассоциативную память, в которой команды представлены в трехадресном формате. Поскольку в системе команд i80x86 мало РОН (всего 8), то из-за этого между командами возникают ложные зависимости по данным. Для устранения этих зависимостей в МП Р6 введено 40 дополнительных регистров, которые недоступны программисту. Они используются аппаратурой для временного хранения результатов. Преобразование команд системы i80x86 в трехадресный формат и переименование регистров производится блоком ВД. Каждая команда в БК сопровождается блоком событий БС, в котором отмечаются следующие состояния команды: готовность каждого операнда, готовность команды к исполнению, готовность результата и др.;

3. Центральным блоком МП Р6 является блок планирования и выполнения команд ПВ. Именно он выполняет команды в порядке их готовности. ПВ содержит несколько АЛУ и устройств обращения к памяти. За один такт ПВ способен одновременно запустить на исполнение до пяти команд и передать в БК до пяти результатов.

Выборка готовых команд из БК производится путем ассоциативного опроса блока БС всех команд, а размещение нескольких команд по устройствам ПВ осуществляется в соответствии с определенным алгоритмом планирования. Одним из наиболее простых для аппаратной реализации является алгоритм FIFO (первым пришел - первым ушел).

При получении в ПВ каждого нового результата адрес его размещения используется как ассоциативный признак для полей буфера команд. Если одна или несколько команд откликнулись на этот признак, значит, эти команды зависят по данным от выполненной команды.

В блоках БС откликнувшихся команд устанавливаются биты и готовности операндов, а, если готовыми оказались оба операнда, то устанавливается и бит готовности для исполнения всей команды.

Это позволяет сформировать очередной набор "готовых" команд для следующего такта работы ПВ.

Чтобы блок ПВ мог выполнять за один такт до 3...5 команд необходимо, чтобы в БК находилось до 20...30 команд. По статистике среди такого объема команд в среднем имеется 4...5 команд условных переходов. Следовательно в БК находится некоторая трасса выполнения команд. Выбор таких наиболее вероятных трасс является новой функцией МП с непоследовательным выполнением команд.

Эта функция выполняется в блоке ВД на основе расширенного до 512 входов буфера истории переходов.

Поскольку реально вычисленный в ПВ адрес перехода не всегда совпадает с предсказанным в блоке ВД, то вычисление в ПВ выполняется условно, т. е., результат записывается в регистр временного хранения. Только после того, как установлено, что переход выполнен правильно, блок удаления команд УК выводит из БК все выполненные команды, расположенные за командой условного перехода, преобразует их в формат системы i80x86 и производит запись результатов по адресам, указанным в исходной программе. Блоки ВД, ПВ и УК совместно составляют конвейер из 12 этапов, однако все три части этого конвейера работают практически независимо, взаимодействуя только через БК. Следовательно, такой конвейер можно считать неблокируемым, так как остановка любой его части не прекращает работу других частей.

Вывод

процессор суперскалярный компьютер

По крайней мере два обстоятельства ограничивают эффективность использования суперскалярных архитектур. Во-первых, есть ограничения на степень параллелизма на уровне команд, даже если применяется самая совершенная техника суперскалярных вычислений. Первое ограничение проистекает из условных переходов. Другое следует из того, что размер окна исполнения (число активных команд, могущих исполняться параллельно) ограничивает возможный присущий программе параллелизм, так как не рассматривается параллельное исполнение команд, находящихся на расстоянии, превышающем размер окна. Во-вторых, сложность суперскалярного процессора возрастает как количество параллельно исполняемых команд и даже быстрее. Вероятнее всего, что пределом распараллеливания при суперскалярной обработке является запуск одновременно на исполнение в каждом такте 7-8 команд.

Размещено на Allbest.ru

...

Подобные документы

  • Микропроцессор как программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки. Его внутреннее устройство и значение, выполняемые функции. Принципы обработки данных.

    презентация [2,9 M], добавлен 05.02.2015

  • Назначение, основные функции процессора, его конвейерная архитектура (pipelining) и технология изготовления. Отличительные особенности архитектуры фон Неймана. Характеристика основных видов процессоров. Структура и функционирование микропроцессоров.

    курсовая работа [142,6 K], добавлен 07.05.2010

  • Управление взаимодействием всех устройств ЭВМ. История создания и развития производства процессора. Структура центрального процессора. Регистры общего назначения. Обозначения популярных моделей процессоров Intel и AMD. Команды центрального процессора.

    реферат [111,2 K], добавлен 25.02.2015

  • Изучение основных структурных элементов компьютера - электронного устройства, которое выполняет операции ввода информации, хранения и ее обработки по определенной программе. Функции центрального процессора, запоминающего устройства, носителей информации.

    реферат [15,9 K], добавлен 18.01.2012

  • Комплексные характеристики возможностей микропроцессора, базовая структура системы. Понятие архитектуры микропроцессора. Классификации микропроцессоров по типу архитектуры. Особенности программного и микропрограммного управления, режимы адресации.

    реферат [100,7 K], добавлен 20.09.2009

  • Анализ выбора цифрового сигнального процессора и структурной схемы устройства обработки информации. Расчет надежности устройства и производительности обмена данных, разработка ленточного графика. Обзор особенностей радиального и межмодульного интерфейса.

    дипломная работа [1,8 M], добавлен 20.05.2012

  • Понятия и принцип работы процессора. Устройство центрального процессора. Типы архитектур микропроцессоров. Однокристальные микроконтроллеры. Секционные микропроцессоры. Процессоры цифровой обработки сигналов. Эволюция развития микропроцессоров Intel.

    реферат [158,8 K], добавлен 25.06.2015

  • Распараллеливание операций, кэширование памяти и расширение системы команд как способы совершенствования архитектуры и роста производительности компьютеров. Внутренняя структура конвейера центрального процессора Pentium i486. Корпус и колодки ЦП Intel.

    презентация [281,2 K], добавлен 27.08.2013

  • Представление информации в компьютере, история его развития, принципы работы, основные блоки и дополнительные устройства. Функции микропроцессора и сопроцессора, контроллеров и шин. Блок-схема устройства компьютера, разновидности и применение программ.

    курсовая работа [501,6 K], добавлен 14.12.2010

  • Общий принцип работы аналого-цифровых преобразователей (АЦП). Принцип работы интерфейса USB. Функциональная и электрическая схемы АЦП с интерфейсом USB. Описание и принцип работы устройства ввода аналоговой информации, технические характеристики.

    дипломная работа [725,6 K], добавлен 16.01.2009

  • Обобщенная структура центрального процессора. Основные характеристики и классификация устройств управления. Структура арифметико-логического устройства для сложения, вычитания и умножения чисел с фиксированной запятой. Параллельные вычислительные системы.

    шпаргалка [688,3 K], добавлен 24.06.2009

  • Применение цифровых микросхем для вычисления, управления и обработки информации. Назначение микропроцессора и устройств микропроцессорной системы, их структурная и принципиальная схемы. Системная шина процессора и распределение адресного пространства.

    курсовая работа [1,5 M], добавлен 29.02.2012

  • Понятие и отличительные черты аналоговой и цифровой информации. Изучение единиц измерения цифровой информации: бит (двоичная цифра) и байт. Особенности передачи, методы кодирования и декодирования текстовой, звуковой и графической цифровой информации.

    реферат [479,4 K], добавлен 22.03.2010

  • Разработка устройства ввода аналоговой информации (напряжения в диапазоне 0-100 мВ) в персональный компьютер через LPT-порт с предварительным ее сохранением в памяти устройства. Его структурная схема. Алгоритм работы программы чтения данных в ПК.

    курсовая работа [1,9 M], добавлен 25.12.2012

  • Аппаратный узел, выполняющий задачу преобразования цифровой информации с ее шифрованием по определенному алгоритму. Структура шифрующе-вычисляющего устройства с использованием языка высокоуровневого описания аппаратуры VHDL. Диаграмма потока данных.

    реферат [18,7 K], добавлен 24.09.2010

  • Анализ информации, обрабатываемой на объекте, и программно-аппаратных средств обработки информации. Организационные методы контроля доступа. Программно-аппаратные и технические устройства защиты, датчикового контроля, видеонаблюдения и сигнализации.

    реферат [291,7 K], добавлен 22.11.2014

  • Структура процессора Pentium, суперскалярность, основные особенности архитектуры. Организация конвейера команд, правила объединения. Дополнительные режимы работы процессора. Источники аппаратных прерываний. Формат ММХ команды. Процессор Pentium 4, схемы.

    лекция [4,0 M], добавлен 14.12.2013

  • Структурная схема компьютера. Основные характеристики процессора - устройства, предназначенного для обработки информации и управления процессом обработки. Способы хранения информации. Описание, назначение и принципы работы устройств ввода и вывода данных.

    презентация [862,1 K], добавлен 20.07.2011

  • Понятие архитектуры персонального компьютера, компоновка частей компьютера и связи между ними. Составляющие системного блока ПК. Функции центрального процессора, системной платы, оперативного запоминающего устройства, видеокарты и жесткого диска.

    реферат [30,7 K], добавлен 28.01.2014

  • Логические функции и структура микропроцессоров, их классификация. История создания архитектуры микропроцессоров x86 компании AMD. Описание К10, система обозначений процессоров AMD. Особенности четырёхъядерных процессоров с микроархитектурой К10 и К10.5.

    курсовая работа [28,9 K], добавлен 17.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.