Современные микропроцессоры
Тенденции развития современных технологий изготовления процессоров. Микропроцессор – центральное устройство ЭВМ (или вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования нужной информации.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 06.10.2015 |
Размер файла | 653,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки
Российской Федерации
Курганский государственный университет
Кафедра автоматизации производственных процессов
Реферат
На тему: "Современные микропроцессоры"
Выполнил Тихомиров Никита Григорьевич
Проверил Скобелев И.В.
Курган 2014
Введение
Развитие персональных компьютеров в мире повлекло за собой и развитие микропроцессоров. Тенденции развития современных технологий изготовления процессоров и их применения с каждым годом набирают все большие обороты. Применяются новые нано-технологии, увеличивается число ядер на одном кристалле, растет разрядность процессоров, увеличивается кэш память всех уровней, применяются новые наборы инструкций и многое другое. Объектом изучения является микропроцессор и его основные функции. Предметом изучения является виды современных микропроцессоров.
В основе любой ЭВМ лежит использование микропроцессоров. Это самое важное устройство любого компьютера. Именно от него зависит уровень производительности любого компьютера, и не только персонального. Микропроцессоры окружают человека везде. Любая электроника в современном обществе снабжена своим микропроцессором.
Определение микропроцессора
Микропроцессор - центральное устройство (или комплекс устройств) ЭВМ (или вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования информации, управляет вычислительным процессом и координирует работу устройств системы (запоминающих, сортировальных, ввода - вывода, подготовки данных и др.). В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называют многопроцессорными. Наличие нескольких процессоров ускоряет выполнение одной большой или нескольких (в том числе взаимосвязанных) программ. Основными характеристиками микропроцессора являются быстродействие и разрядность. Быстродействие - это число выполняемых операций в секунду. Разрядность характеризует объём информации, который микропроцессор обрабатывает за одну операцию: 8-разрядный процессор за одну операцию обрабатывает 8 бит информации, 32-разрядный - 32 бита, 64-разрядный - 64 бита. Скорость работы микропроцессора во многом определяет быстродействие компьютера. Он выполняет всю обработку данных, поступающих в компьютер и хранящихся в его памяти, под управлением программы, также хранящейся в памяти. Персональные компьютеры оснащают центральными процессорами различных мощностей.
Функции процессора:
· обработка данных по заданной программе путем выполнения арифметических и логических операций;
· программное управление работой устройств компьютера.
Модели процессоров включают следующие совместно работающие устройства:
Устройство управления (УУ). Осуществляет координацию работы всех остальных устройств, выполняет функции управления устройствами, управляет вычислениями в компьютере.
Арифметико-логическое устройство (АЛУ). Так называется устройство для целочисленных операций. Арифметические операции, такие как сложение, умножение и деление, а также логические операции (OR, AND, ASL, ROL и др.) обрабатываются при помощи АЛУ. Эти операции составляют подавляющее большинство программного кода в большинстве программ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. В процессоре может быть несколько АЛУ. Каждое способно исполнять арифметические или логические операции независимо от других, что позволяет выполнять несколько операций одновременно. Арифметико-логическое устройство выполняет арифметические и логические действия. Логические операции делятся на две простые операции: "Да" и "Нет" ("1" и "0"). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.
AGU (Address Generation Unit) - устройство генерации адресов. Это устройство не менее важное, чем АЛУ, т.к. оно отвечает за корректную адресацию при загрузке или сохранении данных. Абсолютная адресация в программах используется только в редких исключениях. Как только берутся массивы данных, в программном коде используется косвенная адресация, заставляющая работать AGU. процессор вычислительный программа
Математический сопроцессор (FPU). Процессор может содержать несколько математических сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высокоточные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления. Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.
Дешифратор инструкций (команд). Анализирует инструкции в целях выделения операндов и адресов, по которым размещаются результаты. Затем следует сообщение другому независимому устройству о том, что необходимо сделать для выполнения инструкции. Дешифратор допускает выполнение нескольких инструкций одновременно для загрузки всех исполняющих устройств.
Кэш-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале. Для хранения этих инструкций необходим совсем небольшой объём памяти. Если инструкции в процессор поступают достаточно быстро, то микропроцессор не будет тратить время на ожидание. Таким образом экономиться время на выполнение инструкций. Но для самых быстродействующих микропроцессоров этого недостаточно. Решение данной проблемы заключается в улучшении организации памяти. Память внутри микропроцессора может работать со скоростью самого процесс
1. Кэш первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов.
2. Кэш второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня.
3. Основная память. Намного больше по объёму, чем кэш-память, и значительно менее быстродействующая.
Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обязательно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.
Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.
Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.
Типы шин:
Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.
Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.
Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).
BTB (Branch Target Buffer) - буфер целей ветвления. В этой таблице находятся все адреса, куда будет или может быть сделан переход. Процессоры Athlon еще используют таблицу истории ветвлений (BHT - Branch History Table), которая содержит адреса, по которым уже осуществлялись ветвления.
Регистры - это внутренняя память процессора. Представляют собой ряд специализированных дополнительных ячеек памяти, а также внутренние носители информации микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.
Некоторые важные регистры имеют свои названия, например:
1. сумматор - регистр АЛУ, участвующий в выполнении каждой операции.
2. счетчик команд - регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти.
3. регистр команд - регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные - для хранения кодов адресов операндов.
Микропроцессоры
Архитектура х 86 была изобретена в Intel в 1978 году. Шли годы, архитектура развивалась, становилась не только быстрее, но и гибче, и с каждым релизом приобретала все более широкий набор встроенных инструкций. Это триумфальное шествие длится уже свыше 35 лет.
INTEL 8086
Сначала Intel создал 8086 и свой первый 16-разрядный микропроцессор. И сказал Intel: "Пусть будет х 86"! И стал он х 86. И увидел Intel, что х 86 - это хорошо… В общем, впоследствии таким образом был создан целый мир, вместе с Интернетом, объединившим все население Земли в один общий дом.
Конечно, Intel - не бог, но в каждой шутке есть доля истины. Создатель чипов дал рождение процессору х 86. И даже теперь, спустя 30 лет со времени скромного старта в 1978 году, х 86 продолжает эволюционировать. В том же году Intel создала 3-микронный процессор 8086, работающий с частотой 5 МГц и разогнанный до 10 МГц в последующей версии. 8086 содержал 29000 транзисторов - всего в 4 раза больше, чем выпущенный в 1976 году 8085. Это был первый 16-разрядный микропроцессор Intel, который и положил начало 16-разрядной эре, хотя и не являлся первым в мире 16-битным процессором. Способность поддерживать софт, написанный для 8008, 8080 и 8085 и 1 МБ ОЗУ предвосхитили мгновенный и безусловный успех 8086.
Год выпуска: 1978 Тактовая частота: 4.77 МГц - 10 МГц
INTEL 286
8086 и последовавший за ним 8088 завершили 70-е годы и открыли первое действие на сцене 80-х. А затем Intel порадовал мировое сообщество новым процессором - 80286, созданным по 1,5-микронной технологии и обладающим грандиозным числом транзисторов (134000 штук) и 16 МБ памяти. Первые 286 работали с тактовой частотой 6 МГц, которая, как и в случае оригинального 8086, была впоследствии удвоена. Однако 286 сразу же в два раза превысил по эффективности 8086, осуществив таким образом удвоение эффективности для архитектуры х 86, что впоследствии больше не было осуществлено ни разу. На протяжении десятилетия 286-е процессоры стали синонимом IBM PC. По оценкам Intel, за 6 лет на 286-х процессорах в мире было выпущено около 15 миллионов ПК.
Вместе с 286 процессором был введен так называемый защищенный режим работы, при котором контролируется объем доступной оперативной памяти. Хотя эта функция позволяла выполнять прямую адресацию всех 16 МБ памяти, но разместить в 286 алгоритм переключения из защищенной моды в совместимую моду реального режима оказалось совсем не просто, поэтому эта функция не получила широкого распространения.
Год выпуска: 1982 Тактовая частота: 6.0 МГц - 12.5 МГц
РОЖДЕНИЕ КОНКУРЕНТА - AMD AM286
Многое было достигнуто в последние годы в результате лицензионного соглашения между Intel и AMD по использованию последней архитектуры х 86. Но чтобы посмотреть как все начиналось, вернемся в 1982 - именно в этом году AMD подписала контракт на производство и продажу процессоров 8086 и 8088. А уже на следующий год AMD выпустила Am286 - точный (вплоть до числа пинов) клон интеловского 286, но работающий с более высокой частотой. Новый процессор Am286 от AMD был не просто быстрее - он был быстрее почти в два раза. Его тактовая частота составляла 20 МГц. Так что Am286 вполне можно рассматривать как "первый удар" в конкурентной борьбе, которая длится между двумя этими компаниями вот уже почти 30 лет.
Год выпуска: 1983 Тактовая частота: 8 МГц - 20 МГц
INTEL I486
К концу 80-х годов Intel успела выпустить еще один процессор - 486DX. Он стал первым процессором со встроенным математическим сопроцессором и первым, преодолевшим планку в 1 миллион транзисторов - число транзисторов в нем составило 1.2 млн. Подобно 386, 486DX мог адресовать до 4 ГБ памяти, имел встроенный кэш, оптимизированный набор команд и шину большей пропускной способности. Новый процессор нашел применение не только в ПК, но и в серверах.
Большинство игроков старой школы, скорее всего, сохранили в памяти самые теплые воспоминания о часах, проведенных за миссиями различных компьютерных игр на процессорах 486DX2-66. Но с новыми требованиями, предъявляемыми 3D-графикой, 486-й процессор справлялся уже с трудом.
AMD AM386
AMD также не сидела сложа руки: нанеся Intel первый пробный удар в виде Am286, в 1991 году компания выводит на рынок новый процессор AM386, являющийся точной копией 386, но с тактовой частотой выше, чем у интеловского оригинала. Кроме того, впервые был предпринят такой маркетинговый ход, как использование логотипа "Windows Compatible", означавшего совместимый с ОС Windows продукт, который Нью-Йорк Таймс назвала "неприкрытым намерением завоевать доверие к клону интеловских микропроцессоров от AMD".
Intel приложила все усилия, чтобы воспрепятствовать продаже AMD новых процессоров, утверждая, что соглашение по x86 касалось только 80286 и предыдущих моделей. AMD выиграла процесс, и, хотя Intel уже выпустила в продажу следующий - 486 CPU, Am386 выдавал ту же производительность за существенно меньшую цену. Возмущение рынка продаж привело к укреплению позиций AMD в качестве реального конкурента Intel.
Год выпуска: 1991 Тактовая частота: 12 МГц - 40 МГц
INTEL PENTIUM
Пятое поколение интеловских процессоров - Pentium - не только получило новое название, но и подняло архитектуру х 86 на новый уровень. Не имея возможности запатентовать серийные номера, Intel вводит название Pentium, исключив таким образом копирование числового номера ее нового 586 чипа другими производителями.
В Pentium был воплощен ряд усовершенствований, направленных на решение нескольких проблем в предыдущих процессорах, заметно ограничивавших их производительность. Главными нововведениями стали 64-разрядная шина, два исполнительных модуля, значительно улучшенный модуль вычислений с плавающей точкой (FPU) и более быстрая тактовая частота. Начальная частота у Pentium составляла 60 МГц, но последующие процессоры уже могли работать на частотах вплоть до 233 МГц. За время производства Pentium технология изготовления этих процессоров сменилась с 0.8 до 0.3 мк, тем самым число транзисторов было увеличено с 3.1 до 4.5 млн.
Год выпуска: 1993 Тактовая частота: 60МГц - 233МГц
INTEL PENTIUM PRO
Несмотря на незначительное обновление спецификаций, Pentium Pro был заметно улучшен по сравнению с оригинальным Pentium. Фактически, Pentium Pro продемонстрировал не просто набор улучшений, а новую архитектуру, а приставка Pro "добавила" еще один миллион транзисторов (теперь их стало 5.5 млн). Но более важным стало добавление первичной кэш-памяти в 256 КБ, которая потом была увеличена до 1 МБ. Пока еще не интегрированная непосредственно в ядро процессора, кэш-память работала на той же частоте, что и CPU - между 150 и 200 МГц.
Но введение новой кэш-памяти помимо положительных моментов, принесло и проблемы процессору: размещалась она на отдельном кристалле, что вело к удорожанию производства. Тем не менее, выпуск 32-разрядных Pentium Pro играл заметную роль - началась эпоха заката 16-разрядных процессоров и ОС.
Год выпуска: 1995 Тактовая частота: 150 МГц - 200 МГц
CYRIX CX5X86
Все еще будучи новичком на рынке х 86 процессоров, Cyrix доказала, что ее первый шаг не был случайностью: за Cx486 последовал выход новой успешной серии Cx5x86. Cyrix ориентировалась на потребителей, которые искали подходящую замену своим 486. И, в отличие от интеловских Pentium, процессор Cx5x86 был совместим с 486 Socket 3 на системных платах. Тем самым Intel отдала Cyrix на откуп целый сегмент рынка.
Проблемы со стабильностью вынудили Cyrix отключить ряд возможностей, которые рекламировались для новой серии, включая предсказание ветвлений и другие функции усиления производительности. Однако, продажи Cx5x86 на рынке не были длительными и закончились преждевременно, что, впрочем, не было связано с какими-то проблемами с реализацией. Просто Cyrix не желала ограничивать сегмент рынка продаж своего нового процессора 6x86, который был выпущен всего 6 месяцев спустя после 5x86.
AMD AM5X86
Предлагая легкие возможности обновления для 486 компьютеров, Am5x86 от AMD был в действительности 486DX с внутренним множителем x4. Это позволяло процессору достигать быстродействия в 133 МГц и обеспечивать совместимость с большинством существующих под 486 системных плат. При этом производительность Am5x86 была не хуже, чем у Pentium 75.
Но что действительно отличало Am5x86, так это первое использование оценки производительности (PR - Performance Rating). В дальнейшем эта тактика сыграет еще большую роль. AMD продавала эти процессоры под маркой Am5x86-P75, предоставляя покупателю информацию о том, что это эквивалент Pentium 75.
AMD K5
Intel сама "помогла" конкурентам, заключив лицензионное соглашение, которое открыло путь к разработке и выпуску клонов их продукции. Но эту ошибку компания не собиралась повторять, приступив к выпуску линейки Pentium. В результате AMD и все остальные не могли теперь просто производить клоны интеловской продукции и продавать в качестве собственной. В силу этого и был создан K5 от AMD - как первая попытка собственной разработки процессоров следующего поколения. Но, как и предполагалось, еще в процессе проектирования возник ряд проблем, что вызвало задержку выпуска чипа. В итоге К 5 вышел в свет только в 1996 году. Технически более совершенный по отношению к Pentium, К 5 содержал 4.5 млн транзисторов, 5 модулей целочисленных операций, значительно более мощный модуль предсказателя ветвлений и 16 КБ кэш (в два раза больше, чем у Pentium). К сожалению для AMD, принципиальным недостатком K5 стала низкая тактовая частота и поэтому процессор не смог нанести ожидаемый нокаут Pentium. Соответственно, не получилось и сногсшибательного коммерческого успеха.
Год выпуска: 1996 Тактовая частота: 75 МГц - 133 МГц
CYRIX 6X86 AND MII
Изначально процессор Cyrix 6x86 получил название MI и был совместим с интеловским Pentium и по вольтажу, и по пинам. Однако, это был не перепроектированный клон, а оригинальный проект, который не повторял Pentium на все 100%. Ранние версии с 16 КБ кэш показывали внушительную производительность, превосходящую в ряде сценариев тестовых испытаний Pentium. Это привело к тому, что Cyrix ввел собственную оценку производительности по отношению к Pentium, несмотря на сравнительно слабую производительность при операциях с плавающей точкой. Более позднюю версию 6x86 переименовали в MII. Переработка MII обеспечила меньшее тепловыделение процессора, что позволяло разогнать тактовую частоту, но иногда вело к дополнительным затратам, так как требовались шины с нестандартными частотами 75 МГц или 83 МГц для системных плат с Socket 7.
INTEL PENTIUM II И PENTIUM II XEON
Чтобы увеличить объемы производства, Intel перемещает вторичный кэш во внешний чип. Такое исполнение подразумевало работу кэш-памяти на скорости в два раза меньшей скорости процессора. В последних Pentium II Intel пыталась компенсировать снижение скорости увеличением кэша с 256 КБ до 512 КБ. Это делалось не только с целью снижения цены (в начале выпуска Pentium II стоил немалые деньги), но также чтобы упаковать процессор в единый контактный блок для системных плат с новым процессорным разъёмом Slot1. Pentium II впервые был произведен по 0.35-мкм технологии, которая впоследствии была заменена на 0.25-мкм. Он содержал 7.5 млн транзисторов и мог адресовать 64 ГБ памяти. Вдобавок, Pentium II стал родоначальником первых процессоров Xeon, реализованных в 1998 году. Но, в отличие от Pentium II, у Xeon объем L2 кэша достиг 2 МБ.
INTEL CELERON
Intel сделала отличный шаг на рынке профессиональных и высокопроизводительных серверных процессоров, выпустив Pentium II и Xeon. Но компании недоставало процессора начального уровня, ориентированного на огромный сектор рынка ПК. Intel заполнила эту нишу, выпустив в 1998 году процессор Celeron со значительно меньшей производительностью и с намного более "бюджетной" ценой.
Позже, в игровых версиях х 86 несколько моделей Celeron стали настоящим искушением для любителей сэкономить на процессоре путем его разгона. Но первые Celeron на ядре Pentium II вызвали прохладную реакцию у основной массы пользователей. В первую очередь, это было обусловлено отсутствием вторичного кэша, позволявшего увеличить производительность. Позже Intel реализовала другую версию с вторичным КЭШем объемом 128 КБ, что в некоторых случаях позволило увеличить производительность в два раза. Комбинация полнокровного вторичного кэша со скоростью чипа и способностью к разгону сделали Celeron хитом среди массы разгоняемых процессоров.
Далее, линейка Celeron сопровождала главную линию процессоров Intel, при этом последующие Celeron были построены на архитектуре, близкой к Allendale и имели два ядра.
Год выпуска: 1998 Тактовая частота: 266 МГц - 3.2 ГГц
AMD K6-2 AND K6-2+
Продолжая успех К 6, K6-2 был выпущен компанией AMD в 1998 году. Он имел другой модуль ММХ и новые инструкции SIMD, известные как 3DNow! Эти нововведения на некоторое время сделали AMD лидером в среде 3D-приложений, пока Intel не "засверкал" опять с собственным набором команд SSE. Тем не менее, К 6-2 стал вполне привлекательным апгрейдом для считающих деньги владельцев системной платы с Super Socket 7. Позже AMD выпустил K6-2+, в котором добавил 128 КБ вторичной кэш-памяти и уменьшил технологический процесс с 250 нм до 180 нм.
Год выпуска: 1998 Тактовая частота: 233 МГц - 500 МГц
INTEL PENTIUM III И PENTIUM III XEON
В 1999 Intel выпускает Pentium III. Дополнительные инструкции SSE позволили выполнять до четырех вычислений одинарной точности с плавающей запятой одновременно, что повысило эффективность обработки 3D-изображений, потокового видео и других мультимедийных задач по сравнению с Pentium II.
Позже Intel выпустила Pentium III Coppermine. Coppermine имел интегрированные 256 КБ вторичной кэш-памяти, работающие с частотой ядра, удвоенный конвейер и другие улучшения, которые привели к повышению производительности в несколько раз по сравнению с первым Pentium III.
Другой PIII чип, названный Tualatin, имел более высокую тактовую частоту, больший объем кэш-памяти, меньший размер кристалла и более низкое энергетическое потребление. Tualatin обеспечил начальную структуру интеловских мобильных процессоров Pentium-M, которые позже привели к появлению Core i7.
Как и для Pentium III Xeon, интеловский процессор для серверов не отличался принципиально от аналогов для настольных компьютеров, хотя позже для PIII Xeon кэш-память была увеличена до 2 МБ и была реализована поддержка четырехядерной конфигурации.
Год выпуска: 1999 Тактовая частота: 450 МГц - 1.4 ГГц
AMD ATHLON (CLASSIC И THUNDERBIRD)
Вероятно, наиболее заметной серией центральных процессоров в истории AMD и, определенно, наиболее важной в недавней истории компании стала линейка Athlon, которая нанесла Intel довольно сокрушительный удар. Дирк Мейер, впоследствии ставший исполнительным директором AMD, руководил командой, которая разработала Athlon с вторичной кэш-памятью в 512 КБ. Стартовав с 500 МГц, AMD опередил Intel и первым покорил важный рубеж в 1 ГГц.
Через некоторое время AMD еще больше усовершенствовал Athlon и дал новой версии имя Thunderbird. Новая ревизия ядра вместе с повышением производительности L2 кэша и рядом других улучшений, сделали новый процессор еще более качественным. Вместе с этим AMD ввел Socket A (462) - один из наиболее успешных во все времена сокетов в системных платах.
Год выпуска: 1999 Тактовая частота: 500 МГц - 1.4 ГГц
AMD DURON
Занимать лидирующее положение по производительности - это только половина успеха, и поэтому в 2000 году в дополнение к интеловскому Celeron AMD выпускает процессор Duron и покоряет "бюджетный" сектор рынка. Первые Duron обладали медленной шиной со 100 МГц и урезанным кэшем, что и определяло их низкую стоимость. Duron выпускался только с 64 КБ вторичной кэш-памяти (в отличие от привычных к тому времени 256 или 512 КБ). Диапазон частот лежал в области от 600 МГц до 950 МГц.
Следующее поколение процессоров Duron производилось на базе архитектуры Athlon XP, в них также была добавлена поддержка инструкций SSE. Финальная версия Duron базировалась на Thoroughred Athlon XP и использовала более быструю шину (133 МГц) и тактовую частоту до 1.8 ГГц.
INTEL PENTIUM 4
Благодаря высокоэффективному дизайну, Pentium III пользовался большой популярностью. Если бы Intel продолжила совершенствование этой версии, AMD вряд ли смогла бы подняться так высоко. Но вместо этого Intel все больше внимания уделяла увеличению тактовой частоты, и для достижения этой цели в итоге ввела в Pentium 4 чрезвычайно длинную конвейерную архитектуру. С одной стороны, это действительно позволяло повышать тактовую частоту, с другой - появлялась большая вероятность того, что для выполнения команды потребуется результат предыдущей команды, а это означало перезагрузку конвейера.
Но Pentium 4 вовсе не был плох и он поддерживал наборы инструкций SSE2 и SSE3. А в комбинации с HyperThreading, Pentium 4 превосходно справлялся как с мультимедийными и контентными задачами, так и с кодами, оптимизированными под новое ядро. А использование графических карт для 3D-графики еще больше улучшало производительность, таким образом, процессор Р 4 заложил основу для развития игровых инструментов. Оверклокеры проявили большой интерес к ядру Northwood, выпущенному в 2002 году. С подходящей системной платой и памятью даже начинающие оверклокеры могли поднять тактовую частоту на 1 ГГц при воздушном охлаждении.
Но чтобы Pentium 4 действительно заблистал, потребовалось поднять тактовую частоту до рекордных цифр. Intel предполагала, что этого удастся добиться с ядром Prescott - первым чипом, изготовленным по 90 нм технологии. Но Prescott дал лишь незначительное повышение производительности, в противовес громким рекламным обещаниям, а в игровых тестах значительно уступал процессорам AMD.
Год выпуска: 2000 Тактовая частота: 1.40 ГГц - 3.8 ГГц
AMD ATHLON XP
Часть семейства Athlon, после ревизии XP и добавления инструкций SSE, стала еще одним агрессивным шагом в маркетинге AMD. XP поддерживал eXtreme Performance и прекрасно ладил с Windows XP. Кроме того, AMD вернулась к использованию системы Performance Rating (PR) для маркирования процессоров. Официально, PR от AMD должно было характеризовать производительность процессора XP по отношению к ядру Thunderbird, так что теоретически AMD Athlon XP 1800+ должен был иметь такую же производительность, как и Thunderbird на частоте 1.8 ГГц. Однако, на практике эта аббревиатура ошибочно использовалась гораздо шире, например, в качестве указателя на соответствующий интеловский процессор - во многом из-за совпадения аббревиатур "Pentium Rating" и "Performance Rating".
Другие версии процессора - Thoroughbred или T-Bred - были реализованы с изменением технологии изготовления со 180 нм до 130 нм. Позже модели также увеличили свои шины от 100 МГц (Thunderbird) и 133 МГц (XP) до 166 МГц (T-Bred).
Но самый популярный Socket A Athlon был создан на основе ядра Barton, появившегося в 2003 году и обещавшего огромные возможности разгона. В частности, интерес вызвала первая версия процессора - Barton 2500+, которая поставлялась с разблокированным множителем. При увеличении значения множителя большинство процессоров Barton 2500+ могли легко достигать производительности флагманской модели AMD 3200+.
Но не только процессоры Barton хорошо подходили для разгона: высокопроизводительные системные платы Asus A7N8X Deluxe и Abit NF7-S Rev2, на которые устанавливались эти процессоры, в то время были двумя самыми подходящими для этих целей. Когда AMD сделал блокировку множителя, эти и другие высокопроизводительные системные платы все равно позволяли работать 2500+ подобно 3200+ за счет увеличения тактовой частоты шины.
С технической стороны ядро Barton увеличило вторичную кэш-память до 512 КБ и нарастило число транзисторов с 37 млн до 54.3 млн.
Год выпуска: 2001 Тактовая частота: 650 МГц - 2.25 ГГц
AMD ATHLON 64
Вершиной успеха AMD стал 64-разрядный процессор Athlon 64, предназначенный для основной массы пользователей. В то время как инженеры Intel пытались создать процессор Р 4 на базе NetBurst, AMD занялась производством чипов с более эффективной архитектурой и интегрированным контроллером памяти.
Не без некоторых начальных усилий А 64 стал первым подходящим процессором для системных плат Socket 754, которые нуждались в поддержке двухканальной памяти и для сервер-ориентированной Socket 940, требовавшей буферизации памяти.
Хотя А 64 предложил собственную 64-разрядную основу, он был также полностью совместим с 32-битной кодировкой без какой-либо заметной потери в производительности. Это было очень важно для пользователей Windows, которые все еще жили в 32-разрядном мире (это все еще справедливо и сегодня, хотя у многих работают 64-разрядные ОС Vista и XP).
INTEL PENTIUM D
Невезучая архитектура NetBurst окончательно сдала свои позиции в последнем бренде Intel Pentium D. Процессоры Pentium D, содержащие два одноядерных процессора, трансформировались впоследствии в многоядерные модули. Не столь элегантный, как двуядерная разработка AMD, Pentium D предлагал приличную многозадачную производительность, хорошие возможности для разгона по сравнительно невысокой цене. Pentium D обеспечил приверженцам Intel уверенную альтернативу AMD.
Год выпуска: 2005 Тактовая частота: 2.66 ГГц - 3.73 ГГц
AMD ATHLON 64 X2
Продолжая доминировать на рынке настольных ПК, серия процессоров Athlon 64 X2 от AMD содержала два ядра в одном кристалле, совместно использующих интегрированный контроллер памяти. Эта внутренняя структура обмена данными обеспечивала огромное преимущество в производительности по сравнению с интеловской двуядерной конфигурацией, у которой ядра осуществляли коммуникацию через общую шину. В серии X2 были добавлены SSE3 команды, но, что более важно, AMD сохранила совместимость нового чипа с Socket 939.
INTEL CORE 2
Пробудившись от "спячки", Intel начинает штурмовать процессорный мир со своей новой архитектурой Core 2. Вместо концентрации на достижении максимальной тактовой частоты, Intel сфокусировался на более высокой производительности его процессорного конвейера. Это означало возврат к более низким тактовым частотам, но с другой стороны, повышало производительность процессоров. Но после того, как обнаружилась несостоятельность Prescott, средства массовой информации с осторожностью отнеслись к обещаниям Intel по поводу производительности Core 2. Но, к глубокому разочарованию AMD, Core 2 полностью соответствовал заявленным возможностям.
Первый Core 2 Duos буквально взорвал рынок со своими 167 млн транзисторов, 65 нм технологией, 2 МБ вторичной кэш-памяти и 1,066 МГц частотой шины. Несмотря на дебют с невысокими частотами 1.86 МГц и 2.13 МГц (Е 6300 и Е 6400 соответственно), производительность, а также агрессивная ценовая политика сделали Core 2 желанным и популярным.
Позднее Core 2 был переведен на 45 нм технологию изготовления. Так появилась версия Penryn, в которой 820 млн транзисторов было упаковано в четырехядерный процессор, работающий с частотой, достигающей 3.2 ГГц.
Год выпуска: 2006 Тактовая частота: 1.8 ГГц - 3.2 ГГц
AMD PHENOM
Передав пальму первенства в производительности интеловской архитектуре Core 2, AMD, тем не менее, надеялась осуществить рывок на рынке с будущим процессором Barcelona, который был впоследствии переименован в Phenom. Но ранние версии Phenom содержали багги и часто давали сбои в работе. А в затылок ему уже дышала интеловская архитектура Nehalem.
Нельзя сказать, чтобы Phenom был такой уж плохой архитектурой - у него, несомненно, имелись и собственные достоинства: несколько SIMD инструкций, включая MMX, Enhanced 3DNow!, SSE, SSE2, SSE3 и SSE4a, 4-ядерный процессор и неплохая производительность. Но все это несравнимо уступало уровню последних процессоров Intel, к тому же, AMD проиграл Intel в ценовой политике.
Год выпуска: 2007 Тактовая частота: 1.8 ГГц - 3.0 ГГц
INTEL CORE I7
Процессор Core i7 еще больше укрепил беспокойство AMD, которая все еще надеялась побороться за создание архитектуры, способной конкурировать с Core 2. Тем временем Core i7 (ранее известный под именем Nehalem) остался вне конкуренции.
А Intel тем временем окончательно отошел от традиционной шины в пользу QuickPath Interconnect, которая являлась аналогом HyperTransport от AMD. Это двухточечное межкомпонентное соединение (point-to-point interconnect) позволяет намного быстрее осуществлять связь между процессором и различными подсистемами. Правда, из-за этого оверклокерам пришлось "повышать квалификацию", в том числе осваивать несколько новых терминов, чтобы научиться грамотно осуществлять разгон.
Заключение
В конце 20 века человечество вступило на путь информационного общества. Но это общество невозможно представить без электроники, интернета, радио и телевиденья, мощных компьютеров и современных микропроцессоров.
Микропроцессор - центральное устройство (или комплекс устройств) ЭВМ (или вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования информации, управляет вычислительным процессом и координирует работу устройств системы (запоминающих, сортировальных, ввода - вывода, подготовки данных и др.).
Список литературы
1. http://www.hwp.ru/articles/Kratkaya_istoriya_protsessorov
2. http://www.fcenter.ru/online.shtml?articles/hardware/processors/22651
3. http://www.ngpedia.ru/id156352p1.html
4. http://ru.wikipedia.org/wiki/Intel_Core_2_Quad
Размещено на Allbest.ru
...Подобные документы
Микропроцессор - центральное устройство (или комплекс устройств) ЭВМ (или вычислительной системы), которое выполняет арифметические и логические операции, заданные программой. Тенденции развития современных микропроцессоров и их значимость для общества.
курсовая работа [50,5 K], добавлен 26.11.2010Архитектура ЭВМ и ее основные свойства. Классификационные признаки ЭВМ. Принципы цифрового представления информации, адресности, программного управления. Структура ЭВМ по Джону фон Нейману. Программная модель микропроцессора, классификация процессоров.
презентация [1,0 M], добавлен 09.11.2013Тенденции развития вычислительной техники. Важнейшие характеристики рабочего места и санитарно-гигиенические нормы. Техника безопасности при работе на персональном компьютере, его устройство и программное обеспечение. Будущее накопителей информации.
презентация [5,6 M], добавлен 12.07.2011Исследование функциональных возможностей табличных процессоров в информационном обеспечении управления. Структура информационной системы на предприятии. Понятие электронных таблиц и табличных процессоров. Тенденции развития табличных процессоров.
курсовая работа [45,4 K], добавлен 15.03.2012Изучение основных структурных элементов компьютера - электронного устройства, которое выполняет операции ввода информации, хранения и ее обработки по определенной программе. Функции центрального процессора, запоминающего устройства, носителей информации.
реферат [15,9 K], добавлен 18.01.2012Ознакомление с особенностями программной реализации алгоритмов преобразования одномерных массивов. Исследование развития вычислительной техники, которое подразумевает использование компьютерных и информационных технологий. Изучение интерфейса программы.
курсовая работа [1,0 M], добавлен 02.06.2017Логические функции и структура микропроцессоров, их классификация. История создания архитектуры микропроцессоров x86 компании AMD. Описание К10, система обозначений процессоров AMD. Особенности четырёхъядерных процессоров с микроархитектурой К10 и К10.5.
курсовая работа [28,9 K], добавлен 17.06.2011Основа современной компьютерной техники - микропроцессоры. Увеличение их быстродействия позволяет ставить перед техникой такие задачи, как моделирование сложных процессов, обработка больших объемов информации, обеспечение автономной работы устройств.
курсовая работа [2,6 M], добавлен 08.11.2010Современные микропроцессоры, обработка цифровой информации. Устройства для хранения данных, обмена информацией персонального компьютера, блоки питания, мониторы. Составление визитки, схемы, табулирование функции и построение графика в Microsoft Office.
курсовая работа [1,6 M], добавлен 12.09.2013Двоично-десятичный формат (BCD - Binary Coded Decimal). Преобразование ASCII формата в двоичный формат. Арифметические инструкции и флаги. Форматы арифметических данных. Выполнение арифметических операции. Сложение. Вычитание. Умножение. Деление.
доклад [16,2 K], добавлен 22.09.2008Построение современных центральных процессоров на основе циклического процесса последовательной обработки информации. Архитектура двойного конвейера с общим вызовом команд. Основная идея создания кэш-памяти. Характеристика процессоров Core и Phenom.
реферат [1,6 M], добавлен 30.12.2010Роль и практическое значение автоматизации вычислений и обработки данных. Представление информации в компьютере, сущность системы счисления. Перевод числа из одной системы счисления в другую. Арифметические операции в позиционных системах счисления.
контрольная работа [1,2 M], добавлен 23.10.2009Функционально законченное программное управляемое устройство обработки информации, в виде одной или нескольких больших или сверхбольших интегральных схем. Функции микропроцессора Pentium, основные параметры. Технология гиперконвейерной обработки.
учебное пособие [1,1 M], добавлен 09.02.2009Стратегия развития процессоров Intel. Структурная организация современных универсальных микропроцессоров. Особенности многоядерной процессорной микроархитектуры Intel Core, Intel Nehalem, Intel Westmere. Серверные платформы Intel c использованием Xeon.
реферат [36,5 K], добавлен 07.01.2015Логические узлы как основа устройства компьютера. Логические операции, позволяющие производить анализ получаемой информации и таблицы истинности. Условное высказывание, импликация, эквивалентность. Структура полного одноразрядного двоичного сумматора.
реферат [211,7 K], добавлен 14.12.2010Состояние российского компьютеростроения. Серийная продукция ЗАО "МЦСТ": микропроцессоры собственной разработки, процессорные модули и вычислительные комплексы на их базе. Характеристика разработок ГУП НПЦ "ЭЛВИС". Цифровые сигнальные процессоры.
курсовая работа [1015,4 K], добавлен 09.04.2013История и перспективы развития производства процессоров компьютеров. Основы работы центрального процессора. Характеристика многоядерных процессоров. Ведущие производители: Intel и AMD, их планы по выпуску новых процессоров. Советы по выбору CPU.
курсовая работа [2,8 M], добавлен 03.11.2011Основные понятия и назначение языка программирования СИ. Скалярные типы данных. Арифметические, логические и битовые операции над переменными целочисленного, вещественного, символьного, перечислимого типов. Примеры программ, выполняющие операции над ними.
презентация [269,9 K], добавлен 26.07.2013История создания и эволюция персональных компьютеров. Характеристика современных видов компьютеров, их приспособляемость к различным условиям эксплуатации. Тенденции развития микропроцессорных технологий. Примеры решения задач в среде Mathcad и AutoCAD.
курсовая работа [1,8 M], добавлен 13.04.2015Понятия и принцип работы процессора. Устройство центрального процессора. Типы архитектур микропроцессоров. Однокристальные микроконтроллеры. Секционные микропроцессоры. Процессоры цифровой обработки сигналов. Эволюция развития микропроцессоров Intel.
реферат [158,8 K], добавлен 25.06.2015