Big Data
Определение термина "Big Data" и его применение в работе с информацией огромного объема и разнообразного состава. Определение основных источников получения компаниями информации. Методики анализа массивов данных и технологии Big Data в разных отраслях.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.09.2015 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Big Data
Самое простое определение
Из названия можно предположить, что термин `большие данные` относится просто к управлению и анализу больших объемов данных. Согласно отчету McKinsey Institute `Большие данные: новый рубеж для инноваций, конкуренции и производительности` (Big data: The next frontier for innovation, competition and productivity), термин `большие данные` относится к наборам данных, размер которых превосходит возможности типичных баз данных (БД) по занесению, хранению, управлению и анализу информации. И мировые репозитарии данных, безусловно, продолжают расти. В представленном в середине 2011 г. отчете аналитической компании IDC `Исследование цифровой вселенной` (Digital Universe Study), подготовку которого спонсировала компания EMC, предсказывалось, что общий мировой объем созданных и реплицированных данных в 2011-м может составить около 1,8 зеттабайта (1,8 трлн. гигабайт) -- примерно в 9 раз больше того, что было создано в 2006-м.
Более сложное определение
Тем не менее `большие данные` предполагают нечто большее, чем просто анализ огромных объемов информации. Проблема не в том, что организации создают огромные объемы данных, а в том, что бульшая их часть представлена в формате, плохо соответствующем традиционному структурированному формату БД, -- это веб-журналы, видеозаписи, текстовые документы, машинный код или, например, геопространственные данные. Всё это хранится во множестве разнообразных хранилищ, иногда даже за пределами организации. В результате корпорации могут иметь доступ к огромному объему своих данных и не иметь необходимых инструментов, чтобы установить взаимосвязи между этими данными и сделать на их основе значимые выводы. Добавьте сюда то обстоятельство, что данные сейчас обновляются все чаще и чаще, и вы получите ситуацию, в которой традиционные методы анализа информации не могут угнаться за огромными объемами постоянно обновляемых данных, что в итоге и открывает дорогу технологиям больших данных.
Наилучшее определение
В сущности понятие больших данных подразумевает работу с информацией огромного объема и разнообразного состава, весьма часто обновляемой и находящейся в разных источниках в целях увеличения эффективности работы, создания новых продуктов и повышения конкурентоспособности. Консалтинговая компания Forrester дает краткую формулировку: `Большие данные объединяют техники и технологии, которые извлекают смысл из данных на экстремальном пределе практичности`.
Почему данные стали большими
Источников больших данных в современном мире великое множество. В их качестве могут выступать непрерывно поступающие данные с измерительных устройств, события от радиочастотных идентификаторов, потоки сообщений из социальных сетей, метеорологические данные, данные дистанционного зондирования земли, потоки данных о местонахождении абонентов сетей сотовой связи, устройств аудио- и видеорегистрации. Собственно, массовое распространение перечисленных выше технологий и принципиально новых моделей использования различно рода устройств и интернет-сервисов послужило отправной точкой для проникновения больших данных едва ли не во все сферы деятельности человека. В первую очередь, научно-исследовательскую деятельность, коммерческий сектор и государственное управление.
Рост объемов данных (слева) на фоне вытеснения аналоговых средств хранения (справа). Источник: Hilbert and Lуpez, `The world's technological capacity to store, communicate, and compute information, Science, 2011Global/
Несколько занимательных и показательных фактов:
· В 2010 году корпорации мира накопили 7 экзабайтов данных, на наших домашних ПК и ноутбуках хранится 6 экзабайтов информации.
· Всю музыку мира можно разместить на диске стоимостью 600 долл.
· В 2010 году в сетях операторов мобильной связи обслуживалось 5 млрд телефонов.
· Каждый месяц в сети Facebook выкладывается в открытый доступ 30 млрд новых источников информации.
· Ежегодно объемы хранимой информации вырастают на 40%, в то время как глобальные затраты на ИТ растут всего на 5%.
· По состоянию на апрель 2011 года в библиотеке Конгресса США хранилось 235 терабайт данных.
· Американские компании в 15 из 17 отраслей экономики располагают большими объемами данных, чем библиотека Конгресса США.
Рост вычислительной мощности компьютерной техники (слева) на фоне трансформации парадигмы работы с данными (справа). Источник: Hilbert and Lуpez, `The world's technological capacity to store, communicate, and compute information, Science, 2011Global
К примеру, датчики, установленные на авиадвигателе, генерируют около 10 Тб за полчаса. Примерно такие же потоки характерны для буровых установок и нефтеперерабатывающих комплексов. Только один сервис коротких сообщений Twitter, несмотря на ограничение длины сообщения в 140 символов, генерирует поток 8 Тб/сут. Если все подобные данные накапливать для дальнейшей обработки, то их суммарный объем будет измеряться десятками и сотнями петабайт. Дополнительные сложности проистекают из вариативности данных: их состав и структура подвержены постоянным изменениям при запуске новых сервисов, установке усовершенствованных сенсоров или развертывании новых маркетинговых кампаний.
Откуда данные поступают
Компании собирают и используют данные самых разных типов, как структурированные, так и неструктурированные. Вот из каких источников получают данные участники опроса (Cisco Connected World Technology Report):
· 74 процента собирают текущие данные;
· 55 процентов собирают исторические данные;
· 48 процентов снимают данные с мониторов и датчиков;
· 40 процентов пользуются данными в реальном времени, а затем стирают их. Чаще всего данные в реальном времени используются в Индии (62 процента), США (60 процентов) и Аргентине (58 процентов);
· 32 процента опрошенных собирают неструктурированные данные - например, видео. В этой области лидирует Китай: там неструктурированные данные собирают 56 процентов опрошенных.
Методики анализа больших данных
Существует множество разнообразных методик анализа массивов данных, в основе которых лежит инструментарий, заимствованный из статистики и информатики (например, машинное обучение). Список не претендует на полноту, однако в нем отражены наиболее востребованные в различных отраслях подходы. При этом следует понимать, что исследователи продолжают работать над созданием новых методик и совершенствованием существующих. Кроме того, некоторые из перечисленных них методик вовсе не обязательно применимы исключительно к большим данным и могут с успехом использоваться для меньших по объему массивов (например, A/B-тестирование, регрессионный анализ). Безусловно, чем более объемный и диверсифицируемый массив подвергается анализу, тем более точные и релевантные данные удается получить на выходе.
A/B testing. Методика, в которой контрольная выборка поочередно сравнивается с другими. Тем самым удается выявить оптимальную комбинацию показателей для достижения, например, наилучшей ответной реакции потребителей на маркетинговое предложение. Большие данные позволяют провести огромное количество итераций и таким образом получить статистически достоверный результат.
Association rule learning. Набор методик для выявления взаимосвязей, т.е. ассоциативных правил, между переменными величинами в больших массивах данных. Используется в data mining.
Classification. Набор методик, которые позволяет предсказать поведение потребителей в определенном сегменте рынка (принятие решений о покупке, отток, объем потребления и проч.). Используется в data mining.
Cluster analysis. Статистический метод классификации объектов по группам за счет выявления наперед не известных общих признаков. Используется в data mining.
Crowdsourcing. Методика сбора данных из большого количества источников.
Data fusion and data integration. Набор методик, который позволяет анализировать комментарии пользователей социальных сетей и сопоставлять с результатами продаж в режиме реального времени.
Data mining. Набор методик, который позволяет определить наиболее восприимчивые для продвигаемого продукта или услуги категории потребителей, выявить особенности наиболее успешных работников, предсказать поведенческую модель потребителей.
Ensemble learning. В этом методе задействуется множество предикативных моделей за счет чего повышается качество сделанных прогнозов.
Genetic algorithms. В этой методике возможные решения представляют в виде `хромосом`, которые могут комбинироваться и мутировать. Как и в процессе естественной эволюции, выживает наиболее приспособленная особь.
Machine learning. Направление в информатике (исторически за ним закрепилось название `искусственный интеллект`), которое преследует цель создания алгоритмов самообучения на основе анализа эмпирических данных.
Natural language processing (NLP). Набор заимствованных из информатики и лингвистики методик распознавания естественного языка человека.
Network analysis. Набор методик анализа связей между узлами в сетях. Применительно к социальным сетям позволяет анализировать взаимосвязи между отдельными пользователями, компаниями, сообществами и т.п.
Optimization. Набор численных методов для редизайна сложных систем и процессов для улучшения одного или нескольких показателей. Помогает в принятии стратегических решений, например, состава выводимой на рынок продуктовой линейки, проведении инвестиционного анализа и проч.
Pattern recognition. Набор методик с элементами самообучения для предсказания поведенческой модели потребителей.
Predictive modeling. Набор методик, которые позволяют создать математическую модель наперед заданного вероятного сценария развития событий. Например, анализ базы данных CRM-системы на предмет возможных условий, которые подтолкнут абоненты сменить провайдера.
Regression. Набор статистических методов для выявления закономерности между изменением зависимой переменной и одной или несколькими независимыми. Часто применяется для прогнозирования и предсказаний. Используется в data mining.
Sentiment analysis. В основе методик оценки настроений потребителей лежат технологии распознавания естественного языка человека. Они позволяют вычленить из общего информационного потока сообщения, связанные с интересующим предметом (например, потребительским продуктом). Далее оценить полярность суждения (позитивное или негативное), степень эмоциональности и проч.
Signal processing. Заимствованный из радиотехники набор методик, который преследует цель распознавания сигнала на фоне шума и его дальнейшего анализа.
Spatial analysis. Набор отчасти заимствованных из статистики методик анализа пространственных данных - топологии местности, географических координат, геометрии объектов. Источником больших данных в этом случае часто выступают геоинформационные системы (ГИС).
Statistics. Наука о сборе, организации и интерпретации данных, включая разработку опросников и проведение экспериментов. Статистические методы часто применяются для оценочных суждений о взаимосвязях между теми или иными событиями.
Supervised learning. Набор основанных на технологиях машинного обучения методик, которые позволяют выявить функциональные взаимосвязи в анализируемых массивах данных.
Simulation. Моделирование поведения сложных систем часто используется для прогнозирования, предсказания и проработки различных сценариев при планировании.
Time series analysis. Набор заимствованных из статистики и цифровой обработки сигналов методов анализа повторяющихся с течением времени последовательностей данных. Одни из очевидных применений - отслеживание рынка ценных бумаг или заболеваемости пациентов.
Unsupervised learning. Набор основанных на технологиях машинного обучения методик, которые позволяют выявить скрытые функциональные взаимосвязи в анализируемых массивах данных. Имеет общие черты с Cluster Analysis.
Visualization. Методы графического представления результатов анализа больших данных в виде диаграмм или анимированных изображений для упрощения интерпретации облегчения понимания полученных результатов.
Аналитический инструментарий
Некоторые из перечисленных в предыдущем подразделе подходов или определенную их совокупность позволяют реализовать на практике аналитические движки для работы с большими данными. Из свободных или относительно недорогих открытых систем анализа Big Data можно порекомендовать:
· 1010data;
· Apache Chukwa;
· Apache Hadoop;
· Apache Hive;
· Apache Pig!;
· Jaspersoft;
· LexisNexis Risk Solutions HPCC Systems;
· MapReduce;
· Revolution Analytics (на базе языка R для мат.статистики).
Особый интерес в этом списке представляет Apache Hadoop - ПО с открытым кодом, которое за последние пять лет испытано в качестве анализатора данных большинством трекеров акций. Как только Yahoo открыла код Hadoop сообществу с открытым кодом, в ИТ-индустрии незамедлительно появилось целое направление по созданию продуктов на базе Hadoop. В настоящее время практически все современные средства анализа больших данных предоставляют средства интеграции с Hadoop. Их разработчиками выступают как стартапы, так и общеизвестные мировые компании.
Визуализация
Наглядное представление результатов анализа больших данных имеет принципиальное значение для их интерпретации. Не секрет, что восприятие человека ограничено, и ученые продолжают вести исследования в области совершенствования современных методов представления данных в виде изображений, диаграмм или анимаций. Казалось бы, ничего нового здесь придумать уже невозможно, но на самом деле это не так. В качестве иллюстрации приводим несколько прогрессивных методов визуализации, относительно недавно получивших распространение.
· Облако тегов
Каждому элементу в облаке тега присваивается определенный весовой коэффициент, который коррелирует с размером шрифта. В случае анализа текста величина весового коэффициента напрямую зависит от частоты употребления (цитирования) определенного слова или словосочетания. Позволяет читателю в сжатые сроки получить представление о ключевых моментах сколько угодно большого текста или набора текстов.
· Кластерграмма
Метод визуализации, использующийся при кластерном анализе. Показывает как отдельные элементы множества данных соотносятся с кластерами по мере изменения их количества. Выбор оптимального количества кластеров - важная составляющая кластерного анализа.
· Исторический поток
Помогает следить за эволюцией документа, над созданием которого работает одновременно большое количество авторов. В частности, это типичная ситуация для сервисов wiki и сайта tadviser в том числе. По горизонтальной оси откладывается время, по вертикальной - вклад каждого из соавторов, т.е. объем введенного текста. Каждому уникальному автору присваивается определенный цвет на диаграмме. Приведенная диаграмма - результат анализа для слова «ислам» в Википедии. Хорошо видно, как возрастала активность авторов с течением времени.
· Пространственный поток
Эта диаграмма позволяет отслеживать пространственное распределение информации. Приведенная в качестве примера диаграмма построена с помощью сервиса New York Talk Exchange. Она визуализирует интенсивность обмена IP-трафиком между Нью-Йорком и другими городами мира. Чем ярче линия - тем больше данных передается за единицу времени. Таким легко, не составляет труда выделить регионы, наиболее близкие к Нью-Йорку в контексте информационного обмена.
Проблема больших данных в различных отраслях
big data информация данные
Технологии Big Data успешно реализуются в различных индустриях, на инфографике отражены главенствующие потребители: банки, телеком, ритейл, энергетика, медицина и управление городской инфраструктурой. Интересно, что при всем разнообразии задач вендорские решения в сфере Big Data пока не приобрели ярко выраженной отраслевой направленности. Рынок находится не просто на стадии активного формирования, а в самом начале этой стадии.
Несмотря на малый срок существования сектора Big Data, уже есть оценки эффективного использования этих технологий, основанные на реальных примерах. Один из самых высоких показателей относится к энергетике - по оценкам аналитиков, аналитические технологии Big Data способны на 99% повысить точность распределения мощностей генераторов. А здравоохранение США, благодаря Big Data, может сэкономить до $300 млрд.
Рассмотрим использование Big Data в электронной коммерции.
В любой отрасли -- туризм, финансы, спорт или розничная торговля -- сегодня трудно представить бизнес без присутствия в Интернете в том или ином виде. Всемирная паутина дала возможность достучаться до каждого, а значит, расширить свою клиентскую базу стало просто как никогда. Но как собирать и где хранить информацию о клиентах? Как быстро и эффективно использовать большие объемы данных для принятия решений?
Что может дать Big Data
Информация о клиенте -- вот за что не жалко отдать обе половины царства. И Big Data дает ответы на многие животрепещущие вопросы о заказчике: что он купил и что хотел бы купить, что ему понравилось, а что нет, когда он совершал покупки, как расплатился. И даже больше: персональные данные (адрес, пол, возраст), интересы (какие сайты посетил, кто в друзьях), активность (когда выходит в Интернет, что там ищет, какие отзывы оставляет) и многое другое.
Анализ такой информации -- это шанс понять, нравится ли бренд покупателям. Готовы они покупать еще и еще или их следует немного «подтолкнуть» скидками и другими бонусами? Ответы на эти вопросы помогут создать идеального клиента. Того, который всегда готов купить товар по любой цене, активен в сообществах в социальных сетях, заинтересован в развитии бренда и рассказывает всем о понравившейся продукции.
К 2014 году каналов воздействия на клиента стало так много, что приходится использовать инструменты для их объединения. В туризме, например, давно существуют платформы, которые охватывают все аспекты организации путешествий: от планирования до заказа поездок. Туристы могут выбрать места в самолете, отель, достопримечательности, которые стоит посетить, и многое другое -- все это в одном месте. Удобно, правда? Самое интересное, что и не только для пользователей. Такой подход делает весь процесс простым и эффективным также для всех остальных участников турбизнеса: авиакомпаний, отелей, туроператоров и т. д.
Однако с технической точки зрения это все -- огромный объем информации. Обработка такого количества данных одновременно была невозможной еще несколько лет назад. Но на 2014 год нет никакой проблемы в том, чтобы предоставить клиенту персонализированный сервис на основе данных о его предпочтениях. И подать все в виде понятного и простого интерфейса, с которым даже ребенок справится.
Что в этом полезного?
Вот несколько примеров того, как можно получить конкурентные преимущества, используя Big Data:
· Персонализация -- анализируя информацию о клиенте можно предложить решения, разработанные для конкретного пользователя. Получая конкурентное преимущество в глазах клиента и не тратясь при этом на улучшение качества продукта.
· Динамическое ценообразование -- анализ данных о рынке позволит установить самую привлекательную цену для конкретного клиента. Иногда получить доверие в будущем гораздо важнее и выгодней, чем максимальная прибыль прямо сейчас.
· Обслуживание клиентов -- Big Data поможет создать у заказчика чувство собственной значимости. Он сможет убедиться, что продавцу не все равно. Ведь покупатель получит именно то, что хочет.
· Трекинг -- возможность уведомлять клиентов о том, где их заказ, в каком состоянии и когда он дойдет до них.
· Прогнозный анализ -- с Big Data становится возможным предугадывать события до того, как они произойдут, и делать необходимые приготовления или изменения.
Помимо всего прочего Big Data сейчас используют еще и для воздействия на клиентов на эмоциональном уровне. Клиенту дают понять, что он особенный, создавая тем самым между ним и брендом определенную связь. Это в прямом смысле слова культивирует лояльность.
Хорошим примером такого подхода может служить приложение, разработанное для бренда одежды Free People, которое обеспечило компании рост продаж на 38%. Приложение позволяет пользователям обсудить последние коллекции, поделиться своими фото в новых нарядах в Pinterest и Instagram, голосовать за самые лучшие снимки. Такое естественное взаимодействие очень эффективно. Без сомнения, это отличный вариант монетизации накопленных данных, и мы еще не раз сможем увидеть как ритейлеры и социальные платформы помогают друг другу достучаться до клиента.
Информационная перегрузка -- это выгодно?
Все уже привыкли к тому, что найти хоть какую-нибудь действительно полезную информацию очень сложно. В блогах, социальных сетях люди всегда рады прочитать что-нибудь интересное. И именно благодаря инструментам Big Data теперь есть возможность предложить пользователю именно те факты, которые были отобранные специально для него на основе данных о предыдущих заказах, поисковых запросах, «лайках» в соцсетях и т. д.
Возьмем, к примеру, бизнес, связанный со спортом и фитнесом. Эта отрасль очень быстро развивается. Во многом благодаря успеху приложений, объединивших теорию и практику здорового образа жизни.
Будущее e-commerce -- это объединение персональных целей (скинуть пару кило) с теорией (изучить новый курс тренировок) и коммерцией (купить новые кроссовки и тренажеры). Идеальное приложение не только даст общие рекомендации по тренировочным программам. Оно позволит пользователю заказать нужные спорттовары или другие продукты прямо здесь и сейчас. А продавец, основываясь на данных из таких приложений, сможет предложить клиенту персональные скидки, членство в клубе, программы лояльности и многое другое.
Хорошо это или плохо, но обслуживать клиентов, основываясь на их личных предпочтениях, сегодня можно только с помощью Big Data. Большие корпорации нанимают целые команды разработчиков, которые изучают их бизнес и создают уникальные приложения. Представители малого и среднего бизнеса используют более общие готовые решения. Но у всех цель одна -- дать клиенту то, что он хочет, помогая тем самым e-commerce расти, развиваться и процветать.
Размещено на Allbest.ru
...Подобные документы
Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.
презентация [3,9 M], добавлен 17.02.2016Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.
контрольная работа [565,6 K], добавлен 02.09.2010Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.
курсовая работа [3,2 M], добавлен 19.05.2011Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.
реферат [443,2 K], добавлен 13.02.2014Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.
доклад [25,3 K], добавлен 16.06.2012Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.
дипломная работа [2,5 M], добавлен 01.07.2017A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.
топик [19,0 K], добавлен 29.06.2009Изучение возможностей AllFusion ERwin Data Modeler и проектирование реляционной базы данных (БД) "Санатория" на основе методологии IDEF1x. Определение предметной области, основных сущностей базы, их первичных ключей и атрибутов и связи между ними.
лабораторная работа [197,5 K], добавлен 10.11.2009Определение программы управления корпоративными данными, ее цели и предпосылки внедрения. Обеспечение качества данных. Использование аналитических инструментов на базе технологий Big Data и Smart Data. Фреймворк управления корпоративными данными.
курсовая работа [913,0 K], добавлен 24.08.2017Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012Історія виникнення комерційних додатків для комп'ютеризації повсякденних ділових операцій. Загальні відомості про сховища даних, їх основні характеристики. Класифікація сховищ інформації, компоненти їх архітектури, технології та засоби використання.
реферат [373,9 K], добавлен 10.09.2014Data Mining как процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). Его закономерности и этапы реализации, история разработки данной технологии, оценка преимуществ и недостатков, возможности.
эссе [36,8 K], добавлен 17.12.2014Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.
контрольная работа [2,0 M], добавлен 13.06.2014Обоснование выбора средств разработки приложения. Добавление, удаление, редактирование информации. Отражение информации из базы данных. Поиск информации по выбранной таблице. Проекты Data, Entity, Logic, Firm. Схема взаимодействия проектов программы.
курсовая работа [1,8 M], добавлен 18.01.2015OLAP как автоматизированные технологии сложного (многомерного) анализа данных, Data mining - извлечение данных, интеллектуальный анализ. Виды запросов к многомерной базе данных, их содержание и анализ полученных результатов. Схема "звезда", "снежинка".
презентация [132,1 K], добавлен 19.08.2013Методика и основные этапы построения модели бизнес-процессов верхнего уровня исследуемого предприятия, его организационной структуры, классификатора. Разработка модели бизнес-процесса в IDEF0 и в нотации процедуры, применением Erwin Data Modeler.
курсовая работа [1,6 M], добавлен 01.12.2013Характеристика та класифікація CASE-засобів, технологія їх впровадження. Структура і функції CASE-засобу Silverrun. Переваги, результати застосування та ключові функції CA ERwin Data Modeler. Проектування роботи інтернет-магазину за допомогою UML-діаграм.
курсовая работа [1,5 M], добавлен 07.02.2016Технологии защиты персональных данных и их применение. Юридический аспект защиты персональных данных в России. Описание результатов опроса среди рядовых российских пользователей. Прогноз развития технологий в связи с аспектом защиты персональных данных.
дипломная работа [149,6 K], добавлен 03.07.2017