Защита салона автомобиля от съёма информации

Технические каналы утечки акустической информации: воздушные, вибрационные, электроакустические, оптико-электронные, параметрические. Разработка и реализация системы защиты салона автомобиля от съёма информации. Обоснование выбора предлагаемой системы.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 29.10.2015
Размер файла 836,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Пояснительная записка 32 листа, 2 рисунка, 1 таблица, 14 источников литературы.

Ключевые слова: ТКУИ, TCP, ВТСС, ЭДС, экранирование, излучатель.

Цель курсового проекта:

1. Спроектировать защиту салона автомобиля от съёма информации.

2. Провести анализ плана автомобиля и его особенности.

3. Рассчитать стоимость устройств.

4. Провести оценку стоимости установки оборудования.

Оглавление

Введение

Раздел 1. Теоретическая часть

1.1 Технические каналы утечки акустической информации

1.1.1 Воздушные технические каналы утечки информации

1.1.2. Вибрационные технические каналы утечки информации

1.1.3 Электроакустические технические каналы утечки информации

1.1.4 Оптико-электронный технический канал утечки информации

1.1.5 Параметрические технические каналы утечки информации

1.2 Методы защиты информации

1.2.1 Электромагнитное экранирование

1.2.2 Виброакустическая маскировка

1.2.3 Обнаружение и подавление диктофонов

Раздел 2. Проектная часть

2.1 Проектирование защиты салона автомобиля от съема информации

Раздел 3. Расчетная часть

Заключение

Список используемой литературы

Введение

утечка акустический информация защита

Для несанкционированного добывания информации в настоящее время используется широкий арсенал технических средств, из которых малогабаритные технические средства отражают одно из направлений в развитии современных разведывательных технологий. Выполняемые в портативном, миниатюрном и сверхминиатюрном виде, эти средства аккумулируют в себе новейшие научные, технические и технологические достижения электроники, акустики, оптики, радиотехники и других наук. Такие средства находят широкое применение, как в деятельности правоохранительных органов, так и иностранных технических разведок, в подпольном информационном обеспечении незаконных экономических, финансовых и криминальных организаций. В условиях рыночной экономики появление значительного числа конкурирующих между собой различных структур естественным образом создало определенное пространство, на котором применение подобных устройств технической разведки для добывания информации различной значимости является наиболее вероятным.

На сегодняшний день инженерно-техническая защита информации переживает бурный рост, и эта тенденция будет сохраняться в дальнейшем. Многие фирмы и организации заинтересованы в защите своих конфиденциальных данных и проводят мероприятия по пресечению их утечки. К таким мероприятиям относятся организационные, инженерно-технические решения в области защиты информации, а также защита информации в области компьютерных технологий. К организационным методам защиты информации можно отнести: пропускной и внутриобъектный режим, обучение сотрудников и различные другие мероприятия. На помощь организационной защиты информации приходят инженерно-технические решения и вычислительные системы, позволяющие автоматизировать процесс контроля выполнения режимов. Но к процессу автоматизации контроля за объектом необходимо подходить осторожно, так как применение дополнительных технических и компьютерных средств создает дополнительные каналы утечки информации.

Но несмотря, на бурное развитие в данном направлении существуют еще некоторые области в защите информации, которые не находят яркого отражения в литературе. Одной из таких областей является защита салона автомобиля от съема информации. Проблема защиты информации в салоне автомобиля имеет много общего с защитой помещения от утечки информации, но в тоже время имеет некоторые свои особенности.

Целью данного курсового проекта является овладение основами проектирования защиты салона автомобиля от съема информации.

Основными задачами курсового проекта являются:

- Обосновать выбор предлагаемой системы защиты салона автомобиля.

- Разработать систему защиты салона автомобиля от съёма информации.

- Реализация системы защиты салона автомобиля от съёма информации.

Раздел 1. Теоретическая часть

1.1 Технические каналы утечки акустической информации

Под техническим каналом утечки информации (ТКУИ) понимают совокупность объекта разведки, технического средства разведки (TCP), с помощью которого добывается информация об этом объекте, и физической среды, в которой распространяется информационный сигнал. По сути, под ТКУИ понимают способ получения с помощью TCP разведывательной информации об объекте.

Сигналы являются материальными носителями информации. По своей физической природе сигналы могут быть электрическими, электромагнитными, акустическими и т.д. То есть сигналами, как правило, являются электромагнитные, механические и другие виды колебаний (волн), причем информация содержится в их изменяющихся параметрах.

В зависимости от природы сигналы распространяются в определенных физических средах. В общем случае средой распространения могут быть газовые (воздушные), жидкостные (водные) и твердые среды. Например, воздушное пространство, конструкции зданий, соединительные линии и токопроводящие элементы, грунт (земля) и т.п.

Технические средства разведки служат для приема и измерения параметров сигналов.

Под акустической понимается информация, носителем которой являются акустические сигналы. В том случае, если источником информации является человеческая речь, акустическая информация называется речевой.

Акустический сигнал представляет собой возмущения упругой среды, проявляющиеся в возникновении акустических колебаний различной формы и длительности. Акустическими называются механические колебания частиц упругой среды, распространяющиеся от источника колебаний в окружающее пространство в виде волн различной длины.

Первичными источниками акустических колебаний являются механические колебательные системы, например органы речи человека, а вторичными - преобразователи различного типа, в том числе электроакустические. Последние представляют собой устройства, предназначенные для преобразования акустических колебаний в электрические и обратно. К ним относятся пьезоэлементы, микрофоны, телефоны, громкоговорители и другие устройства.

В зависимости от формы акустических колебаний различают простые (тональные) и сложные сигналы. Тональный - это сигнал, вызываемый колебанием, совершающимся по синусоидальному закону. Сложный сигнал включает целый спектр гармонических составляющих. Речевой сигнал является сложным акустическим сигналом в диапазоне частот от 200...300 Гц до 4...6 кГц. В зависимости от физической природы возникновения информационных сигналов, среды распространения акустических колебаний и способов их перехвата технические каналы утечки акустической (речевой) информации можно разделить на воздушные, вибрационные, электроакустические, оптико-электронные и параметрические.

1.1.1 Воздушные технические каналы утечки информации

В воздушных технических каналах утечки информации средой распространения акустических сигналов является воздух, и для их перехвата используются миниатюрные высокочувствительные микрофоны и специальные направленные микрофоны.

Миниатюрные микрофоны объединяются (или соединяются) с портативными звукозаписывающими устройствами (диктофонами) или специальными миниатюрными передатчиками. Автономные устройства, конструкционно объединяющие миниатюрные микрофоны и передатчики, называют закладными устройствами перехвата речевой информации, или просто акустическими закладками. Перехваченная закладными устройствами речевая информация может передаваться по радиоканалу, оптическому каналу (в инфракрасном диапазоне длин волн), по сети переменного тока, соединительным линиям вспомогательных технических средств и систем (ВТСС), посторонним проводникам (трубам водоснабжения и канализации, металлоконструкциям и т. п.). Причем для передачи информации по трубам и металлоконструкциям могут использоваться не только электромагнитные, но и механические ультразвуковые колебания.

1.1.2. Вибрационные технические каналы утечки информации

В вибрационных (структурных) технических каналах утечки информации средой распространения акустических сигналов являются конструкции зданий, сооружений (стены, потолки, полы), трубы водоснабжения, отопления, канализации и другие твердые тела. Для перехвата акустических колебаний в этом случае используются контактные микрофоны (стетоскопы). Контактные микрофоны, соединенные с электронным усилителем, называют электронными стетоскопами.

По вибрационному каналу также возможен перехват информации с использованием закладных устройств. В основном для передачи информации используется радиоканал, поэтому такие устройства часто называют радиостетоскопами. Возможно использование закладных устройств с передачей информации по оптическому каналу в ближнем инфракрасном диапазоне длин волн, а также по ультразвуковому каналу (по металлоконструкциям здания).

1.1.3 Электроакустические технические каналы утечки информации

Электроакустические технические каналы утечки информации возникают за счет электроакустических преобразований акустических сигналов в электрические, и включают перехват акустических колебаний через ВТСС, обладающие "микрофонным эффектом", а также путем "высокочастотного навязывания".

Некоторые элементы ВТСС. в том числе трансформаторы, катушки индуктивности, электромагниты вторичных электрочасов, звонков телефонных аппаратов, дроссели ламп дневного света, электрореле и т. п. обладают свойством изменять свои параметры (емкость, индуктивность, сопротивление) под действием акустического поля, создаваемого источником акустических колебаний.

Изменение параметров приводит либо к появлению на данных элементах электродвижущей силы (ЭДС). изменяющейся по закону воздействующего информационного акустического поля, либо к модуляции токов, протекающих по этим элементам, информационным сигналом. Например, акустическое поле, воздействуй на якорь электромагнита вызывного телефонного звонка, вызывает его колебание. В результате чего изменяется магнитный поток сердечника электромагнита. Изменение этого потока вызывает появление ЭДС самоиндукции в катушке звонка, изменяющейся по закону изменения акустического поля. ВТСС, кроме указанных элементов, могут содержать непосредственно электроакустические преобразователи.

К таким ВТСС относятся некоторые датчики пожарной сигнализации, громкоговорители ретрансляционной сети и т.д. Эффект электроакустического преобразования акустических колебаний в электрические часто называют "микрофонным эффектом". Причем из ВТСС, обладающих "микрофонным эффектом", наибольшую чувствительность к акустическому полю имеют абонентские громкоговорители и некоторые датчики пожарной сигнализации. Перехват акустических колебаний в данном канале утечки информации осуществляется путем непосредственного подключения к соединительным линиям ВТСС, обладающих "микрофонным эффектом", специальных высокочувствительных низкочастотных усилителей.

1.1.4 Оптико-электронный технический канал утечки информации

Оптико-электронный (лазерный) канал утечки акустической информации образуется при облучении лазерным лучом вибрирующих в акустическом поле тонких отражающих поверхностей (стекол окон, картин, зеркал и т.д.). Отраженное лазерное излучение (диффузное или зеркальное) модулируется по амплитуде и фазе (по закону вибрации поверхности) и принимается приемником оптического (лазерного) излучения, при демодуляции которого выделяется речевая информация. Причем лазер и приемник оптического излучения могут быть установлены в одном или разных местах (помещениях). Для перехвата речевой информации по данному каналу используются сложные лазерные акустические локационные системы, иногда называемые "лазерными микрофонами". Работают они, как правило, в ближнем инфракрасном диапазоне волн.

1.1.5 Параметрические технические каналы утечки информации

В результате воздействия акустического поля меняется давление на все элементы высокочастотных генераторов ТСПИ и ВТСС. При этом изменяется (незначительно) взаимное расположение элементов схем, проводов в катушках индуктивности, дросселей и т. п., что может привести к изменениям параметров высокочастотного сигнала, например, к модуляции его информационным сигналом. Поэтому этот канал утечки информации называется параметрическим. Это обусловлено тем, что незначительное изменение взаимного расположения, например, проводов в катушках индуктивности (межвиткового расстояния) приводит к изменению их индуктивности, а, следовательно, к изменению частоты излучения генератора, т.е. к частотной модуляции сигнала.

Или воздействие акустического поля на конденсаторы приводит к изменению расстояния между пластинами и, следовательно, к изменению его емкости, что, в свою очередь, также приводит к частотной модуляции высокочастотного сигнала генератора. Наиболее часто наблюдается паразитная модуляция информационным сигналом излучений гетеродинов радиоприемных и телевизионных устройств, находящихся в выделенных помещениях и имеющих конденсаторы переменной емкости с воздушным диэлектриком в колебательных контурах гетеродинов.

Промодулированные информационным сигналом высокочастотные колебания излучаются в окружающее пространство и могут быть перехвачены и детектированы средствами радиоразведки. Параметрический канал утечки информации может быть реализован и путем "высокочастотного облучения" помещения, где установлены полуактивные закладные устройства, имеющие элементы. некоторые параметры которых (например, добротность и резонансная частота объемного резонатора) изменяются по закону изменения акустического (речевого) сигнала.

При облучении мощным высокочастотным сигналом помещения, в котором установлено такое закладное устройство, в последнем при взаимодействии облучающего электромагнитного поля со специальными элементами закладки (например, четвертьволновым вибратором) происходит образование вторичных радиоволн, т.е. переизлучение электромагнитного поля. А специальное устройство закладки (например, объемный резонатор) обеспечивает амплитудную, фазовую или частотную модуляцию переотраженного сигнала по закону изменения речевого сигнала. Подобного вида закладки иногда называют полуактивными.

Для перехвата информации по данному каналу кроме закладного устройства необходимы специальный передатчик с направленной антенной и приемник.

Таблица 1 - Технические каналы утечки акустической информации и пути перехвата информации по ним

Воздушный канал

1 микрофоны, укомплектованные портативными устройствами записи

2 направленные микрофоны

3 микрофоны, укомплектованные устройствами передачи информации по радиоканалу

4 микрофоны, комплектованные устройствами передачи информации по сети электропитания 220В

5 микрофоны, укомплектованные устройствами передачи информации по оптическому каналу в ИК-диапазоне длин волн

6 микрофоны, с возможностью передачи информации по телефонной линии

7 микрофоны, с возможностью передачи информации по трубам водоснабжения и т.п.

Вибрационный канал

1 электронные стетоскопы

2 стетоскопы с возможностью передачи информации по радиоканалу

3 стетоскопы с возможностью передачи информации по оптическому каналу

4 стетоскопы с передачей информации по трубам водоснабжения и т.п.

Электроакустический канал

1 через ВТСС, обладающих микрофонным эффектом, путем подключения к их соединительным линиям

2 через ВТСС, путем высокочастотного навязывания

Оптико-электронный канал

1 лазерные микрофоны

Параметрический канал

1 прием и детектирование побочных ЭМИ (на частотах ВЧ-генераторов) ТСПИ и ВТСС

2 путем высокочастотного облучения специальных полуактивных закладных устройств

1.2 Методы защиты информации

Для перехвата речевой информации предполагаемый "противник" (лицо или группа лиц, заинтересованных в получении данной информации) может использовать широкий арсенал портативных средств акустической речевой разведки, позволяющих перехватывать речевую информацию по прямому акустическому, виброакустическому, электроакустическому и оптико-электронному (акустооптическому) каналам, к основным из которых относятся:

- портативная аппаратура звукозаписи (малогабаритные диктофоны, магнитофоны и устройства записи на основе цифровой схемотехники);

- направленные микрофоны;

- электронные стетоскопы;

- электронные устройства перехвата речевой информации (закладные устройства) с датчиками микрофонного и контактного типов с передачей перехваченной информации по радио, оптическому (в инфракрасном диапазоне длин волн) и ультразвуковому каналам;

- оптико-электронные акустические системы и т.д.

Портативная аппаратура звукозаписи и закладные устройства с датчиками микрофонного типа (преобразователями акустических сигналов, распространяющихся в воздушной и газовой средах) могут быть установлены при неконтролируемом пребывании физических лиц ("агентов") непосредственно в салоне автомобиля. Данная аппаратура обеспечивает хорошую регистрацию речи средней громкости.

Электронные стетоскопы и закладные устройства с датчиками контактного типа позволяют перехватывать речевую информацию без физического доступа "агентов" в салон автомобиля. Для этого они могут быть установлены на стеклах. Но здесь возникает проблема возможного обнаружения стетоскопа владельцем автомобиля.

Применение для ведения разведки направленных микрофонов и оптико-электронных (лазерных) акустических систем не требует проникновения "агентов" не только в салон автомобиля, но и также не требует контакта с автомобилем вообще. Разведка может вестись из соседних зданий или автомашин, находящихся в отдалении.

С использованием направленных микрофонов возможен перехват речевой информации из салона при наличии открытых стекол в условиях города (на фоне транспортных шумов) на расстояниях до 50 м.

Максимальная дальность разведки с использованием оптико-электронных (лазерных) акустических систем, снимающих информацию со стекол, составляет 150…200 метров в городских условиях (наличие интенсивных акустических помех, запыленность атмосферы) и до 500 м в загородных условиях.

Использование микрофонов с передачей информации по оптическому каналу я считаю не целесообразным, т. к. для перехвата информации необходима тонкая настройка передатчика и приемника. А это будет невозможным при использовании в городских условиях.

Для снижения разборчивости речи необходимо стремиться уменьшить отношение "уровень речевого сигнала/уровень шума" (сигнал/шум) в местах возможного размещения датчиков аппаратуры акустической разведки. Уменьшение отношения сигнал/шум возможно путем или уменьшения (ослабления) уровня речевого сигнала (пассивные методы защиты), или увеличения уровня шума (создания акустических и вибрационных помех) (активные методы защиты). К пассивным методам защиты я также отнесу электромагнитное экранирование салона автомобиля, для исключения использования микрофонов с передачей информации по радиоканалу, высокочастотного навязывания и т.п.

1.2.1 Электромагнитное экранирование

Под экранированием понимается локализация электрического, электромагнитного полей в определенной части пространства и более или менее полное освобождение от него остальной среды. Экранирование позволяет защитить как радиоэлектронные приборы от воздействия внешних полей, так и локализовать их собственные излучения, препятствуя их появлению в окружающем пространстве.

В результате становится практически невозможным несанкционированный съем информации по техническим каналам (к которым относится канал побочных электромагнитных излучений и наводок, электроакустический канал, радиоканал и т.д.).

Таким образом, оно позволяет снизить эффективность использования злоумышленником микрофонов с передачей информации по радиоканалу, высокочастотного "навязывания" и др. средств съема информации.

Теоретическое решение задачи экранирования, определение значений напряженности полей в общем случае чрезвычайно затруднительно, поэтому в зависимости от типа решаемой задачи представляется удобным рассматривать отдельные виды экранирования: электрическое, магнитостатическое и электромагнитное. Последнее является наиболее общим и часто применяемым, так как в большинстве случаев экранирования приходится иметь дело либо с переменными, либо с флуктуирующими и реже - действительно со статическими полями.

Электромагнитное экранирование основано на возникновении вихревых токов, которые ослабляют электромагнитное поле. Эффективность экранирования такого экрана в ближней зоне будет неодинакова для составляющих поля. Поэтому, как правило, для ближней зоны следует вычислять эффективность экранирования каждой из компонент поля в отдельности, принимая при этом, что в дальней зоне (зона излучения) эффективности экранирования составляющих окажутся одинаковыми.

Физическая сущность электромагнитного экранирования, рассматриваемая с точки зрения теории электромагнитного поля и теории электрических цепей, сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках - токи, поля которых во внешнем пространстве по интенсивности близки к полю источника, а по направлению противоположны ему, и поэтому происходит взаимная компенсация полей.

Материалы, используемые при экранировании:

- металлические материалы;

- металлизация поверхностей;

- стекла с токопроводящим покрытием;

- специальные ткани;

- радиопоглощающие материалы;

- токопроводящие краски;

- электропроводный клей.

При рассмотрении процесса экранирования автомобиля необходимо учитывать влияние корпуса автомобиля, выполняющего уже роль электромагнитного экрана.

1.2.2 Виброакустическая маскировка

Для формирования виброакустических помех применяются специальные генераторы на основе электровакуумных, газоразрядных и полупроводниковых радиоэлементов. На практике наиболее широкое применение нашли генераторы шумовых колебаний. Наряду с шумовыми помехами в целях активной акустической маскировки используют "Речеподобные" помехи, хаотические последовательности импульсов и т.д.

Роль оконечных устройств, осуществляющих преобразование электрических колебаний в акустические колебания речевого диапазона частот, обычно выполняют малогабаритные широкополосные акустические колонки, а осуществляющих преобразование электрических колебаний в вибрационные - вибрационные излучатели. Акустические колонки систем зашумления устанавливаются в салоне в местах наиболее вероятного размещения средств акустической разведки, а вибрационные излучатели крепятся на стеклах. В состав типовой системы виброакустической маскировки входят шумогенератор и от 6 до 12...25 вибрационных излучателей (пьезокерамических или электромагнитных).

При организации акустической маскировки необходимо помнить, что акустический шум может создавать дополнительный мешающий для владельца автомобиля фактор (дискомфорт) и раздражающе воздействовать на нервную систему человека, вызывая различные функциональные отклонения, приводить к быстрой утомляемости. Степень влияния мешающих помех определяется санитарными нормативами на величину акустического шума. В соответствии с нормами для учреждений величина мешающего шума не должна превышать суммарный уровень 45 дБ

В системах акустической и виброакустической маскировки используются шумовые, "Речеподобные" и комбинированные помехи. Наиболее часто из шумовых используются следующие виды помех:

- "белый" шум (шум с постоянной спектральной плотностью в речевом диапазоне частот);

- "розовый" шум (шум с тенденцией спада спектральной плотности 3 дБ на октаву в сторону высоких частот);

- шум с тенденцией спада спектральной плотности 6 дБ на октаву в сторону высоких частот;

- шумовая "речеподобная" помеха (шум с огибающей амплитудного спектра, подобной речевому сигналу).

В системах акустической и виброакустической маскировки, как правило, используются помехи типа "белого" и "розового" шумов.

Самым простым методом получения белого шума является использование шумящих электронных элементов (ламп, транзисторов, различных диодов) с усилением напряжения шума. Принципиальная схема несложного генератора шума приведена на Рис1.

Рис 1 Генератор шума

В ряде систем виброакустической маскировки возможна регулировка уровня помехового сигнала. Например, в системе ANG-2000 осуществляется ручная плавная регулировка уровня помехового сигнала, а в системе "Заслон-2М" - автоматическая (в зависимости от уровня маскируемого речевого сигнала). В комплексе "Барон" возможна независимая регулировка уровня помехового сигнала в трех частотных диапазонах (центральные частоты: 250, 1000 и 4000 Гц). Система "Шорох-1" позволяет регулировать форму генерируемой помехи пятиполосным октавным эквалайзером.

"Речеподобные" помехи формируются (синтезируются) из речевых сигналов. При этом возможно формирование помехи, как из скрываемого сигнала, так и из некоррелированных со скрываемым сигналом речевых фрагментов (отрезков). Характерным представителем помех, формируемых из речевых фрагментов, некоррелированных со скрываемым сигналом, является помеха типа "речевой хор". Такая помеха формируются путем смешения фрагментов речи нескольких человек (дикторов). Среди помех, формируемых из скрываемого сигнала, можно выделить два типа: "речеподобную" реверборационную и "речеподобную" инверсионную. "Речеподобная" реверборационная помеха формируется из фрагментов скрываемого речевого сигнала путем многократного их наложения с различными уровнями. "Речеподобная" инверсионная помеха формируется из скрываемого речевого сигнала путем сложной инверсии его спектра.

Комбинированные помехи формируются путем смешения различного вида помех, например помех типа "речевой хор" и "белый" шум, "Речеподобные" реверборационной и инверсионной помех и т.п. "Речеподобная" помеха типа "речевой хор" и комбинированная помеха типа "речевой хор" и "белый" шум реализованы в комплексе "Барон". Для этих целей в его состав кроме обычного генератора шума включены три радиоприемника, независимо настраиваемые на различные радиовещательные станции FM (УКВ-2) диапазона.

"Речеподобная" комбинированная (реверборационная и инверсионная) помеха используется в системе акустической маскировки "Эхо". Помеха формируется путем многократного наложения смещенных на различное время задержек разноуровневых сигналов, получаемых путем умножения и деления частотных составляющих скрываемого речевого сигнала.

1.2.3 Обнаружение и подавление диктофонов

Для обнаружения работающих в режиме записи диктофонов применяются так называемые детекторы диктофонов. Принцип действия приборов основан на обнаружении слабого магнитного поля, создаваемого генератором подмагничивания или работающим двигателем диктофона в режиме записи. Электродвижущая сила (ЭДС), наводимая этим полем в датчике сигналов (магнитной антенне), усиливается и выделяется из шума специальным блоком обработки сигналов. При превышении уровня принятого сигнала некоторого установленного порогового значения срабатывает световая или звуковая сигнализация. Во избежание ложных срабатываний порог обнаружения необходимо корректировать практически перед каждым сеансом работы, что является недостатком подобных приборов.

Детекторы диктофонов выпускаются в переносном и стационарном вариантах. К переносным относятся детекторы "Сова", RM-100, TRD-800, а к стационарным - PTRD-14, PTRD-16, PTRD-18 и т.д.

Переносные детекторы диктофонов в данном проекте не рассматривается, исходя из того что перед каждым выездом автомобиля проверять его на наличие диктофонов нецелесообразно.

В отличие от переносных детекторов, имеющих один датчик сигналов, стационарные детекторы диктофонов оборудованы несколькими датчиками (например, детектор PTRD-18 имеет возможность подключения до 16 датчиков одновременно), что позволяет существенно повысить вероятность обнаружения диктофонов.

Ввиду слабого уровня магнитного поля, создаваемого работающими диктофонами (особенно в экранированных корпусах), дальность их обнаружения детекторами незначительна. Например, дальность обнаружения диктофона L- 400 в режиме записи в условиях офиса даже при использовании стационарного детектора PTRD-018 не превышает 45 ... 65 см. Дальность обнаружения диктофонов в неэкранированных корпусах может составлять 1 ... 1,5 м. Поэтому необходимо установить датчики в места наиболее вероятного размещения диктофонов.

Наряду со средствами обнаружения портативных диктофонов на практике эффективно используются и средства их подавления. Для этих целей используются устройства электромагнитного подавления типа "Рубеж", "Шумотрон", "Буран", "УПД" и др. (таблица 3.6) и устройства ультразвукового подавления типа "Завеса".

Принцип действия устройств электромагнитного подавления основан на генерации в дециметровом диапазоне частот (обычно в районе 900 МГц) мощных шумовых сигналов. В основном для подавления используются импульсные сигналы. Излучаемые направленными антеннами помеховые сигналы, воздействуя на элементы электронной схемы диктофона (в частности, усилитель низкой частоты и усилитель записи), вызывают в них наводки шумовых сигналов. Вследствие этого одновременно с информационным сигналом (речью) осуществляется запись и детектированного шумового сигнала, что приводит к значительному искажению первого.

Зона подавления диктофонов зависит от мощности излучения, его вида, а также от типа используемой антенны. Обычно зона подавления представляет собой сектор с углом от 30 до 80 градусов и радиусом до 1,5 м (для диктофонов в экранированном корпусе).

Системы ультразвукового подавления излучают мощные неслышимые человеческим ухом ультразвуковые колебания (обычно частота излучения около 20 кГц), воздействующие непосредственно на микрофоны диктофонов или акустических закладок, что является их преимуществом. Данное ультразвуковое воздействие приводит к перегрузке усилителя низкой частоты диктофона или акустической закладки (усилитель начинает работать в нелинейном режиме) и тем самым - к значительным искажениям записываемых (передаваемых) сигналов.

В отличие от систем электромагнитного подавления подобные системы обеспечивают подавление в гораздо большем секторе. Например, комплекс "Завеса" при использовании двух ультразвуковых излучателей способен обеспечить подавление диктофонов и акустических закладок в помещении объемом 27 м3 . Однако системы ультразвукового подавления имеют и один важный недостаток: эффективность их резко снижается, если микрофон диктофона или закладки прикрыть фильтром из специального материала или в усилителе низкой частоты установить фильтр низких частот с граничной частотой 3,4 ... 4 кГц.

Принцип работы следующий: излучения гармонических ультразвуковых колебаний каждого в отдельности не прослушиваются человеческим слухом (однако тренированная собака их может уловить). Человеческое ухо достаточно линейно в амплитудном отношении и поэтому интерференционных явлений не будет. Микрофон диктофона сугубо нелинейный элемент, и поэтому на входе диктофона возникнет интерференционный процесс, который приведет к подавлению записи речи сигналом разностной частоты. Уровень ультразвуковых колебаний используется в пределах 80 ... 100 дБ.

Раздел 2. Проектная часть

2.1 Проектирование защиты салона автомобиля от съема информации

При проектировании защиты салона в первую очередь я использовал процесс электромагнитного экранирования автомобиля. В качестве объекта проектирования я взял автомобиль Subaru Tribeca, cреднеразмерный кроссовер японской компании Subaru.

При разработки экранирования автомобиля необходимо учитывать снижение светопропускания окон. В качестве решения данной проблемы использовал метод стекла с токопроводящим покрытием.

Для нанесения токопроводящего покрытия я использовал вакуумные установки многослойного магнетронного напыления. Принцип работы этих установок основан на методе "бомбардировки" поверхности материала-подложки атомами или молекулами осаждаемого вещества, создающими на поверхности тонкий, ровный и чрезвычайно прочный слой покрытия. При этом экраны обладают отличной проницаемостью света.

Для повышения эффективности экранирования салона я использовал покрытие внутренней стороны корпуса автомобиля тонким слоем алюминия. При этом получил многослойный экран.

При экранировании автомобиля я учел влияние корпуса автомобиля, выполняющего уже роль электромагнитного экрана.

Для формирования акустических и виброакустических помех я использовал специальный генератор на основе полупроводниковых радиоэлементов «Вуаль».

Для осуществления преобразования электрических колебаний в акустические колебания речевого диапазона частот я использовал малогабаритные широкополосные акустические колонки, а осуществляющих преобразование электрических колебаний в вибрационные - вибрационные излучатели. Акустические колонки систем зашумления я установил по всему салону, в количестве 4 штуки, а вибрационные излучатели закрепил на каждом из 9 стекол. В качестве виброакустической и акустической защиты я использовал систему "Шорох-1", которую установил в багажнике автомобиля.

Рис. 2 Подробный план автомобиля Subaru Tribeca

Раздел 3. Расчетная часть

Для того, чтобы мне оборудовать автомобиль, Subaru Tribeca, необходимой защитой от съема информации, мне понадобилось:

- Генератор акустических и виброакустических помех "ВУАЛЬ", 1 шт., 24000 р.;

- Акустические колонки систем зашумления фирмы Samsung, в кол-ве 4 шт. (по 899 р. за шт.) 3596 р.;

- Вибрационные излучатели «Копейка» в кол-ве 9 шт. (по 1500 за шт.) 13500 р.;

- Система виброакустической и акустической защиты "Шорох-1" 1 шт. 7499 р.;

- Работы по установки и настройки аппаратных средств обошлось мне в 12000 р.;

- Работы по нанесения токопроводящего покрытия на стекла обошлись мне в 8700 р.;

- Покрытие внутренней стороны корпуса автомобиля тонким слоем алюминия обошлось мне в 9600 р.

Общие затраты для защиты своего автомобиля от съема информации составили 78895 р.

Заключение

В ходе курсового проектирования были рассмотрены основные принципы реализации защиты салона автомобиля от съёма информации, в ходе проделанной работы я овладел основами проектирования защиты салона автомобиля от съема информации через основные каналы утечки информации, а так же разработал и успешно реализовал эту систему.

На основе полученных данных я сделал вывод, что более технически легким, дешевым и эффективным является применение активных средств виброакустического зашумления. Которые обеспечивают высокую эффективность при относительно небольших материальных затратах и несложности установки.

Цели данного курсового проекта были успешно достигнуты:

1. Спроектирована защита салона автомобиля от съёма информации.

2. Проведён анализ плана автомобиля и его особенности.

3. Рассчитана стоимость устройств.

4. Проведена оценка стоимости установки оборудования.

Список используемой литературы

1 Черкасова Ю.М. Информационные технологии управления: ИНФРА-М, 2001 г. - 97 с.

2 Хорев А.А. Технические каналы утечки акустической (речевой) информации.// "Специальная техника".-М.:1998. - №1 - 347 с.

3 Покровский Н.Б. Расчет и измерение разборчивости речи. - М.: Связьиздат, 1962. - 391 с.

4 Корнеев И.К., Година Т.А. Информационные технологии в управлении. -- М.: Финстатинформ, 1999. - 194 с.

5 Чернушенко А.М. Конструкции СВЧ устройств и экранов. - М.: Радио и связь, 1983. - 400 с.

6 Галатенко, В.А. Основы информационной безопасности : курс лекций : учебное пособие / В.А. Галатенко. - Издание 2-е, исправленное. - М. : ИНТУИТ.РУ "Интернет-университет Информационных Технологий", 2004. - 264 с.

7 Скляров, Д.В. Искусство защиты и взлома информации / Д.В. Скляров. - СПб. : БХВ-Петербург, 2004. - 288 с.

8 Хореев А.А., Макаров Ю.К. Оценка эффективности систем виброакустической маскировки.//Вопросы защиты информации. - М.: 2001. - № 1. - 672 с.

9 Сапожков М.А. Акустика: Справочник. - М.: Радио с связь, 1989 - 336 с.

10 Хорев А.А. Способы и средства защиты информации. Учебн. пособие. - М.: МО РФ, 2000. - 316 с.

11 Принципы экранирования автомобиля [Электронный ресурс]. - Режим доступа: http://www.osp.ru

12 Наука и образование [Электронный ресурс]. - Режим доступа: http://technomag.edu.ru

13 Официальный сайт Субару Трибека [Электронный ресурс]. - Режим доступа: http://subarutribeca.com

14 Методы и средства защиты от несанкционированного доступа [Электронный ресурс]. - Режим доступа: http://www.panasenko.ru

Размещено на Allbest.ru

...

Подобные документы

  • Системная концепция комплексного обеспечения системы защиты информации. Описание автоматизированной системы охраны "Орион" и ее внедрение на объекте защиты. Технические каналы утечки информации. Разработка системы видеонаблюдения объекта защиты.

    дипломная работа [1,2 M], добавлен 30.08.2010

  • Политика защиты информации. Возможные угрозы, каналы утечки информации. Разграничение прав доступа и установление подлинности пользователей. Обзор принципов проектирования системы обеспечения безопасности информации. Межсетевой экран. Антивирусная защита.

    дипломная работа [1,9 M], добавлен 05.11.2016

  • Анализ источников сигналов и видов акустических каналов защищаемой информации. Распространение и поглощение звуковых волн. Технические каналы утечки акустических данных. Модель угроз для информации через вибро- и электроакустический, оптический каналы.

    дипломная работа [1,3 M], добавлен 05.07.2012

  • Методы защиты речевой информации. Технические средства и системы защиты. Проведение оценки защищенности защищаемого помещения. Установка средств защиты информации, предотвращающих утечку информации по акустическому и виброакустическому каналу связи.

    дипломная работа [3,4 M], добавлен 01.08.2015

  • Физическая целостность информации. Система защиты информации. Установка средств физической преграды защитного контура помещений. Защита информации от утечки по визуально-оптическим, акустическим, материально-вещественным и электромагнитным каналам.

    курсовая работа [783,9 K], добавлен 27.04.2013

  • Защита информации - правовые формы деятельности ее собственника по сохранению сведений, общие положения. Технический канал утечки, демаскирующие признаки, каналы несанкционированного воздействия. Организационно-технические способы защиты информации.

    курсовая работа [39,0 K], добавлен 05.02.2011

  • Возможные каналы утечки информации. Расчет контролируемой зоны объекта. Защита по виброакустическому каналу утечки информации. Выявление несанкционированного доступа к ресурсам. Система постановки виброакустических и акустических помех "Шорох-1М".

    курсовая работа [857,2 K], добавлен 31.05.2013

  • Главные каналы утечки информации. Основные источники конфиденциальной информации. Основные объекты защиты информации. Основные работы по развитию и совершенствованию системы защиты информации. Модель защиты информационной безопасности ОАО "РЖД".

    курсовая работа [43,6 K], добавлен 05.09.2013

  • Пути несанкционированного доступа, классификация способов и средств защиты информации. Каналы утечки информации. Основные направления защиты информации в СУП. Меры непосредственной защиты ПЭВМ. Анализ защищенности узлов локальной сети "Стройпроект".

    дипломная работа [1,4 M], добавлен 05.06.2011

  • Возможные каналы утечки информации. Особенности и организация технических средств защиты от нее. Основные методы обеспечения безопасности: абонентское и пакетное шифрование, криптографическая аутентификация абонентов, электронная цифровая подпись.

    курсовая работа [897,9 K], добавлен 27.04.2013

  • Обоснование актуальности проблемы защиты информации. Концепция защиты информации в адвокатской фирме "Юстина". Каналы и методы несанкционированного доступа к защищаемой информации. Организация комплексной системы защиты информации в адвокатской конторе.

    курсовая работа [92,4 K], добавлен 21.10.2008

  • Обработка информации, анализ каналов ее возможной утечки. Построение системы технической защиты информации: блокирование каналов несанкционированного доступа, нормативное регулирование. Защита конфиденциальной информации на АРМ на базе автономных ПЭВМ.

    дипломная работа [398,5 K], добавлен 05.06.2011

  • Необходимость и потребность в защите информации. Виды угроз безопасности информационных технологий и информации. Каналы утечки и несанкционированного доступа к информации. Принципы проектирования системы защиты. Внутренние и внешние нарушители АИТУ.

    контрольная работа [107,3 K], добавлен 09.04.2011

  • Моделирование объектов защиты информации. Структурирование защищаемой информации. Моделирование угроз безопасности: способы физического проникновения, технические каналы утечки информации, угрозы от стихийных источников. Инженерно-техническое мероприятия.

    курсовая работа [794,1 K], добавлен 13.07.2012

  • Наиболее распространённые пути несанкционированного доступа к информации, каналы ее утечки. Методы защиты информации от угроз природного (аварийного) характера, от случайных угроз. Криптография как средство защиты информации. Промышленный шпионаж.

    реферат [111,7 K], добавлен 04.06.2013

  • Организация системы защиты информации во всех ее сферах. Разработка, производство, реализация, эксплуатация средств защиты, подготовка соответствующих кадров. Криптографические средства защиты. Основные принципы инженерно-технической защиты информации.

    курсовая работа [37,5 K], добавлен 15.02.2011

  • Проблема защиты информации. Особенности защиты информации в компьютерных сетях. Угрозы, атаки и каналы утечки информации. Классификация методов и средств обеспечения безопасности. Архитектура сети и ее защита. Методы обеспечения безопасности сетей.

    дипломная работа [225,1 K], добавлен 16.06.2012

  • Характеристики объекта информатизации ОВД, с точки защищаемой информации. Способы утечки информации. Разработка предложений по защите информации на объекте информатизации ОВД. Алгоритм выбора оптимальных средств инженерно-технической защиты информации.

    курсовая работа [693,1 K], добавлен 28.08.2014

  • Характеристика предприятия. Технические каналы утечки, техника их моделирования: оптического, радиоэлектронного, акустического. Порядок проведения измерений и их анализ. Меры предотвращения утечки информации, программно-аппаратные средства ее защиты.

    курсовая работа [36,1 K], добавлен 13.06.2012

  • Варианты управления компьютером при автономном режиме. Классификация угроз безопасности, каналов утечки информации. Программно-аппаратные комплексы и криптографические методы защиты информации на ПЭВМ. Программная система "Кобра", утилиты наблюдения.

    контрольная работа [23,8 K], добавлен 20.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.