Проектирование локальной вычислительной сети

Понятие компьютерной сети как совокупности узлов, которые имеют возможность информационного взаимодействия друг с другом с помощью коммуникационного оборудования. Выбор конфигурации, расчет работоспособности сети Fast Ethernet, спецификация на материалы.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 25.10.2015
Размер файла 443,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ «ГОРНЫЙ»

Курсовая работа

По дисциплине: Информационные системы и сети

Тема: Проектирование локальной вычислительной сети

Санкт-Петербург 2014 г.

Содержание

Введение

Глава 1. Теоретическая часть

1.1 Классификация локальной вычислительной сети

1.2 Типы топологий локальной вычислительной сети

1.3 Сетевые устройства и средства коммуникации

1.4 Виды сетевых кабелей для ЛВС

Глава 2. Практическая часть

2.1 Выбор конфигурации Fast Ethernet

2.2 Расчет работоспособности сети Fast Ethernet

2.3 Спецификация на оборудование и материалы

Заключение

Список литературы

Приложение

Введение

Локальные сети в последнее время из модного дополнения к компьютерам все более превращаются в обязательную принадлежность любой компании, имеющей больше одного компьютера. Совершенствование аппаратуры и программных средств достигло такого уровня, когда установить и эксплуатировать простейшую сеть может практически любой более или менее грамотный пользователь. То, что раньше было доступно только посвященным или специально обученным профессионалам, теперь легко может проделать каждый.

Основная задача, которая ставится при построении локальных вычислительных сетей - это создание телекоммуникационной инфраструктуры компании, обеспечивающей решение поставленных задач с наибольшей эффективностью. Существует ряд причин, по которым объединяют отдельные компьютеры в ЛВС:

Во-первых, совместное использование ресурсов позволяет нескольким ПК или другим устройствам осуществлять единый доступ к файл-серверу, дисководу DVD-ROM, принтерам и другому оборудованию, что снижает затраты на каждого отдельного пользователя.

Во-вторых, кроме совместного использования периферийных устройств ЛВЛ позволяет аналогично использовать сетевые версии прикладного программного обеспечения.

В-третьих, ЛВС обеспечивает новые формы взаимодействия пользователей в одном коллективе, например работе над общим проектом.

Цель данной курсовой работы: В соответствии с заданным вариантом спроектировать локальную вычислительную сеть организации.

Глава 1. Теоретическая часть

1.1 Классификация локальной вычислительной сети

сеть коммуникационный компьютерный

Совокупность узлов (компьютеров, терминалов, периферийных устройств), которые имеют возможность информационного взаимодействия друг с другом с помощью специального коммуникационного оборудования и программного обеспечения, называют компьютерной сетью. Локальная вычислительная сеть связывает ряд компьютеров в зоне, ограниченной пределами одной комнаты, здания или предприятия.

Вопросам классификации ЛВС уделяется серьезное внимание в связи с тем, что современные вычислительные сети могут охватывать значительные территории, применяться для решения задач различной сложности и назначения, использовать различные среды и протоколы передачи данных. Таким образом, при проектировании локальной вычислительной сети, перед заказчиком и исполнителем встает вопрос об однозначности применяемой терминологии.

Ниже приводится классификация локальных сетей по некоторым признакам.

Классификация ЛВС по способу управления различают их на сети с выделенными серверами, одноранговые сети (все узлы сети равноправны) и терминальные (сети, использующие т.н. сетецентрическую концепцию построения, при которой оборудование конечного пользователя предоставляет только функции ввода-вывода, а все запросы на обработку и получение информации выполняет сетевое ядро).

По охвату географической территории локальные ВС подразделяют на местные (ограниченные зданием или группой зданий), территориальные или региональные (действующие в пределах ограниченной территории но охватывающие значительное географическое пространство - город, область, страну) и глобальные(связывающие узлы, находящиеся в различных регионах и точках мира).

По используемой физической среде выделяют проводные кабельные сети, оптоволоконные кабельные сети и беспроводные сети.

Существует классификация ЛВС по методу доступа рабочих станций к среде передачи данных (детерминированные и случайные). Наиболее известными из них являются метод множественного доступа с контролем несущей и обнаружением конфликтов (CSMA/CD), который регламентируется стандартом IEEE 802.3 (Ethernet) и метод передачи маркера - стандарт IEEE 802.5 (Token Ring). CSMA/CD относится к децентрализованным случайным (точнее, квазислучайным) методам. Он используется как в обычных сетях типа Ethernet, так и в высокоскоростных сетях (Fast Ethernet, Gigabit Ethernet).

Характеристики и области применения этих популярных на практике сетей связаны именно с особенностями используемого метода доступа.

1.2 Типы топологий локальной вычислительной сети

Следует отдельно отметить способ классификации ЛВС по топологии. Логический и физический способы соединения компьютеров, кабелей и других компонентов, в целом составляющих сеть, называется ее топологией. Различают широковещательные, последовательностные и смешанные топологии.

Топология типа “шина”. В этом случае все компьютеры подключаются к одному кабелю, который называется шиной данных. При этом пакет будет приниматься всеми компьютерами, которые подключены к данному сегменту сети.

Быстродействие сети во многом определяется числом подключенных к обшей шине компьютеров. Чем больше таких компьютеров, тем медленнее работает сеть. Кроме того, подобная топология может стать причиной разнообразных коллизий, которые возникают, когда несколько компьютеров одновременно пытаются передать информацию в сеть. Вероятность появления коллизии возрастает с увеличением количества подключенных к шине компьютеров. Схема данной топологии изображена на рис.1.

Рис. 1 Топология типа “шина”

На рисунке также изображены терминаторы. Такие устройства устанавливаются на концах сети и ограничивают распространение сигнала, замыкая сегмент сети. Если где-то произойдет обрыв кабеля или хотя бы на одном конце сети не будет установлен терминатор, сигнал начнет отражаться от места обрыва и соответствующего конца сети, что приведет к нарушению связи.

Преимущества использования сетей с топологией «общая шина» следующие:

значительная экономия кабеля;

простота создания и управления.

Основные недостатки:

вероятность появления коллизий при увеличении числа компьютеров в сети;

обрыв кабеля приведет к отключению множества компьютеров;

низкий уровень защиты передаваемой информации. Любой компьютер может получить данные, которые передаются по сети.

Топология типа “кольцо”. В случае использования кольцевой топологии все компьютеры сети подключаются к единому кольцевому кабелю. Пакеты проходят по кольцу в одном направлении через все сетевые платы подключенных к сети компьютеров. Каждый компьютер будет усиливать сигнал и отправлять его дальше по кольцу. Сеть с такой топологией изображена на рис 2.

Рис. 2 Топология “Кольцо”

В представленной топологии передача пакетов по кольцу организована маркерным методом. Маркер представляет собой определенную последовательность двоичных разрядов, содержащих управляющие данные. Если сетевое устройство имеет маркер, то у него появляется право на отправку информации в сеть. Внутри кольца может передаваться всего один маркер. Компьютер, который собирается транспортировать данные, забирает маркер из сети и отправляет запрошенную информацию по кольцу. Каждый следующий компьютер будет передавать данные дальше, пока этот пакет не дойдет до адресата. После получения адресат вернет подтверждение о получении компьютеру-отправителю, а последний создаст новый маркер и вернет его в сеть.

Преимущества данной топологии следующие:

эффективнее, чем в случае с общей шиной, обслуживаются большие объемы данных;

каждый компьютер является повторителем: он усиливает сигнал перед отправкой следующей машине, что позволяет значительно увеличить размер сети;

возможность задать различные приоритеты доступа к сети; при этом компьютер, имеющий больший приоритет, сможет дольше задерживать маркер и передавать больше информации.

Недостатки:

обрыв сетевого кабеля приводит к неработоспособности всей сети;

произвольный компьютер может получить данные, которые передаются по сети. Топология типа “звезда”. При использовании звездообразной топологии каждый кабельный сегмент, идущий от любого компьютера сети, будет подключаться к центральному коммутатору или концентратору. Все пакеты будут транспортироваться от одного компьютера к другому через это устройство. Допускается использование как активных, так и пассивных концентраторов. В случае разрыва соединения между компьютером и концентратором остальная сеть продолжает работать. Если же концентратор выйдет из строя, то сеть работать перестанет. С помощью звездообразной структуры можно подключать друг к другу даже локальные сети. Сеть с такой топологией изображена на рис. 3.

Рис. 3 Топология “Звезда”

1.3 Сетевые устройства и средства коммуникаций

Для соединения устройств в сети используется специальное оборудование. Рассмотрим его ниже.

Сетевые карты делают возможным соединение компьютера и сетевого кабеля. Сетевая карта преобразует информацию, которая предназначена для отправки, в специальные пакеты. Пакет -- логическая совокупность данных, в которую входят заголовок с адресными сведениями и непосредственно информация. В заголовке присутствуют поля адреса, где находится информация о месте отправления и пункте назначения данных. Сетевая плата анализирует адрес назначения полученного пакета и определяет, действительно ли пакет направлялся данному компьютеру. Если вывод будет положительным, то плата передаст пакет операционной системе. В противном случае пакет обрабатываться не будет. Специальное программное обеспечение позволяет обрабатывать все пакеты, которые проходят внутри сети. Такую возможность используют системные администраторы, когда анализируют работу сети, и злоумышленники для кражи данных, проходящих по ней.

Любая сетевая карта имеет индивидуальный адрес, встроенный в ее микросхемы. Этот адрес называется физическим, или МАС-адресом (Media Access Control - управление доступом к среде передачи).

Порядок действий, совершаемых сетевой картой, такой.

Получение информации от операционной системы и преобразование ее в электрические сигналы для дальнейшей отправки по кабелю.

Получение электрических сигналов по кабелю и преобразование их обратно

в данные, с которыми способна работать операционная система.

Определение, предназначен ли принятый пакет данных именно для этого компьютера.

Управление потоком информации, которая проходит между компьютером и сетью.

Локальная сеть может быть расширена за счет использования специального устройства, которое носит название репитер (Repeater -- повторитель). Его основная функция состоит в том, чтобы, получив данные на одном из портов, перенаправить их на остальные порты. Данные порты могут быть произвольного типа: AUI, BNC, RJ-45 или Fiber-Optic. Комбинации также роли не играют, что позволяет объединять элементы сети, которые построены на основе различных типов кабеля. Информация в процессе передачи на другие порты восстанавливается, чтобы исключить отклонения, которые могут появиться в процессе движения сигнала от источника.

Повторители могут выполнять функцию разделения. Если повторитель определяет, что на каком-то из портов происходит слишком много коллизий, он делает вывод, что на этом сегменте произошла неполадка, и изолирует его. Данная функция предотвращает распространение сбоев одного из сегментов на всю сеть.

Повторитель позволяет:

соединять два сегмента сети с одинаковыми или различными видами кабеля;

регенерировать сигнал для увеличения максимального расстояния его передачи;

передавать поток данных в обоих направлениях.[1]

Концентратор (хаб) - устройство, способное объединить компьютеры в физическую звездообразную топологию. Концентратор имеет несколько портов, позволяющих подключить сетевые компоненты. Концентратор, имеющий всего два порта, называют мостом. Мост необходим для соединения двух элементов сети.

Сеть вместе с концентратором представляет собой «общую шину» . Пакеты данных при передаче через концентратор будут доставлены на все компьютеры, подключенные к локальной сети.

Существует два вида концентраторов.

Пассивные концентраторы. Такие устройства отправляют полученный сигнал без его предварительной обработки.

Активные концентраторы (многопортовые повторители). Принимают ходящие сигналы, обрабатывают их и передают в подключенные компьютеры.

Коммутаторы необходимы для организации более тесного сетевого соединения между компьютером-отправителем и конечным компьютером. В процессе передачи данных через коммутатор в его память записывается информация о МАС-адресах компьютеров. С помощью этой информации коммутатор составляет таблицу маршрутизации, в которой для каждого из компьютеров указана его принадлежность определенному сегменту сети.

При получении коммутатором пакетов данных он создает специальное внутреннее соединение (сегмент) между двумя своими портами, используя таблицу маршрутизации. Затем отправляет пакет данных в соответствующий порт конечного компьютера, опираясь на информацию, описанную в заголовке пакета.

Таким образом, данное соединение оказывается изолированным от других портов, что позволяет компьютерам обмениваться информацией с максимальной скоростью, которая доступна для данной сети. Если у коммутатора присутствуют только два порта, он называется мостом.

Коммутатор предоставляет следующие возможности:

послать пакет с данными с одного компьютера на конечный компьютер;

увеличить скорость передачи данных.

Маршрутизатор по принципу работы напоминает коммутатор, однако имеет больший набор функциональных возможностей. Он изучает не только MAC, но и IP-адреса обоих компьютеров, участвующих в передаче данных. Транспортируя информацию между различными сегментами сети, маршрутизаторы анализируют заголовок пакета и стараются вычислить оптимальный путь перемещения данного пакета. Маршрутизатор способен определить путь к произвольному сегменту сети, используя информацию из таблицы маршрутов, что позволяет создавать общее подключение к Интернету или глобальной сети.

Маршрутизаторы позволяют произвести доставку пакета наиболее быстрым путем, что позволяет повысить пропускную способность больших сетей. Если какой-то сегмент сети перегружен, поток данных пойдет по другому пути.

1.4 Виды сетевых кабелей для ЛВС

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое «витой парой. Она позволяет передавать информацию со скоростью до 100 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и безпроблемная установка. Для повышения помехозащищенности информации часто используют экранированную витую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

Коаксиальный кабель имеет среднюю цену, хорошо помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 50 Мбит/с. При передачи информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый репитер (англ. repeater - повторитель). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией типа «шина» или «дерево» коаксиальный кабель должен иметь на конце согласующий резистор (терминатор).

Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet или желтый кабель. Он использует 15-контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Средняя скорость передачи данных 10 Мбит/с. Максимально доступное расстояние без повторителя не превышает 500 м., а общее расстояние сети Ethernet - около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор.

Более дешевым, чем Ethernet-кабель является соединение Cheapernet-кабель (RG-58) или, как его часто называют, тонкий Ethernet. Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. При соединении сегментов Cheapernet-кабеля также требуются повторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР.-50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T-connectors). Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а минимум - 0,5 м, общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала.

Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. Скорость распространения информации по ним достигает 100 Мбит/с, а на экспериментальных образцах оборудования - 200 Мбит/с. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в JIBC с помощью звездообразного соединения.

Глава 2. Практическая часть

Требуется:

а) выбрать компьютеры пользователей;

б) выбрать тип среды передачи (тип среды передачи задан табл.8 приложения)

в) выбрать концентраторы;

г) выбрать сетевые адаптеры;

д) выбрать тип сервера;

е) произвести расчёт времени двойного оборота сигнала;

ж) расчёт сокращения межкадрового интервала.

Результаты выбора представить в виде спецификации на оборудование и материалы.

Результатом проектирования является схема ЛВС.

План организации

Размеры здания

Вариант

L1,М

H1,М

D1,М

L11,М

L12,М

Н2,М

D2,M

L21,M

L22,M

Этаж, здания 1

Этаж, здания 2

8.

Мах

6

120

25

20

12

60

30

20

2

3

Размещение компьютеров в помещениях

Вариант

Здание

Этаж

Количество компьютеров

К.1

К.2

К.3

К.4

К.5

К.6

1

1

1

3

1

2

1

2

2

3

2

2

2

2

2

8.

1

3

1

2

1

1

-

2

2

3

1

2

1

2

-

3

4

3

1

2

1

-

Тип среды передачи

Вариант

Здание

Этаж

Тип среды передачи

Тип среды передачи между зданиями

1

2

3

4

5

1

1

l00base-fx

l00base-tx (кабель at&t 2061)

2

100base-t4

8.

1

l00base-tx

2

2

l00base-fx

3

100base-t4

2.1 Выбор конфигурации Fast Ethernet

Для определения работоспособности сети Fast Ethernet стандарт IEEE 802.3 предлагает две модели, называемые Transmission System Model 1 и Transmission System Model 2. При этом первая модель основана на несложных правилах, а вторая использует систему расчетов.

В соответствии с первой моделью, при выборе конфигурации надо руководствоваться следующими принципами:

- сегменты, выполненные на электрических кабелях (витая пара), не должны быть длиннее 100 м;

- сегменты, выполненные на оптоволоконных кабелях, не должны быть длиннее 412 м;

- если используются трансиверы, то трансиверные кабели не должны быть длиннее 50 см.

При выполнении этих правил надо руководствоваться таблицей 1, определяющей максимальные размеры (в метрах) зоны конфликта (т.е. максимальное расстояние между абонентами сети, не разделенными коммутаторами).

Таблица 1

Тип репитера (концентратора)

Витая пара

Оптоволоконный кабель

T4 иFX

TXи FX

Без репитера(два абонента)

100

412

-

-

Один репитер класса I

200

272

231

260,8

Один репитер класса II

200

320

-

308,8

Два репитера класса II

205

228

-

216,2

Вторая модель основана на вычислениях суммарного двойного времени прохождения сигнала по сети.

Для расчетов в соответствии со второй моделью сначала надо выделить в сети путь с максимальным двойным временем прохождения и максимальным числом репитеров (концентраторов) между компьютерами. Расчет ведется на основании таблицы 2.

Таблица 2

Тип сегмента

Задержка на метр

(битовый интервал)

Максимальная задержка

(битовый интервал)

Два абонента TX/FX

-

100

Два абонента T4

-

138

Один абонент T4 и один TX/FX

-

127

Сегмент на кабеле категории 3

1,14

114 (100 м)

Сегмент на кабеле категории 4

1,14

114 (100 м)

Сегмент на кабеле категории 5

1,112

111,2 (100 м)

Экранированная витая пара

1,112

111,2 (100 м)

Оптоволоконный кабель

1,0

412 (412 м)

Репитер (концентратор)класса I

-

140

Репитер (концентратор)

класса IIс портами TX/FX

-

92

Репитер (концентратор)

класса IIс портами T4

-

67

Для вычисления полного двойного (кругового) времени прохождения для сегмента сети необходимо умножить длину сегмента на величину задержки на метр. Затем задержки сегментов, входящих в путь максимальной длины, надо просуммировать и прибавить к этой сумме величину задержки для двух абонентов и величины задержек для всех репитеров, входящих в данный путь. Суммарная задержка должна быть меньше, чем 512 битовых интервалов.

Для более точного расчета следует использовать временные характеристики конкретного кабеля, применяемого в сети. Производители кабелей иногда указывают величину задержки на метр длины, а иногда - скорость распространения сигнала относительно скорости света (или NVP - Nominal Velocity of Propagation). Связанны эти две величины формулой: tз=1/(3·10·NVP), где tз - величина задержки на метр кабеля. Например, если NVP=0,4 (40%) от скорости света, то задержка tз будет равна 8,34 нс/м или 0,834 битовых интервала. Для вычисления двойного (кругового) времени прохождения нужно удвоенное значение tз умножить на длину кабеля.

В таблице 3 даны величины NVP для некоторых типов кабелей.

Таблица 3

Фирма

Марка

Категория

NVP

Belden

1455A

4

0,72

0,925

Belden

1583A

5

0,72

0,925

Belden

1585A

5

0,75

0,888

2.2 Расчет работоспособности сети Fast Ethernet

Согласно первой модели все условия соблюдены, сеть работоспособна.

В одном домене коллизий допускается наличие только одного повторителя класса I. Это связано с тем, что такой повторитель вносит большую задержку при распространении сигналов. Повторители класса II вносят меньшую задержку при передаче сигналов. Поэтому максимальное число повторителей класса II в домене коллизий - 2, причем они должны быть соединены между собой кабелем не длиннее 5 метров.

Небольшое количество повторителей Fast Ethernet не является серьезным препятствием при построении больших сетей, так как применение коммутаторов и маршрутизаторов делит сеть на несколько доменов коллизий, каждый из которых будет строиться на одном или двух повторителях.

Для объединения сети между зданиями использованы коммутаторы, которые делят сеть на домены. В участках сети, которые соединены коммутаторами, коллизии не возникают.

Согласно второй модели проведем необходимые расчеты двойного времени прохождения сигнала в доменах коллизий.

В первом здании:

1 этаж:

2 этаж:

Во втором здании:

3 этаж:

Суммарная задержка в каждом домене коллизий меньше, чем 512 битовых интервалов. По полученным результатам сеть работоспособна.

Спецификация на оборудование и материалы

№№

Наименование

Единица

измерения

Количество

Оборудование

1.

Концентратор IIкласса на 8 портов

шт.

2

2.

Концентратор IIкласса на 12 портов

шт.

2

3.

Коммутатор на 8 портов

шт.

2

4.

Коммутатор на 12 портов

шт.

1

5.

Сетевой адаптер

шт.

50

Материалы

1.

UTP-кабель категории 4 (Belden1455A)

м

570

2.

STP-кабель категории 5 (Belden1583A)

м

586

3.

STP-кабель категории 5 (Belden1585A)

м

538

5.

Оптический кабель

м

1534

Заключение

Развитие современной вычислительной техники не отделимо от развития компьютерных сетей. При выполнении данной курсовой я ознакомилась с основными принципами построения и функционирования компьютерных сетей.

В результате проделанной на данной организации работы произведена: компьютеризация рабочих мест с объединением их в локальную вычислительную сеть, с наличием сервера, сетевого принтера, и доступом к сети Интернет. Выполнение данной работы обеспечит наиболее скоростную и производительную работу рабочего персонала.

Те задачи, которые ставились при постановке задачи, на мой взгляд, достигнуты.

Список литературы

1. Бормотов С Системное администрирование на 100% Издательство: Питер, 2006 г

2. Глушаков С. В.,. Хачиров Т. С Сеть настраиваем своими руками. Серия: Самоучитель ПК. Феникс, Фолио, 2006 г.

3. Иртегов Д. В. Введение в сетевые технологии. БХВ-Петербург, 2004 г.

4. Каки Коэн, Эндрю Дэниелс Сети под управлением Windows ХР. НТ Пресс, 2005 г.

5. Майкл Палмер, Роберт Брюс Синклер Проектирование и внедрение компьютерных сетей. БХВ-Петербург, 2004 г.

Размещено на Allbest.ru

...

Подобные документы

  • Разработка сети на 17 компьютеров стандарта Fast Ethernet, расчет ее стоимости. Выбор оптимальной топологии сети и расчет минимальной суммарной длины соединительного кабеля. План расположения строений и размещения узлов локальной вычислительной сети.

    реферат [836,0 K], добавлен 18.09.2010

  • Организационная структура предприятия "ЛЕПСЕ", состав сетевых приложений. Выбор конфигурации сети Fast Ethernet, применение сетевой топологии "звезда". Структура кабельной системы сети организации. Проверка работоспособности проектируемой сети.

    контрольная работа [64,3 K], добавлен 10.05.2011

  • Настройка телекоммуникационного оборудования локальной вычислительной сети. Выбор архитектуры сети. Сервисы конфигурации сервера. Расчет кабеля, подбор оборудования и программного обеспечения. Описание физической и логической схем вычислительной сети.

    курсовая работа [1,3 M], добавлен 22.12.2014

  • Обзор и анализ возможных технологий построения сети: Ethernet, Token Ring, FDDI, Fast Ethernet. Основные виды кабелей и разъемов. Выбор архитектуры, топологии ЛВС; среды передачи данных; сетевого оборудования. Расчет пропускной способности локальной сети.

    дипломная работа [476,4 K], добавлен 15.06.2015

  • Выбор и обоснование технического обеспечения для разрабатываемой локальной сети в школе с использованием технологии Ethernet и топологией "звезда". Перечень активного и пассивного технического оборудования, необходимого для локальной вычислительной сети.

    курсовая работа [190,4 K], добавлен 15.11.2012

  • Два типа локальных сетей: одноранговые и сети с выделенным сервером, их преимущества и недостатки. Выбор топологии сети. Спецификация физической среды ETHERNET. Расчет корректности сети - величин PDV и PVV и оценка их с предельно допустимыми в Ethernet.

    курсовая работа [569,2 K], добавлен 01.09.2014

  • Проектирование локальной вычислительной сети для предприятия c главным офисом в центре города и двумя филиалами на удалении не более 1,5 км. Выбор топологии сети и основного оборудования. Программное обеспечение для клиент-серверного взаимодействия сети.

    курсовая работа [3,4 M], добавлен 27.02.2015

  • Структура ОАО "Ростовского-на-Дону электровозоремонтного завода". Выбор топологии для проектируемой локальной вычислительной сети на основе Fast Ethernet. Рассмотрение базовой модели взаимодействия открытых систем OSI; описание технологий Ethernet и ADSL.

    контрольная работа [276,4 K], добавлен 26.01.2013

  • Проектирование компьютерной локальной сети по технологии Ethernet 10Base-T, 1000Base-LX , выбор топологии и необходимого аппаратное и программное обеспечение. Расчет затрат на сетевое оборудование, проектирование и монтаж локальной сети организации.

    курсовая работа [73,5 K], добавлен 09.07.2014

  • Выбор технологий локальной вычислительной сети. Выход в Интернет. Схема кабельных укладок и расчет длин кабелей. Логическая топология и масштабирование сети. Спецификация используемого оборудования с указанием стоимости и расчет затрат на оборудование.

    курсовая работа [599,6 K], добавлен 27.11.2014

  • Принцип деятельности ООО "МАГМА Компьютер". Особенности предметной области. Цели создания компьютерной сети. Разработка конфигурации сети. Выбор сетевых компонентов. Перечень функций пользователей сети. Планирование информационной безопасности сети.

    курсовая работа [2,3 M], добавлен 17.09.2010

  • Расчеты параметров проектируемой локальной вычислительной сети. Общая длина кабеля. Распределение IP-адресов для спроектированной сети. Спецификация оборудования и расходных материалов. Выбор операционной системы и прикладного программного обеспечения.

    курсовая работа [940,7 K], добавлен 01.11.2014

  • Способы связи разрозненных компьютеров в сеть. Основные принципы организации локальной вычислительной сети (ЛВС). Разработка и проектирование локальной вычислительной сети на предприятии. Описание выбранной топологии, технологии, стандарта и оборудования.

    дипломная работа [2,3 M], добавлен 19.06.2013

  • Обоснование выбора оптимальных сетевых решений на базе многозадачных операционных систем для построения компьютерной сети стандартов Fast Ethernet с учетом необходимых требований к сети. Методы расчета спроектированной конфигурации сети на корректность.

    курсовая работа [3,1 M], добавлен 06.12.2012

  • Понятие локальной вычислительной сети. Активное и пассивное сетевое оборудование. Топологии "Шина", "Кольцо", "Звезда". Структурированная кабельная система. Математическая модель компьютерной сети. Основные стандарты реализации Ethernet и Fast Ethernet.

    курсовая работа [441,2 K], добавлен 21.12.2014

  • Проект локальной вычислительной сети, объединяющей два аптечных магазина и склад. Выбор топологии сети и методов доступа. Технико-экономическое обоснование проекта. Выбор сетевой операционной системы и разработка спецификаций. Смета на монтаж сети.

    курсовая работа [501,4 K], добавлен 08.06.2011

  • Концепция построения, назначение и типы компьютерных сетей. Архитектура локальной сети Ethernet. Обзор и анализ сетевого оборудования и операционных систем. Обоснование выбора аппаратно-программной платформы. Принципы и методы проектирования ЛВС Ethernet.

    дипломная работа [162,5 K], добавлен 24.06.2010

  • Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.

    курсовая работа [861,6 K], добавлен 27.02.2013

  • Параметры локальной вычислительной сети: среда передачи; структура, топология и архитектура сети; выбор операционных систем и активного оборудования. Анализ информационных потоков в распределенной системе. Расчет дальности беспроводной связи радиолиний.

    дипломная работа [3,3 M], добавлен 28.11.2012

  • Сравнительный анализ различных топологий сетей. Исследование элементов структурированной кабельной системы. Методы доступа и форматы кадров технологии Ethernet. Локальные сети на основе разделяемой среды: технология TokenRing, FDDI, Fast Ethernet.

    курсовая работа [1,2 M], добавлен 19.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.