Системы управления базами данных (СУБД)

Понятие и предназначение систем управления базами данных (СУБД). Классификация СУБД по степени универсальности, типу модели данных и на общем уровне. Основные компоненты и функции СУБД. Хранение данных в сводных таблицах. Пример реляционной СУБД.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 20.11.2015
Размер файла 238,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

В настоящее время в современном мире электронных технологий практически невозможно представить компанию (фирму или организацию), в которой не требуется обработка некоторого объёма информации.

Человечеством накоплено поистине гигантское количество информации об объектах и явлениях. И её требуется, где-то хранить. Информация может динамически изменяться. Регулярно требуется выборка данных по определённым критериям из всего массива.

Информация не лежит мертвым грузом, она хранится в электронном виде и используется в базах данных. Базы данных - это часть информационных систем - программно-аппаратных комплексов, осуществляющих хранение и обработку огромных информационных массивов.

При автоматизации бизнес процессов очень часто возникают задачи, которые не решают уже готовые программы и базы данных. При этом аналитическая информация показывает, что даже если использовать сложные и дорогостоящие CRM-системы управления предприятием, получить решение, удовлетворяющее руководство компании, бывает просто невозможно.

На сегодняшний день использование баз данных (БД) и информационных систем становится неотъемлемой частью функционирования любых организаций и предприятий. В связи с этим большую актуальность приобретает освоение принципов построения и эффективного применения соответствующих технологий и программных продуктов: систем управления базами данных (СУБД), CASE-систем автоматизации проектирования, средств администрирования и защиты баз данных и других.

1. ОПРЕДЕЛЕНИЕ, НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ СУБД

1.1 Определение СУБД и её функции

Системой управления базами данных (СУБД) называют программную систему, предназначенную для создания на ЭВМ общей базы данных, используемой для решения множества задач. Подобные системы служат для поддержания базы данных в актуальном состоянии и обеспечивают эффективный доступ пользователей к содержащимся в ней данным в рамках предоставленных пользователям полномочий.

СУБД предназначена для централизованного управления базой данных в интересах, всех работающих в этой системе.

По степени универсальности различают два класса СУБД:

системы общего назначения;

специализированные системы.

СУБД общего назначения не ориентированы на какую-либо предметную область или на информационные потребности какой-либо группы пользователей. Каждая система такого рода реализуется как программный продукт, способный функционировать на некоторой модели ЭВМ в определенной операционной системе и поставляется многим пользователям как коммерческое изделие. Такие СУБД обладают средствами настройки на работу с конкретной базой данных. Использование СУБД общего назначения в качестве инструментального средства для создания автоматизированных информационных систем, основанных на технологии баз данных, позволяет существенно сокращать сроки разработки, экономить трудовые ресурсы. Этим СУБД присущи развитые функциональные возможности. управление база субд таблица

Специализированные СУБД создаются в редких случаях при невозможности или нецелесообразности использования СУБД общего назначения.

СУБД общего назначения -- это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией базы данных информационной системы.

Используемые в настоящее время СУБД обладают средствами обеспечения целостности данных и надежной безопасности, что дает возможность разработчикам гарантировать большую безопасность данных при меньших затратах сил на низкоуровневое программирование. Продукты, функционирующие в среде WINDOWS, выгодно отличаются удобством пользовательского интерфейса и встроенными средствами повышения производительности.

Производительность СУБД оценивается:

временем выполнения запросов;

скоростью поиска информации в неиндексированных полях;

временем выполнения операций импортирования базы данных из других форматов;

скоростью создания индексов и выполнения таких массовых операций, как обновление, вставка, удаление данных;

максимальным числом параллельных обращений к данным в многопользовательском режиме;

временем генерации отчета.

На производительность СУБД оказывают влияние два фактора:

СУБД, которые следят за соблюдением целостности данных, несут дополнительную нагрузку, которую не испытывают другие программы;

производительность собственных прикладных программ сильно зависит от правильного проектирования и построения базы данных.

Обычно современная СУБД содержит следующие компоненты (см. рис. 1.):

· ядро, которое отвечает за управление данными во внешней и оперативной памяти и журнализацию,

· процессор языка базы данных, обеспечивающий оптимизацию запросов на извлечение и изменение данных и создание, как правило, машинно-независимого исполняемого внутреннего кода,

· подсистему поддержки времени исполнения, которая интерпретирует программы манипуляции данными, создающие пользовательский интерфейс с СУБД

· а также сервисные программы (внешние утилиты), обеспечивающие ряд дополнительных возможностей по обслуживанию информационной системы.

(рис. 1) Компоненты СУБД

Функции СУБД

Непосредственное управление данными во внешней памяти

Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для убыстрения доступа к данным в некоторых случаях (обычно для этого используются индексы). В некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти. Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД.

Управление буферами оперативной памяти

СУБД обычно работают с БД значительного размера; по крайней мере этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти. Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. При этом, даже если операционная система производит общесистемную буферизацию (как в случае ОС UNIX), этого недостаточно для целей СУБД, которая располагает гораздо большей информацией о полезности буферизации той или иной части БД. Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов.

Заметим, что существует отдельное направление СУБД, которое ориентировано на постоянное присутствие в оперативной памяти всей БД. Это направление основывается на предположении, что в будущем объем оперативной памяти компьютеров будет настолько велик, что позволит не беспокоиться о буферизации. Пока эти работы находятся в стадии исследований.

Управление транзакциями

Транзакция - это последовательность операций над БД, рассматриваемых СУБД как единое целое. Либо транзакция успешно выполняется, и СУБД фиксирует (COMMIT) изменения БД, произведенные этой транзакцией, во внешней памяти, либо ни одно из этих изменений никак не отражается на состоянии БД. Понятие транзакции необходимо для поддержания логической целостности БД. Если вспомнить наш пример информационной системы с файлами СОТРУДНИКИ и ОТДЕЛЫ, то единственным способом не нарушить целостность БД при выполнении операции приема на работу нового сотрудника является объединение элементарных операций над файлами СОТРУДНИКИ и ОТДЕЛЫ в одну транзакцию. Таким образом, поддержание механизма транзакций является обязательным условием даже однопользовательских СУБД (если, конечно, такая система заслуживает названия СУБД). Но понятие транзакции гораздо более важно в многопользовательских СУБД.

То свойство, что каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения, делает очень удобным использование понятия транзакции как единицы активности пользователя по отношению к БД. При соответствующем управлении параллельно выполняющимися транзакциями со стороны СУБД каждый из пользователей может в принципе ощущать себя единственным пользователем СУБД (на самом деле, это несколько идеализированное представление, поскольку в некоторых случаях пользователи многопользовательских СУБД могут ощутить присутствие своих коллег).

С управлением транзакциями в многопользовательской СУБД связаны важные понятия сериализации транзакций и сериального плана выполнения смеси транзакций. Под сериализаций параллельно выполняющихся транзакций понимается такой порядок планирования их работы, при котором суммарный эффект смеси транзакций эквивалентен эффекту их некоторого последовательного выполнения. Сериальный план выполнения смеси транзакций - это такой план, который приводит к сериализации транзакций. Понятно, что если удается добиться действительно сериального выполнения смеси транзакций, то для каждого пользователя, по инициативе которого образована транзакция, присутствие других транзакций будет незаметно (если не считать некоторого замедления работы по сравнению с однопользовательским режимом).

Существует несколько базовых алгоритмов сериализации транзакций. В централизованных СУБД наиболее распространены алгоритмы, основанные на синхронизационных захватах объектов БД. При использовании любого алгоритма сериализации возможны ситуации конфликтов между двумя или более транзакциями по доступу к объектам БД. В этом случае для поддержания сериализации необходимо выполнить откат (ликвидировать все изменения, произведенные в БД) одной или более транзакций. Это один из случаев, когда пользователь многопользовательской СУБД может реально (и достаточно неприятно) ощутить присутствие в системе транзакций других пользователей.

Журнализация

Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматриваются два возможных вида аппаратных сбоев: так называемые мягкие сбои, которые можно трактовать как внезапную остановку работы компьютера (например, аварийное выключение питания), и жесткие сбои, характеризуемые потерей информации на носителях внешней памяти. Примерами программных сбоев могут быть: аварийное завершение работы СУБД (по причине ошибки в программе или в результате некоторого аппаратного сбоя) или аварийное завершение пользовательской программы, в результате чего некоторая транзакция остается незавершенной. Первую ситуацию можно рассматривать как особый вид мягкого аппаратного сбоя; при возникновении последней требуется ликвидировать последствия только одной транзакции.

Журнал - это особая часть БД, недоступная пользователям СУБД и поддерживаемая с особой тщательностью (иногда поддерживаются две копии журнала, располагаемые на разных физических дисках), в которую поступают записи обо всех изменениях основной части БД. В разных СУБД изменения БД журнализуются на разных уровнях: иногда запись в журнале соответствует некоторой логической операции изменения БД (например, операции удаления строки из таблицы реляционной БД), иногда - минимальной внутренней операции модификации страницы внешней памяти; в некоторых системах одновременно используются оба подхода.

Во всех случаях придерживаются стратегии "упреждающей" записи в журнал (так называемого протокола Write Ahead Log - WAL). Грубо говоря, эта стратегия заключается в том, что запись об изменении любого объекта БД должна попасть во внешнюю память журнала раньше, чем измененный объект попадет во внешнюю память основной части БД. Известно, что если в СУБД корректно соблюдается протокол WAL, то с помощью журнала можно решить все проблемы восстановления БД после любого сбоя.

Самая простая ситуация восстановления - индивидуальный откат транзакции. Строго говоря, для этого не требуется общесистемный журнал изменений БД. Достаточно для каждой транзакции поддерживать локальный журнал операций модификации БД, выполненных в этой транзакции, и производить откат транзакции путем выполнения обратных операций, следуя от конца локального журнала. В некоторых СУБД так и делают, но в большинстве систем локальные журналы не поддерживают, а индивидуальный откат транзакции выполняют по общесистемному журналу, для чего все записи от одной транзакции связывают обратным списком (от конца к началу).

При мягком сбое во внешней памяти основной части БД могут находиться объекты, модифицированные транзакциями, не закончившимися к моменту сбоя, и могут отсутствовать объекты, модифицированные транзакциями, которые к моменту сбоя успешно завершились (по причине использования буферов оперативной памяти, содержимое которых при мягком сбое пропадает). При соблюдении протокола WAL во внешней памяти журнала должны гарантированно находиться записи, относящиеся к операциям модификации обоих видов объектов. Целью процесса восстановления после мягкого сбоя является состояние внешней памяти основной части БД, которое возникло бы при фиксации во внешней памяти изменений всех завершившихся транзакций и которое не содержало бы никаких следов незаконченных транзакций. Для того, чтобы этого добиться, сначала производят откат незавершенных транзакций (undo), а потом повторно воспроизводят (redo) те операции завершенных транзакций, результаты которых не отображены во внешней памяти. Этот процесс содержит много тонкостей, связанных с общей организацией управления буферами и журналом. Более подробно мы рассмотрим это в соответствующей лекции.

Для восстановления БД после жесткого сбоя используют журнал и архивную копию БД. Конечно, для нормального восстановления БД после жесткого сбоя необходимо, чтобы журнал не пропал. Как уже отмечалось, к сохранности журнала во внешней памяти в СУБД предъявляются особо повышенные требования. Тогда восстановление БД состоит в том, что исходя из архивной копии по журналу воспроизводится работа всех транзакций, которые закончились к моменту сбоя. В принципе, можно даже воспроизвести работу незавершенных транзакций и продолжить их работу после завершения восстановления. Однако в реальных системах это обычно не делается, поскольку процесс восстановления после жесткого сбоя является достаточно длительным.

Поддержка языков БД

Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В ранних СУБД поддерживалось несколько специализированных по своим функциям языков. Чаще всего выделялись два языка - язык определения схемы БД (SDL - Schema Definition Language) и язык манипулирования данными (DML - Data Manipulation Language). SDL служил главным образом для определения логической структуры БД, т.е. той структуры БД, какой она представляется пользователям. DML содержал набор операторов манипулирования данными, т.е. операторов, позволяющих заносить данные в БД, удалять, модифицировать или выбирать существующие данные. Мы рассмотрим более подробно языки ранних СУБД в следующей лекции.

В современных СУБД обычно поддерживается единый интегрированный язык, содержащий все необходимые средства для работы с БД, начиная от ее создания, и обеспечивающий базовый пользовательский интерфейс с базами данных. Стандартным языком наиболее распространенных в настоящее время реляционных СУБД является язык SQL (Structured Query Language). В нескольких лекциях этого курса язык SQL будет рассматриваться достаточно подробно, а пока мы перечислим основные функции реляционной СУБД, поддерживаемые на "языковом" уровне (т.е. функции, поддерживаемые при реализации интерфейса SQL).

Прежде всего, язык SQL сочетает средства SDL и DML, т.е. позволяет определять схему реляционной БД и манипулировать данными. При этом именование объектов БД (для реляционной БД - именование таблиц и их столбцов) поддерживается на языковом уровне в том смысле, что компилятор языка SQL производит преобразование имен объектов в их внутренние идентификаторы на основании специально поддерживаемых служебных таблиц-каталогов. Внутренняя часть СУБД (ядро) вообще не работает с именами таблиц и их столбцов.

Язык SQL содержит специальные средства определения ограничений целостности БД. Опять же, ограничения целостности хранятся в специальных таблицах-каталогах, и обеспечение контроля целостности БД производится на языковом уровне, т.е. при компиляции операторов модификации БД компилятор SQL на основании имеющихся в БД ограничений целостности генерирует соответствующий программный код.

Специальные операторы языка SQL позволяют определять так называемые представления БД, фактически являющиеся хранимыми в БД запросами (результатом любого запроса к реляционной БД является таблица) с именованными столбцами. Для пользователя представление является такой же таблицей, как любая базовая таблица, хранимая в БД, но с помощью представлений можно ограничить или наоборот расширить видимость БД для конкретного пользователя. Поддержание представлений производится также на языковом уровне.

Наконец, авторизация доступа к объектам БД производится также на основе специального набора операторов SQL. Идея состоит в том, что для выполнения операторов SQL разного вида пользователь должен обладать различными полномочиями. Пользователь, создавший таблицу БД, обладает полным набором полномочий для работы с этой таблицей. В число этих полномочий входит полномочие на передачу всех или части полномочий другим пользователям, включая полномочие на передачу полномочий. Полномочия пользователей описываются в специальных таблицах-каталогах, контроль полномочий поддерживается на языковом уровне.

1.2 Назначение и классификация СУБД

Назначение

Специальным образом организованная и хранящаяся во внешней памяти ЭВМ взаимосвязанная информация (данные) о реальных объектах, называются базами данных (БД).

Совокупность базы данных и обслуживающих программ называется информационно-поисковой системой (ИПС).

Программное обеспечение, с помощью которого строится база данных, на основе которого создаются и функционируют ИПС, называется системой управления базами данных (СУБД). Они обычно ориентируются на один из типов структур данных: "деревья" (иерархические СУБД), сети (сетевые СУБД), отношение (реляционные СУБД).

Широко используются такие базы данных:

ь справочники (телефонные, фармацевтические, научные)

ь словари (иностранных слов, терминов)

ь каталоги (библиотечные, музыкальные)

ь картотеки (видеофильмов, медицинских карт, личных дел)

ь расписания (уроков, движений поездов, автобусов)

ь коллекции и т.д.

Устройства внешней памяти, предназначенные для хранения БД, должны иметь высокую информационную ёмкость и малое время доступа к хранимой информации.

В работе с СУБД возможны следующие режимы: создание, редактирование (внесение любых изменений в уже созданную базу данных), поиск, манипулирование (просмотр, копирование файлов, сортировка)

Классифицировать СУБД можно, используя различные признаки классификации.

По степени универсальности различают СУБД общего и специального назначения.

СУБД общего назначения не ориентированы на какую-либо конкретную предметную область или на информационные потребности конкретной группы пользователей. Развитые функциональные возможности таких СУБД обеспечивают безболезненную эволюцию построенных на их основе автоматизированных информационных систем в рамках их жизненного цикла.

Однако в некоторых случаях доступные СУБД общего назначения не позволяют добиться требуемой производительности и или удовлетворить заданные ограничения по объёму памяти, предоставляемой для хранения БД. Тогда приходится разрабатывать специализированную СУБД для данного конкретного применения. Примером специализированной СУБД может быть система 1МВА8Е. используемая для автоматизации проектных и конструкторских разработок.

Важнейшим классификационным признаком СУБД является тип модели данных, поддерживаемый СУБД. По этому признаку СУБД делятся на:

иерархические. Первой иерархической СУБД была система IМS (Information Management System) компании IВМ, коммерческое распространение которой началось в 1968 г.:

сетевые. Первой сетевой СУБД считается система IDS (Integrated Data Store), разработанная компанией General Electric немного позже системы IМS:

реляционные. Первые коммерческие реляционные СУБД от компаний IВМ, Огас1е Corporation, Relation Technology Inc. и других поставщиков появились в начале 80-х годов. Реляционные СУБД просты в использовании, повышают производительность программистов при разработке прикладных программ, хорошо приспособлены для работы в архитектуре клиент сервер, позволяют параллельную обработку БД. хорошо приспособлены к графическим пользовательским интерфейсам. Реляционные СУБД продолжают совершенствоваться, предоставляя пользователю возможность решать всё более сложные задачи:

объектно-реляционные (постреляционные). Объектно-реляционные СУБД продолжают использовать стандартный язык запросов для реляционных БД - SQL. но с объектными расширениями:

объектно-ориентированные. В основе объектно-ориентированных СУБД лежит объектно-ориентированная модель обработки данных.

многомерные, в основе которых лежит многомерная модель данных.

На самом общем уровне все СУБД можно разделить на:

- профессиональные (промышленные), которые представляют собой программную основу для разработки автоматизированных систем управления крупными

экономическими объектами. На их базе создаются комплексы управления и обработки информации крупных предприятий, банков или даже целых отраслей. В

настоящее время характерными представителями профессиональных СУБД являются такие программные продукты: Огас1е, DB2, Sybase, Informix, Inqres, Progress.

- персональные (настольные). Это программное обеспечение, ориентированное на решение задач локального пользователя или компактной группы пользователей и предназначенная для использования на персональном компьютере, это объясняет их второе название - настольные. К ним относятся DBASE, FoxBase, FoxPro, Clipper, Paradox, Access.

В настоящее время среди СУБД выделяют СУБД (условно говоря) промежуточные между профессиональными и персональными. SQL Windows/ SQL Base, Interbase, Microsoft SQL Server.

2. СВОДНАЯ ТАБЛИЦА В MS EXCEL

Сводная таблица -- инструмент обработки данных, служащий для их обобщения.

Этот инструмент используется, прежде всего, в программах визуализации данных, таких как электронные таблицы или программное обеспечение для бизнес-анализа. Кроме того, сводная таблица может автоматически сортировать, рассчитывать суммы или получить среднее значение из данных, записанных в электронной таблице. Она отображает результаты во второй таблице (называемой «сводной таблицей») в виде суммированных данных. Обычно пользователь настраивает и изменяет структуру сводной таблицы простым перетаскиванием элементов в графическом режиме. Название «сводная таблица» появилось именно благодаря этому процессу поворота или «вращения» таблицы.

Термин «сводная таблица» используется различными производителями. В США корпорация Microsoft имеет торговую марку конкретного вида сводной таблицы. Сводные таблицы можно рассматривать также, как некое упрощение концепции OLAP.

OLAP (англ. online analytical processing, аналитическая обработка в реальном времени) -- технология обработки данных, заключающаяся в подготовке суммарной (агрегированной) информации на основе больших массивов данных, структурированных по многомерному принципу.

Типичное представление и хранение данных в сводных таблицах представляет собой плоскую таблицу. Это означает, что таблица содержит только столбцы и строки, как в нижеприведенном примере, показывающем данные по типам одежды:

Region

Gender

Style

Ship date

Units

Price

Cost

East

Boy

Tee

1/31/2005

12

11.04

10.42

East

Boy

Golf

1/31/2005

12

13

12.6

East

Boy

Fancy

1/31/2005

12

11.96

11.74

В то время, как такие таблицы могут содержать большое количество данных, довольно сложно воспринимать какую-то резюмированную информацию по ним. Сводная таблица может быстро объединять данные и выделять нужную информацию. Использование сводных таблиц очень распространено и зависит от ситуации. Первый вопрос, который надо задать перед составлением сводной таблицы: «Что мне нужно получить?» В нижеприведенном примере, вопрос может быть сформулирован следующим образом: «Сколько единиц продукции мы продали в каждом регионе для каждой даты поставки?».

Сводная таблица обычно содержит строки, колонки и поля данных (или фактов). В этом случае, столбец -- Ship Date, строка -- Region. Нужные нам данные -- это сумма единиц продукции (sum of Units). Эти поля допускают несколько видов функций агрегации, включая суммирование, нахождение среднего, стандартное отклонение, количество элементов и другие. В нашем случае, суммарное количество поставленных единиц продукции отражено в виде операции суммирования.

3. НОРМАЛИЗАЦИЯ В MS ACCESS

Microsoft Office Access или просто Microsoft Access -- реляционная СУБД корпорации Microsoft. Имеет широкий спектр функций, включая связанные запросы, связь с внешними таблицами и базами данных. Благодаря встроенному языку VBA, в самом Access можно писать приложения, работающие с базами данных.

Процесс преобразования отношений базы данных к виду, отвечающему нормальным формам, называется нормализацией. Нормализация предназначена для приведения структуры БД к виду, обеспечивающему минимальную логическую избыточность, и не имеет целью уменьшение или увеличение производительности работы или же уменьшение, или увеличение физического объёма базы данных. Конечной целью нормализации является уменьшение потенциальной противоречивости хранимой в базе данных информации. Как отмечает К. Дейт, общее назначение процесса нормализации заключается в следующем:

· исключение некоторых типов избыточности;

· устранение некоторых аномалий обновления;

· разработка проекта базы данных, который является достаточно «качественным» представлением реального мира, интуитивно понятен и может служить хорошей основой для последующего расширения;

· упрощение процедуры применения необходимых ограничений целостности.

Устранение избыточности производится, как правило, за счёт декомпозиции отношений таким образом, чтобы в каждом отношении хранились только первичные факты (то есть факты, не выводимые из других хранимых фактов).

При том, что идеи нормализации весьма полезны для проектирования баз данных, они отнюдь не являются универсальным или исчерпывающим средством повышения качества проекта БД. Это связано с тем, что существует слишком большое разнообразие возможных ошибок и недостатков в структуре БД, которые нормализацией не устраняются. Несмотря на эти рассуждения, теория нормализации является очень ценным достижением реляционной теории и практики, поскольку она даёт научно строгие и обоснованные критерии качества проекта БД и формальные методы для усовершенствования этого качества. Этим теория нормализации резко выделяется на фоне чисто эмпирических подходов к проектированию, которые предлагаются в других моделях данных. Более того, можно утверждать, что во всей сфере информационных практически отсутствуют методы оценки и улучшения проектных решений, сопоставимые с теорией нормализации реляционных баз данных по уровню формальной строгости.

Нормализацию иногда упрекают на том основании, что «это просто здравый смысл», а любой компетентный профессионал и сам «естественным образом» спроектирует полностью нормализованную БД без необходимости применять теорию зависимостей. Однако, как указывает К. Дейт, нормализация в точности и является теми принципами здравого смысла, которыми руководствуется в своём сознании зрелый проектировщик, то есть принципы нормализации -- это формализованный здравый смысл. Между тем, идентифицировать и формализовать принципы здравого смысла -- весьма трудная задача, и успех в её решении является существенным достижением.

ЗАКЛЮЧЕНИЕ

БД является важнейшей составной частью информационных систем, которые предназначены для хранения и обработки информации. Изначально такие системы существовали в письменном виде. Для этого использовались различные картотеки, папки, журналы. Развитие средств вычислительной техники обеспечило возможность для создания и широкого использования автоматизированных информационных систем. Разрабатываются информационных системы для обслуживания различных систем деятельности, системы управления хозяйственными и техническими объектами, модельные комплексы для научных исследований. Современные информационные системы основаны на концепции интеграции данных, характеризующих большими объектами хранимых данных, сложной организацией, необходимостью удовлетворять разнообразные требования многочисленных пользователей. Для управления этими данными и обеспечения эффективности доступа к ним были созданы системы управления данными.

Таким образом, СУБД называют программную систему, предназначенную для создания ЭВМ общей базы данных для множества приложений, поддержания ее в актуальном состоянии и обеспечения эффективности доступа пользователей к содержащимся в ней данным в рамках предоставленных им полномочий.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТРЫ

1. http://info-tehnologii.ru

2. Информатика. (Учебник) Грошев А.С. (2010 г.)

3. http://citforum.ru

4. Современная информатика. Аверьянов Г.П., Дмитриева В.В. (2011, 436с.)

5. http://www.bseu.by

6. https://ru.wikipedia.org

Размещено на Allbest.ru

...

Подобные документы

  • Система управления базами данных как составная часть автоматизированного банка данных. Структура и функции системы управления базами данных. Классификация СУБД по способу доступа к базе данных. Язык SQL в системах управления базами данных, СУБД Microsoft.

    реферат [46,4 K], добавлен 01.11.2009

  • Структура и функции системы управления базами данных (СУБД). Управление хранением данных и доступом к ним. Защита и поддержка целостности данных. Надежность хранения данных во внешней памяти. Классификация СУБД по способу доступа к базе данных.

    презентация [3,7 M], добавлен 05.06.2014

  • Понятие и сущность базы данных, их классификация и характеристика. Системы управления базами данных. СУБД структуры "сервер-клиент", его суть. Microsoft Access - функционально полная реляционная СУБД. Предназначение СУБД Access, и описание ее работы.

    реферат [44,3 K], добавлен 27.02.2009

  • Программные продукты компании Microsoft: Access, Visual FoxPro7.0, dBASE. Возможности интеграции, совместной работы и использования данных. Системы управления базами данных (СУБД), их основные функции и компоненты. Работа с данными в режиме таблицы.

    курсовая работа [805,5 K], добавлен 15.12.2010

  • Базы данных с двумерными файлами и реляционные системы управления базами данных (СУБД). Создание базы данных и обработка запросов к ним с помощью СУБД. Основные типы баз данных. Базовые понятия реляционных баз данных. Фундаментальные свойства отношений.

    реферат [57,1 K], добавлен 20.12.2010

  • Создание автоматизированных систем управления для предприятий нефтяной и газовой промышленности. Система управления базами данных (СУБД), ее функциональные возможности, уровневая архитектура. Характеристика реляционных, объектных и распределенных СУБД.

    курсовая работа [434,7 K], добавлен 20.07.2012

  • Система управления базами данных (СУБД). Программные средства, предназначенные для создания, наполнения, обновления и удаления базы данных. Структура, модели и классификация баз данных. Создание каталогов, псевдонимов, таблиц, шаблонов и форм СУБД.

    презентация [1,1 M], добавлен 09.01.2014

  • Основные этапы проектирования базы данных. Access как система управления базами данных (СУБД), ее предназначение, отличительные возможности. Работа с таблицами, их создание и редактирование. Порядок создания запросов. Способы защиты баз данных.

    лабораторная работа [3,1 M], добавлен 18.08.2009

  • Система управления базами данных (СУБД) как программная система для создания общей базы данных. Создание СУБД для управления поставкой и реализацией ювелирных изделий. Типы данных, физическая и логическая модели. Разработка интерфейса пользователя.

    курсовая работа [467,8 K], добавлен 14.12.2012

  • Теоретические аспекты СУБД. Основные понятия. Функциональные возможности СУБД. Архитектура систем управления. Разработка базы данных. Крупные массивы данных размещают, как правило, отдельно от исполняемого программы, и организуют в виде базы данных.

    курсовая работа [30,5 K], добавлен 23.02.2006

  • Обработка данных, возможность коллективного использования ресурсов и оборудования. Централизованное хранение данных. Основы работы настольных СУБД. Наиболее популярные настольные СУБД. Актуальность использования, направления и перспективы развития.

    курсовая работа [361,4 K], добавлен 09.11.2008

  • Краткая история развития СУБД ORACLE, основные понятия и определения, архитектура. Принципы работы с СУБД ORACLE. Разработка баз данных, средства и технологии их реализации; возможности процедурного языка PL/SQL. Приемы администрирования СУБД ORACLE.

    презентация [609,2 K], добавлен 14.02.2014

  • Тенденция развития систем управления базами данных. Иерархические и сетевые модели СУБД. Основные требования к распределенной базе данных. Обработка распределенных запросов, межоперабельность. Технология тиражирования данных и многозвенная архитектура.

    реферат [118,3 K], добавлен 29.11.2010

  • Классификация баз данных. Использование пакета прикладных программ. Основные функции всех систем управления базами данных. Настольная система управления базами данных реляционного типа Microsoft Access. Хранение и извлечение электронных данных.

    курсовая работа [962,4 K], добавлен 23.04.2013

  • Термины "логический" и "физический" как отражение различия аспектов представления данных. Методы доступа к записям в файлах. Структура систем управления базами данных. Отличительные особенности обработки данных, характерные для файловых систем и СУБД.

    лекция [169,7 K], добавлен 19.08.2013

  • Основные понятия базы данных и систем управления базами данных. Типы данных, с которыми работают базы Microsoft Access. Классификация СУБД и их основные характеристики. Постреляционные базы данных. Тенденции в мире современных информационных систем.

    курсовая работа [46,7 K], добавлен 28.01.2014

  • Характеристика системы управления базами данных. Принципы классификации СУБД. NoSQL как ряд подходов, проектов, направленных на реализацию моделей баз данных. Методологические обоснования подхода NoSQL. Описание некоторых СУБД из данного движения.

    реферат [18,1 K], добавлен 06.10.2011

  • Системы управления базами данных. Состав СУБД. Языки программирования. Проектирование базы данных на СУБД MySQL. Работа с XAMPP Control Panel. База данных " Детский сад". Вывод данных из таблицы "Ребенок", "Группы", "Классы" и "Направление занятий".

    курсовая работа [1,9 M], добавлен 13.12.2016

  • Логическая организация данных, файловая модель. Сетевые, иерархические и реляционные модели данных. Системы управления базами данных, их определения и основные понятия. История, тенденции развития, классификация СУБД, свойства и технология использования.

    дипломная работа [51,3 K], добавлен 26.07.2009

  • Предпосылки появления и история эволюции баз данных (БД и СУБД). Основные типы развития систем управления базами данных. Особенности и черты Access. Создание и ввод данных в ячейки таблицы. Сортировка и фильтрация. Запрос на выборку, основные связи.

    презентация [1,2 M], добавлен 01.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.