Сравнительный анализ, достоинства и недостатки двоичной и троичной систем счисления в ЭВМ. Опыт создания троичной ЭВМ в СССР – ЭВМ "Сетунь"

Ознакомление с предусловиями создания цифровой вычислительной машины. Изучение основ применения троичного симметричного кода. Описание возможностей электронно-вычислительной машины "Сетунь". Обзор программного обеспечения, системы команд машины.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 01.12.2015
Размер файла 166,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное автономное учреждение

высшего профессионального образования

Южный федеральный университет

Кафедра "Информационных и измерительных технологий"

Направление 200100 "Приборостроение"

Реферат

Сравнительный анализ, достоинства и недостатки двоичной и троичной систем счисления в ЭВМ. Опыт создания троичной ЭВМ в СССР - ЭВМ "Сетунь"

Выполнил:

студент 3 курса 4 группы

Левченко В.В.

Ростов-на-Дону

2015

Троичные ЭВМ "Сетунь" и "Сетунь 70"

В начале 1956 г. по инициативе академика С.Л. Соболева, заведующего кафедрой вычислительной математики на механико-математическом факультете Московского университета, в вычислительном центре МГУ был учрежден отдел электроники и стал работать семинар с целью создать практичный образец цифровой вычислительной машины, предназначенной для использования в вузах, а также в лабораториях и конструкторских бюро промышленных предприятий. Требовалось разработать малую ЭВМ, простую в освоении и применениях, надежную, недорогую и вместе с тем эффективную в широком спектре задач.

Обстоятельное изучение в течение года имевшихся в то время вычислительных машин и технических возможностей их реализации привело к нестандартному решению употребить в создаваемой машине не двоичный, а троичный симметричный код, реализовав ту самую уравновешенную систему счисления, которую Д. Кнут двадцать лет спустя назовет быть может, самой изящной и как затем стало известно, достоинства которой были выявлены К. Шенноном в 1950 г. 121.

В отличие от общепринятого в современных компьютерах двоичного кода с цифрами 0, 1, арифметически неполноценного вследствие невозможности непосредственного представления в нем отрицательных чисел, троичный код с цифрами -1, 0, 1 обеспечивает оптимальное построение арифметики чисел со знаком. При этом, не только нет нужды в искусственных и несовершенных дополнительном, прямом либо обратном кодах чисел, но арифметика обретает ряд значительных преимуществ: единообразие кода чисел, варьируемая длина операндов, единственность операции сдвига, трехзначность функции знак числа, оптимальное округление чисел простым отсечением младших разрядов, взаимокомпенсируемость погрешностей округления в процессе вычисления [3].

Троичная ЭВМ "Сетунь", опытный образец которой разработали, смонтировали и к концу 1958 г. ввели в эксплуатацию сотрудники отдела электроники, как показал опыт ее освоения, программного оснащения и многообразных практических применений, с исчерпывающей полнотой удовлетворяла всем предусмотренным заданием на ее разработку требованиям. Этот успех, с учетом того, что разработка троичной ЭВМ предпринималась впервые, проводилась немногочисленным коллективом начинающих сотрудников (8 выпускников МЭИ и МГУ, 12 техников и лаборантов) и была выполнена в короткий срок, явно свидетельствует о благодатности троичной цифровой техники. Ценой усложнения по сравнению с двоичными элементов памяти и элементарных операций достигается существенное упрощение и, главное, естественность архитектуры троичных устройств.

При минимальном наборе команд (всего 24 одноадресные команды) "Сетунь" обеспечивала возможность вычислений с фиксированной и с плавающей запятой, обладала индекс-регистром, значение которого можно как прибавлять, так и вычитать при модификации адреса, предоставляла операцию сложения с произведением, оптимизирующую вычисление полиномов, операцию поразрядного умножения и три команды условного перехода по знаку результата. Простая и эффективная архитектура позволила усилиями небольшой группы программистов уже к концу 1959 г. оснастить машину системой программирования и набором прикладных программ [6], достаточными для проведения в апреле 1960 г. междуведомственных испытаний опытного образца.

По результатам этих испытаний "Сетунь" была признана первым действующим образцом универсальной вычислительной машины на безламповых элементах, которому свойственны "высокая производительность, достаточная надежность, малые габариты и простота технического обслуживания". По рекомендации Междуведомственной комиссии Совет Министров СССР принял постановление о серийном производстве "Сетуни" на Казанском заводе математических машин. Но почему-то троичный компьютер пришелся не по нраву чиновникам радиоэлектронного ведомства: они не обеспечили разработку серийного образца машины, а после того как он все-таки был осуществлен с использованием конструктивов выпускавшейся заводом машины М-20, не содействовали наращиванию выпуска в соответствии с растущим числом заказов, в частности из-за рубежа, а наоборот, жестко ограничивали выпуск, отклоняя заказы, и в 1965 г. полностью прекратили, причем воспрепятствовали освоению машины в ЧССР, планировавшей ее крупносерийное производство. Поводом для этой странной политики могла быть рекордно низкая цена "Сетуни" - 27,5 тыс., рублей, обусловленная бездефектным производством ее магнитных цифровых элементов на Астраханском заводе ЭА и ЭП, по 3 руб. 50 коп. за элемент (в машине было около 2 тыс., элементов). Существенно то, что электромагнитные элементы "Сетуни" позволили осуществить пороговую реализацию трехзначной логики на редкость экономно, естественно и надежно. Опытный образец машины за 17 лет эксплуатации в ВЦ МГУ, после замены на первом году трех элементов с дефектными деталями, не потребовал никакого ремонта внутренних устройств и был уничтожен в состоянии полной работоспособности. Серийные машины устойчиво функционировали в различных климатических зонах от Одессы и Ашхабада до Якутска и Красноярска при отсутствии какого-либо сервиса и запчастей.

Благодаря простоте и естественности архитектуры, а также рационально построенной системе программирования, включающей интерпретирующие системы: ИП-2 (плавающая запятая, 8 десятичных знаков), ИП-3 (плавающая запятая, 6 десятичных знаков), ИП-4 (комплексные числа, 8 десятичных знаков), ИП-5 (плавающая запятая, 12 десятичных знаков), автокод ПОЛИЗ с операционной системой и библиотекой стандартных подпрограмм (плавающая запятая, 6 десятичных знаков), машины "Сетунь" успешно осваивались пользователями в вузах, на промышленных предприятиях и в НИИ, оказываясь эффективным средством решения практически значимых задач в самых различных областях, от научно-исследовательского моделирования и конструкторских расчетов до прогноза погоды и оптимизации управления предприятием [7]. На семинарах пользователей вычислительных машин "Сетунь", проведенных в МГУ (1965), на Людиновском тепловозостроительном заводе (1968), в Иркутском политехническом институте (1969) были представлены десятки сообщений о результативных народнохозяйственных применениях этих машин. "Сетунь", благодаря естественности троичного симметричного кода, оказалась поистине универсальным, несложно программируемым и весьма эффективным вычислительным инструментом, положительно зарекомендовавшим себя, в частности, как техническое средство обучения вычислительной математике более чем в тридцати вузах. А в Военно-воздушной инженерной академии им. Жуковского именно на "Сетуни" была впервые реализована автоматизированная система компьютерного обучения [8].

Троичная система счисления основана на том же позиционном принципе кодирования чисел, что и принятая в современных компьютерах двоичная система, однако вес i -й позиции (разряда) в ней равен не 2 i , а 3 i . При этом сами разряды не двухзначны (не биты), а трехзначны (триты) - помимо 0 и 1 допускают третье значение, которым в симметричной системе служит -1, благодаря чему единообразно представимы как положительные, так и отрицательные числа. Значение n -тритного целого числа N определяется аналогично значению n -битного:

где а i · {1, 0, -1} - значение цифры i -го разряда.

Цифры в троичной симметричной системе целесообразно обозначать их знаками, т.е. вместо 1, 0, -1 писать +, 0, -. Например, десятичные числа 13, 7, 6, -6 в такой троичной записи будут: 13 = +++, 7 = +-+, б = +-0, -6 = -+0. Изменение знака числа в симметричном коде равносильно потритной инверсии, т.е. взаимозамене всех "+" на "-" и всех "-" на "+".

Операции сложения и умножения в троичном симметричном коде определены таблицами:

В отличие от двоичной, это арифметика чисел со знаком, причем знаком числа оказывается цифра старшего из его значащих (ненулевых) разрядов. Проблемы чисел со знаком, не имеющей в двоичном коде совершенного решения, в троичном симметричном коде просто нет, чем и обусловлены его принципиальные преимущества.

Машина "Сетунь" может быть охарактеризована как одноадресная, последовательного действия, с 9-тритным кодом команды, 18-тритными регистрами сумматора S и множителя R, 5-тритными индекс-регистром модификации адреса F и счетчиком-указателем выполняемых команд C , а также однобитным указателем знака результата ?, управляющим условными переходами.

Оперативная память - 162 9-тритных ячейки - разделена на 3 страницы по 54 ячейки для постраничного обмена с основной памятью - магнитным барабаном емкостью 36 либо 72 страницы. Считывание и запись в оперативную память возможны 18-тритными и 9-тритными словами, причем 9-тритное слово соответствует старшей половине 18-тритного в регистрах S и R. Содержимое этих регистров интерпретируется как число с фиксированной после второго из старших разрядов запятой, т.е. по модулю оно меньше 4,5. При вычислениях с плавающей запятой мантисса М нормализованного числа удовлетворяет условию 0,5 < |М| <1,5, а порядок представлен отдельным 5-тритным словом, интерпретируемым как целое со знаком.

Страничная двухступенная структура памяти с пословной адресацией в пределах трех страниц ОЗУ, обходящейся 5-тритными адресами и соответственно 9-тритными командами, обусловила необыкновенную компактность программ и вместе с тем высокое быстродействие машины, несмотря на то, что в интерпретирующих системах магнитный барабан функционирует как оперативная память.

В 1967-1969 гг. на основе опыта создания и практических применений машины "Сетунь" разработана усовершенствованная троичная цифровая машина "Сетунь 70", опытный образец которой вступил в строй в апреле 1970 г. Это была машина нетрадиционной двухстековой архитектуры, ориентированной на обеспечение благоприятных условий дальнейшего развития ее возможностей методом интерпретирующих систем [9].

Принятие арифметического стека (стека 18-тритных операндов) обусловлено использованием в качестве машинного языка так называемой польской инверсной записи программ (ПОЛИЗ), положительно зарекомендовавшей себя в одноименном интерпретаторе на "Сетуни". ПОЛИЗ-программа состоит не из команд той или иной адресности, а является последовательностью коротких слов - 6-тритных трайтов (троичных байтов). Как элемент программы трайт может быть либо адресным, либо операционным. Адресный трайт либо используется в качестве операнда предшествующим операционным, либо воспринимается как предписание заслать в стек операндов из оперативной памяти адресуемое слово от одного до трех трайтов. В оперативной памяти всего 9 страниц по 81 трайту, причем открыты для доступа в данный момент три страницы, номера которых указаны в так называемых "регистрах приписки".

Операционный трайт указывает операции, а вернее процедуры, выполняемые над стеком операндов, а также над регистрами процессора. Всего предусмотрена 81 операция - 27 основных, 27 служебных и 27 программируемых пользователем.

Второй (системный) стек, содержащий адреса возврата при обработке прерываний и при выполнении вложенных подпрограмм, позволил успешно реализовать на "Сетуни 70" идею структурированного программирования Э. Дейкстры, введя операции вызова подпрограммы, вызова по условию и циклического выполнения подпрограмм. Осуществленное таким образом процедурное структурированное программирование на практике подтвердило заявленные Дейкстрой преимущества его метода: трудоемкость создания программ сократилась в 5-7 раз, благодаря исключению традиционной отладки тестированием на конкретных примерах, причем программы обрели надлежащую надежность, упорядоченность, понятность и модифицируемость. В дальнейшем эти особенности архитектуры "Сетуни 70" послужили основой диалоговой системы структурированного программирования ДССП, реализованной на машинах серии ДВК и на последующих персональных компьютерах [10, 11].

К сожалению, дальнейшее развитие заложенных в "Сетуни 70" возможностей путем разработки ее программного оснащения было административным порядком прекращено. Пришлось переориентироваться на компьютеризацию обучения. "Сетунь 70" стала основой для разработки и реализации автоматизированной системы обучения "Наставник" [12, 13], воплотившей принципы "Великой дидактики" Яна Амоса Коменского. Назначение компьютера в этой системе не "электронное перелистывание страниц" и не мультимедийные эффекты, а отслеживание верности понимания учащимся того, чему он учится, своевременное преодоление заблуждений и обеспечение путем обоснованно назначаемых упражнений реального овладения предметом обучения. Вместе с тем компьютер протоколирует ход занятия, предоставляя разработчику учебного материала возможность оценивать эффективность используемых дидактических приемов и совершенствовать их.

Учебный материал в "Наставнике" предоставляется учащимся в печатном виде с пронумерованными секциями, абзацами, упражнениями и справками к ошибочным ответам, благодаря чему при помощи простейшего терминала с цифровой клавиатурой и калькуляторным индикатором компьютер без гипертекстового дисплея легко и безвредно взаимодействует с обучаемым, придавая книге недостающую ей способность диалога с читателем. Создание учебных материалов для "Наставника" не связано с программированием компьютера, и, как показала практика, разработка вполне удовлетворительных пособий по математике, физике, английскому языку и другим предметам посильна школьным учителям. Дидактическая эффективность этой немудреной системы оказалась на редкость высокой. Так, курс "Базисный Фортран" студенты факультета ВМК МГУ проходили в "Наставнике" за 10-15 часов, студенты экономического факультета - за 15-20 часов, показывая затем в практикуме более совершенное умение программировать на Фортране, чем после обычного семестрового курса.

Реализованный в "Наставнике" принцип "книга-компьютер" обусловил оптимальное использование компьютера как средства обучения практически во всех отношениях: необходимая аппаратура (микрокомпьютер и подключенные к нему 3-4 десятка терминалов, подобных простейшему калькулятору) предельно дешева, надежна и легко осваивается как учащимися, так и преподавателями, работа в режиме диалога с книгой неутомительна, увлекательна и при надлежащей организации изложения гарантирует быстрое и полноценное усвоение изучаемого предмета. Применение системы в МГУ, МАИ, ВИА им. Куйбышева, в средней школе и для профессионального обучения на ЗИЛе подтвердили ее высокую эффективность в широком спектре предметов и уровней обучения. Вместе с тем "Наставник" уже более 30 лет постоянно используется на факультете ВМиК для автоматизированного проведения контрольных работ, а также тестирования поступивших на факультет, определяющего уровень владения английским языком для комплектования однородных учебных групп.

Однако при, казалось бы, насущной потребности действенного усовершенствования процесса обучения в наш информационный век "Наставник" не был востребован. По-видимому, слишком прост и дешев, да и какая же это компьютерная система - без дисплея, мышки и гипертекста. Ведь ИТ-оснащенность учебного процесса все еще принято оценивать не по уровню и качеству обучения, а по количеству и мощности вовлеченных в него компьютеров.

цифровой код вычислительный сетунь

Система команд машины "Сетунь"

Литература

1. Shаnnonc Е.А. Symmetrical notation for numbers. - "The American Mathematical Monthly", 1950, 57, №2, р, 90-93,

2. Reid J.B. Letter to the editor. - "Comm. ACM", 1960, 3, №3, р. А12-A13.

3. Howden Р.F. Weigh-counting technique is faster then binary. - "Electronics", 1974, 48, №24, р. 121-122.

4. Байцер Б. Архитектура вычислительных комплексов, т. 1. М., "Мир", 1974.

5. Proceedings of the Sixth International Symposium on Multiple-Valued Logic, Мау 25-28 1976. IEEE Press, 1976.

6. Croisier А. Introduction to pseudoternary transmission codes. - "IBM Journal of Research and Development", 1970, 14, №4, р. 354-367.

7. Брусенцов Н.П. Электромагнитные цифровые устройства с однопроводной передачей трехзначных сигналов. - В кн.: Магнитные элементы автоматики и вычислительной техники. XIV Всесоюзное совещание (Москва, сентябрь 1972 г.). М., "Наука", 1972, с. 242-244.

8. Аристотель. 06 истолковании. СПб., 1891.

9. Брусенцов Н.П. Диаграммы Льюиса Кэррола и аристотелева силлогистика. - В кн.: Вычислительная техника и вопросы кибернетики, вып. 13. Изд-во МГУ, 1976, с. 164-182.

10. Introduction to programming. PDP-8 handbook series. Digital Equipment Corporation, 1972.

Размещено на Allbest.ru

...

Подобные документы

  • Логические элементы как устройства, предназначенные для обработки информации в цифровой форме. Определение основных отличительных особенностей и преимуществ двоичной и троичной систем счисления по сравнению с десятичной системой счисления, их типы.

    реферат [30,5 K], добавлен 20.11.2011

  • Разработка программы для изображения в графическом режиме на экране структуры модели вычислительной машины и демонстрация функционирования при выполнении программы вычисления. Описание процесса разработки, обоснование структур данных и их форматов.

    курсовая работа [170,3 K], добавлен 07.06.2019

  • Функциональный состав микро-ЭВМ, разработка системы команд. Описание взаимодействия всех блоков электронно-вычислительной машины при выполнении команд программы. Арифметико-логическое устройство, кэш-память процессора, функциональное моделирование.

    курсовая работа [981,4 K], добавлен 27.05.2013

  • Автоматизация обработки данных. Информатика и ее практические результаты. История создания средств цифровой вычислительной техники. Электромеханические вычислительные машины. Использование электронных ламп и ЭВМ первого, третьего и четвертого поколения.

    дипломная работа [1,1 M], добавлен 23.06.2009

  • Команды вычислительной машины, которые интерпретируются микропроцессором или микропрограммами. Правила для записи чисел цифровыми знаками. Способы кодирования информации. Практическое применение машинных кодов, систем счисления, кодировки информации.

    курсовая работа [1,6 M], добавлен 15.03.2015

  • Принципы организации и построения электронно-вычислительной машины. Основные характеристики и режимы работы ЭВМ. Организация интерфейса. Устройства управления в процессоре. Вычислительные системы и арифметико-логическое устройство. Микрооперация сдвига.

    курс лекций [880,9 K], добавлен 31.05.2014

  • Чарльз Бэббидж - британский математик, философ, разработавший базовую концепцию вычислительной машины. Августа Ада Кинг (урождённая Байрон), графиня Лавлейс – английский математик. Работа над описанием вычислительной машины, появление первых программ.

    презентация [1,4 M], добавлен 07.05.2014

  • Первый автор идеи создания вычислительной машины, которая в наши дни называется компьютером. Главные изобретения Бэббиджа. Малая разностная машина и разностная машина Чарльза Бэббиджа. Архитектура аналитической машины. Изобретение тахометра и спидометра.

    реферат [30,7 K], добавлен 22.01.2013

  • Архитектура виртуальной машины, абстракция и виртуализация. Обзор технологии виртуальной машины, ее преимущества и недостатки. Возможности VirtualBox по работе с виртуальными жесткими дисками. Установка Windows 8 в VirtualВox, главное окно программы.

    курсовая работа [3,7 M], добавлен 22.03.2014

  • Принципы программного управления компьютером. Модульная и функциональная организация, аппаратная реализация электронно-вычислительной машины. Назначение устройств ввода и вывода информации. Функции процессора; устройства внутренней и внешней памяти.

    презентация [2,2 M], добавлен 27.11.2013

  • Анализ современного рынка программных продуктов. Понятие виртуального тура и возможности его применения. Изучение программного обеспечения и технологии создания виртуальных туров. Панорамный снимок и виртуальная брошюра. Настройка параметров панорамы.

    курсовая работа [3,5 M], добавлен 22.03.2016

  • Факты появления двоичной системы счисления - позиционной системы счисления с основанием 2. Достоинства системы: простота вычислений и организации чисел, возможность сведения всех арифметических действий к одному - сложению. Применение двоичной системы.

    презентация [1,5 M], добавлен 10.12.2014

  • Методы и единицы измерения количества и объема информации. Общее понятие, виды, классификация программного обеспечения. Классическая архитектура электронной вычислительной машины. Основополагающие принципы логического устройства компьютера Фон Неймана.

    реферат [272,3 K], добавлен 16.02.2014

  • Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат [37,7 K], добавлен 01.04.2014

  • Определение понятия "суперкомпьютер". Рассмотрение особенностей программного обеспечения, производительности, сферы применения суперкомпьютеров. Принципы работы и основные характеристики SuperMUC. Фотоэкскурсия по самому быстрой информационной машине.

    курсовая работа [1,7 M], добавлен 15.04.2015

  • Принципы работы и основы программирования машины Тьюринга, а также перечень правил написания алгоритмов на ее эмуляторе. Особенности решения задачи по сложению нескольких чисел в двоичной системе путем реализации ее алгоритма на эмуляторе машины Тьюринга.

    контрольная работа [82,4 K], добавлен 05.12.2010

  • Надежность системы управления как совокупность надежности технических средств, вычислительной машины, программного обеспечения и персонала. Расчет надежности технических систем, виды отказов САУ и ТСА, повышение надежности и причины отказов САУ.

    курс лекций [228,2 K], добавлен 27.05.2008

  • Основные виды программного обеспечения. Характеристика пакетов прикладных программ. Виды и группы систем счисления. Перевод целых и дробных чисел из одной системы счисления в другую. Арифметические операции в двоичной системе. Компьютерные преступления.

    шпаргалка [65,2 K], добавлен 19.01.2014

  • Анализ локально-вычислительной сети компании. Выбор общего программного обеспечения, обеспечения для инженерного отдела, бухгалтерии, сервера. Состав программного обеспечения вычислительной системы и его конфигурация. Сетевые операционные системы.

    курсовая работа [405,4 K], добавлен 08.02.2016

  • Механические счетные машины. Идеи Бэббиджа. Предыстория возникновения. Электромеханические счетные машины. Машины Фон-Неймановского типа. Развитие ЭВМ в СССР. Компьютеры с хранимой в памяти программой. Появление персональных компьютеров.

    реферат [69,7 K], добавлен 28.12.2004

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.