История развития вычислительной техники

Предпосылки и основные этапы возникновения и развития вычислительной техники. Роль вычислительной техники в жизни человека. Краткий обзор о возможностях применения современных вычислительных систем и дальнейшие тенденции развития персональных компьютеров.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 09.12.2015
Размер файла 62,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

"Рязанский государственный университет имени С.А. Есенина"

"История развития вычислительной техники"

Выполнила:

Студентка 1 курса специальность

"Налоги и налогообложение"

Шатилова Е.С.

Проверила: Москвитина А.А.

Рязань, 2015 г.

Оглавление

  • Введение
  • 1. История технологий и поколений ЭВМ
  • Механические предпосылки
  • Электромеханические вычислительные машины
  • Электронные лампы
  • 2. Поколения ЭВМ
  • Первое поколение
  • Второе поколение
  • Третье поколение
  • Четвертое поколение
  • Пятое поколение
  • 3. Этап современных ЭВМ
  • 4. Роль вычислительной техники в жизни человека
  • Заключение

Введение

Слово "компьютер" означает "вычислитель", т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Более 1500 лет тому назад для счета использовались счетные палочки, камешки и т.д.

В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем - персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

В конце XX века невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений.

В данном реферате мы рассмотрим историю развития вычислительной техники, а также краткий обзор о возможностях применения современных вычислительных систем и дальнейшие тенденции развития персональных компьютеров.

1. История технологий и поколений ЭВМ

Механические предпосылки

Начало развития технологий принято считать с Блеза Паскаля, который в 1642 г. изобрел устройство, механически выполняющее сложение чисел. Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина Паскаля имела размеры 36? 13? 8 сантиметров, этот небольшой латунный ящичек было удобно носить с собой. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц, высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять четыре арифметических действия, в Парижскую академию. Машина Лейбница требовала для установки специального стола, так как имела внушительные размеры: 100? 30? 20 сантиметров.

В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. Свою первую разностную машину Бэббидж построил в 1822 году и рассчитывал на ней таблицу квадратов, таблицу значений функции y=x2+x+41 и ряд других таблиц. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где хранится и по сей день. Однако эта неудача не остановила Бэббиджа, и в 1834 году он приступил к новому проекту - созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. К сожалению, он не смог довести до конца работу по созданию Аналитической машины - она оказалась слишком сложной для техники того времени.

Уроженец Эльзаса Карл Томас, основатель и директор двух парижских страховых обществ в 1818 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром. Уже через три года в мастерских Томаса было изготовлено 16 арифмометров, а затем и еще больше. Таким образом, Томас положил начало счетному машиностроению. Его арифмометры выпускали в течение ста лет, постоянно совершенствуя и меняя время от времени названия.

Начиная с XIX века, арифмометры получили очень широкое применение. Но многие расчеты производились очень медленно, т.к. при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена. Первые арифмометры были дороги, ненадежны, сложны в ремонте и громоздки. Поэтому в России стали приспосабливать к более сложным вычислениям счеты. Например, в 1828 году генерал-майор Ф.М. Свободской выставил на обозрение оригинальный прибор, состоящий из множества счетов, соединенных в общей раме. Основным условием, позволявшим быстро вычислять, было строгое соблюдение небольшого числа единообразных правил. Все операции сводились к действиям сложения и вычитания. Таким образом, прибор воплощал в себе идею алгоритмичности.

Пожалуй, одно из последних принципиальных изобретений в механической счетной технике было сделано жителем Петербурга Вильгодтом Однером. Построенный Однером в 1890 году арифмометр фактически ничем не отличается от современных подобных ему машин. Почти сразу Однер с компаньоном наладил и выпуск своих арифмометров - по 500 штук в год. К 1914 году в одной только России насчитывалось более 22 тысяч арифмометров Однера. В первой четверти XX века эти арифмометры были единственными математическими машинами, широко применявшимися в различных областях деятельности человека. В России эти громко лязгающие во время работы машинки получили прозвище "Железный Феликс". Ими были оснащены практически все конторы.

Электромеханические вычислительные машины

В первые десятилетия XX века конструкторы обратили внимание на возможность применения в счетных устройствах новых элементов - электромагнитных реле. В 1941 году немецкий инженер Конрад Цузе, построил вычислительное устройство, работающее на таких реле.

Почти одновременно, в 1943 году, американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX века - электромеханических реле - смог построить на одном из предприятий фирмы IBM легендарный гарвардский "Марк-1" (а позднее еще и "Марк-2"). "Марк-1" имел в длину 15 метров и в высоту 2,5 метра, содержал 800 тысяч деталей, располагал 60 регистрами для констант, 72 запоминающими регистрами для сложения, центральным блоком умножения и деления, мог вычислять элементарные трансцендентные функции. Машина работала с 23-значными десятичными числами и выполняла операции сложения за 0,3 секунды, а умножения - за 3 секунды. Однако Эйкен сделал две ошибки: первая состояла в том, что обе эти машины были скорее электромеханическими, чем электронными; вторая - то, что Эйкен не придерживался той концепции, что программы должны храниться в памяти компьютера как и полученные данные.

Примерно в то же время в Англии начала работать первая вычислительная машина на реле, которая использовалась для расшифровки сообщений, передававшихся немецким кодированным передатчиком. К середине XX века потребность в автоматизации вычислений (в том числе для военных нужд - баллистики, криптографии и т.д.) стала настолько велика, что над созданием машин, подобных "Марк-1" и "Марк-2" работало несколько групп исследователей в разных странах.

Работа по созданию первой электронно-вычислительной машины была начата, по-видимому, в 1937 году в США профессором Джоном Атанасовым, болгарином по происхождению. Эта машина была специализированной и предназначалась для решения задач математической физики. В ходе разработок Атанасов создал и запатентовал первые электронные устройства, которые впоследствии применялись довольно широко в первых компьютерах. Полностью проект Атанасова не был завершен, однако через три десятка лет в результате судебного разбирательства профессора признали родоначальником электронной вычислительной техники.

Электронные лампы

В 1883 году Томас Эдисон, пытаясь продлить срок службы лампы с угольной нитью, ввел в ее вакуумный баллон платиновый электрод и пропустил через него положительное напряжение. Заметив, что в вакууме между электродом и нитью протекает ток он не смог найти никакого объяснения столь необычному явлению. Эдисон ограничился тем, что подробно описал его, на всякий случай взял патент и отправил лампу на Филадельфийскую выставку. Американский изобретатель не распознал открытия исключительной важности - термоэлектронная эмиссия. Он не понял, что его лампа накаливания с платиновым электродом по существу была первой в мире электронной лампой.

Первым, кому пришла в голову мысль о практическом использовании "эффекта Эдисона" был английский физик Дж.А. Флеминг (1849 - 1945). Работая с 1882 года консультантом эдисоновской компании в Лондоне, он узнал о "явлении" от самого Эдисона. Свой диод - двухэлектродную лампу Флейминг создал в 1904 году.

В октябре 1906 года американский инженер Ли де Форест изобрёл электронную лампу - усилитель, или аудион, как он её тогда назвал, имевший третий электрод - сетку. Им был введён принцип, на основе которого строились все дальнейшие электронные лампы, - управление током, протекающим между анодом и катодом, с помощью других вспомогательных элементов.

В 1910 году немецкий инженеры Либен, Рейнс и Штраус сконструировали триод, сетка в котором выполнялась в форме перфорированного листа алюминия и помещалась в центре баллона, а чтобы увеличить эмиссионный ток, они предложили покрыть нить накала слоем окиси бария или кальция.

В 1911 году американский физик Ч.Д. Кулидж предложил применить в качестве покрытия вольфрамовой нити накала окись тория - оксидный катод - и получил вольфрамовую проволоку, которая произвела переворот в ламповой промышленности.

В 1915 году американский физик Ирвинг Ленгмюр сконструировал двухэлектронную лампу - кенотрон, применяемую в качестве выпрямительной лампы в источниках питания. В 1916 году ламповая промышленность стала выпускать особый тип конструкции ламп - генераторные лампы с водяным охлаждением.

Идея лампы с двумя сетками - тетрода была высказана в 1919 году немецким физиком Вальтером Шоттки и независимо от него в 1923 году - американцем Э.У. Халлом, а реализована эта идея англичанином Х. Дж. Раундом во второй половине 20-х годов.

В 1929 году голландские учёные Г. Хольст и Б. Теллеген создали электронную лампу с 3-мя сетками - пентод. В 1932 году был создан гептод, в 1933 - гексод и пентагрид, в 1935 году появились лампы в металлических корпусах. Дальнейшее развитие электронных ламп, улучшение их характеристик и функциональных возможностей привело к созданию на их основе совершенно новых электронных приборов.

вычислительная техника персональный компьютер

2. Поколения ЭВМ

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколение ЭВМ характеризуется конструктивными особенностями и возможностями. Приступим к описанию каждого из поколений, однако нужно помнить, что деление ЭВМ на поколения является условным, поскольку в одно и то же время выпускались машины разного уровня.

Первое поколение

Резкий скачек в развитии вычислительной техники произошел в 40 - х годах, после Второй мировой войны, и связан он был с появлением качественно новых электронных устройств электронно-вакуумных ламп, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены более производительными и надежными электронными вычислительными машинами (ЭВМ). Применение ЭВМ значительно расширило круг решаемых задач. Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления движения планет, баллистические расчеты и т.д.

Первая ЭВМ создавалась в 1943 - 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток - исполняемая программа хранилась не в памяти машины, а набиралась сложным образом с помощью внешних перемычек.

В 1945 г. известный математик и физик - теоретик фон Нейман сформулировал общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина должна была управляться программой с последовательным выполнением команд, а сама программа - храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В 1951 году в СССР была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С.А. Лебедева.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 - х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Однако при этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято называть ЭВМ первого поколения

Действительно, ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентиляторов. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

Второе поколение

Разработчики ЭВМ всегда следовали за прогрессом в электронной технике. Когда в середине 50 - х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники.

Полупроводниковые приборы (транзисторы, диоды) были, во - первых, значительно компактнее своих ламповых предшественников. Во - вторых они обладали значительно большим сроком службы. В - третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ "Раздан", "Наири". Уникальной по своей архитектуре была машина "Мир", разработанная в 1965 г. в Институте кибернетики Академии Наук УССР. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий "Урал", "М - 20" и "Минск". Но рекордной среди отечественных машин этого поколения и одной из лучших в мире была БЭСМ - 6 ("большая электронно-счетная машина", 6-я модель), которая была создана коллективом академика С.А. Лебедева. Производительность БЭСМ - 6 была на два три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежом наиболее распространенными машинами второго поколения были "Эллиот" (Англия), "Сименс" (ФРГ), "Стретч" (США).

Третье поколение

Очередная смена поколений ЭВМ произошла в конце 60-х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральные схемы. Интегральная схема (микросхема) - это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т.д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам - электронщикам.

В третьем поколении появились крупные серии ЭВМ, различающиеся своей производительностью и назначением. Это семейство больших и средних машин IBM360/370, разработанных в США. В Советском Союзе и в странах СЭВ были созданы аналогические серии машин: ЕС ЭВМ (Единая Система ЭВМ, машины большие и средние), СМ ЭВМ (Система Малых ЭВМ) и "Электроника" (система микро - ЭВМ).

Четвертое поколение

В процессе совершенствования микросхем увеличивалась их надежность и плотность размещенных в них элементов. Это привело к появлению больших интегральных схем (БИС), в которых на один квадратный сантиметр приходилось несколько десятков тысяч элементов. На основе БИС были разработаны ЭВМ следующего - четвертого поколения.

Благодаря БИС на одном крошечном кристалле кремния стало возможным разместить такую большую электронную схему, как процессор ЭВМ. Однокристальные процессоры впоследствии стали называться микропроцессорами. Первый микропроцессор был создан компанией Intel (США) в 1971 г. Это был 4 - разрядный микропроцессор Intel 4004, который содержал 2250 транзисторов и выполнил 60 операций в секунду.

Микропроцессоры положили начало мини - ЭВМ, а затем и персональным компьютерам, то есть ЭВМ, ориентированным на одного пользователя. Началась эпоха персональных компьютеров (ПК), продолжающаяся и по сей день. Однако четвертое поколение ЭВМ - это не только поколение ПК. Кроме персональных компьютеров, существуют и другие, значительно более мощные компьютерные системы.

Влияние персональных компьютеров на представление людей о вычислительной технике оказалось настолько большим, сто постепенно из обихода исчез термин "ЭВМ", а его место прочно заняло слово "компьютер".

Пятое поколение

Начиная с середины 90 м - х годов, в мощных компьютерах начинают применяться БИС супермасштаба, которые вмещают сотни тысяч элементов на квадратный сантиметр. Многие специалисты стали говорить о компьютерах пятого поколения.

Характерной чертой компьютеров пятого поколения должно быть использование искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут легко управляемы. Пользователь сможет голосом подавать машине команде.

В настоящее время информатика и ее практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т.д. Последние десятилетия XX века характерны возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области.

Появление ПК было подготовлено всей предшествующей историей развития ЭВМ. В начале вычислительные машины занимали огромные залы, потребляли много энергии и создавали много шума. Затем ЭВМ стали поменьше и начали работать эффективнее, но по-прежнему требовали для себя отдельных помещений. Наиболее мощные ЭВМ размещались в отдельных комплексах, которые назывались вычислительными центрами (ВЦ). В те не очень далекие времена (70 - е годы) мало кто представлял себе компактную ЭВМ, которая может уместиться на рабочем столе. О такой машине инженеры и ученые могли только мечтать, а обычным людям трыдно было бы объяснить, зачем вообще такая вычислительная машина нужна.

Первой ласточкой стал компьютер KENBAK-1, сконструированный Джоном Бланкейнбейкером в 1971 г. Внешне он напоминал скорее автомобильный радиоприемник с индикаторными лампочками и переключателями, чем привычный нашему глазу персональный компьютер.

С 1971 г. по 1974 г. различными фирмами создавались разные модели ПК. Однако ввиду ограниченных возможностей этих компьютеров интерес к ним был невелик. По - настоящему пользователи и производители заинтересовались персональными компьютерами в 1974 г., когда американская фирма MITS на основе микропроцессора Intel 8080 разработала компьютер Altair. Этот персональный компьютер был значительно удобнее своих предшественников и обладал более широкими возможностями.

Значительно более совершенная модель персонального компьютера была разработана в 1976 г. двумя молодыми американцами Стивом Возняком и Стивом Джобсом. Свой компьютер они назвали Apple и быстро развернули его производство и продажу. Благодаря невысокой цене (примерно 500 долларов) в первый же год ими было продано около 100 компьютеров. В следующем году они выпустили модель Apple II, которая имела материнскую плату, дисплей, клавиатуру и внешне напоминала собой телевизор. Количество заказчиков на ПК стало исчисляться сотнями и тысячами.

Персональные компьютеры быстро совершенствовались. В 1976 г. для них была разработана операционная система СР/М. В 1978 г. был сконструирован гибкий магнитны диск диаметром 5. 25 дюйма (1 дюйм=2,45 см), предназначенный для хранения информации. Усилиями фирмы MOTOROLA в 1979 г. был создан микропроцессор motorola 68000, который превосходил своих конкурентов по скорости, производительности и возможностям работы с графическими программами. В 1980 г. в персональных компьютерах появился жесткий магнитный диск, правда, он вмещал в себя всего лишь 5 Мбайт данных.

Первые Пк были 8 - разрядными и больше походили на дорогую игрушку, чем на серьезную ЭВМ. Так продолжалось до тех пор, пока в отрасли индивидуальных компьютеров не появился компьютерный гигант - фирма IBM, которая специализировалась на изготовлении больших ЭВМ. В 1982 г. фирма IBM выпустила очень удачную модель - 16 - разрядный компьютер. Он был построен на основе микропроцессора Intel 8088, работал с тактовой частотой 4. 77 МГц и использовал операционную систему MS - DOS. Называлась эта модель компьютера как IBM PC или просто PC.

Далее развитие Пк происходило очень высокими темпами: фирма IBM каждый год создавала по новой модели. В 1983 г. появилась модель PC XT, а в 1984 - более совершенный и производительный компьютер PC AT. Они быстро завоевывали рынок ПК и стали своего рода стандартами, которые старались подражать фирмы - конкуренты.

Фирма IBM создавала свой персональный компьютер не "с нуля", а используя узлы других производителей (в первую очередь, микропроцессор Intel). При этом она не делала секрета из того, как узлы компьютера должны соединяться и взаимодействовать друг с другом. В результате к созданию и совершенствованию компьютера могли подключаться другие фирмы - архитектура компьютеров IBM PC оказалась "открытой". У компьютеров IBM появились многочисленные "клоны", то есть различные семейства компьютеров, похожих на IBM PC. В дальнейшем ЭВМЮ поддерживающие стандарт IBM PC, стали называться просто "персональными компьютерами". С течением времени ПК оправдали свое название, поскольку для многих людей они стали необходимой частью досуга, инструментом для бизнеса и исследований.

Кроме IBM совместимых ПК, существует еще одно семейство персональных ЭВМ, называемых Macintosh. Эти компьютеры ведут свою родословную от уже упоминавшейся модели Apple, их производством занималась фирма Aplle Computer. Архитектура компьютеров Macintosh, в отличие от IBM PC, не была открытой. Поэтому, несмотря на свои более продвинутые по сравнению с IBM PC графические возможности, "Маки" не смогли завоевать такой обширный рынок. Численность "Маков" в десятки раз меньше численности IBM PC - совместимых компьютеров.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы - вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, - нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Широкое внедрение средств мультимедиа, в первую очередь аудио - и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

3. Этап современных ЭВМ

Современный этап развития ЭВМ охватывает период с 1970 года до наших дней. Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см2.). БИСы применялись уже в таких компьютерах, как "Иллиак”, ”Эльбрус”, ”Макинтош ”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) - ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры - IBM PC.

В 1971 году в результате исследований команда специалистов <<INTEL>> под руководством Тэда Хоффа создает первый 4-разрядный микропроцессор INTEL - 4004. Далее новые модели процессоров от <<INTEL>> стали появляться регулярно. <<INTEL>> и по сей день занимает одно из лидирующих мест в производстве процессоров для персональных компьютеров. Но конкуренты не дремали практически с самого начала основания <<INTEL>>. Более того, через некоторое время разразилась настоящая компьютерных вооружений, которую принято называть <<война процессоров>>. Фирмы <<<<AMD>>>> и <<<<Cyrix>>>> - вот два источника беспокойства для <<INTEL>>. Несмотря на то, что процессоры, выпускаемые этими двумя фирмами, едва ли составляют 15% от всего рынка, их продукция постепенно все большей альтернативой микропроцессорам <<INTEL>>.

Основными конкурентами <<INTEL>> являлись <<АMD>> и <<Cyrix>>

<<АMD>> (Эй-Эм-Ди, <<AMD>>; от Advanced Micro Devices, Эдванст майкро дивайсиз), американская корпорация, разработчик и производитель интегральных схем, электронных устройств, компонентов для компьютеров и средств связи. Корпорация основана в 1969 году, ее главный офис находится в городе Саннивейл (Калифорния). <<AMD>> производит микропроцессоры, устройства флэш-памяти, телекоммуникационные и сетевые продукты. В компьютерном мире <<AMD>> известна как конкурент Intel в производстве микропроцессоров для персональных компьютеров. Производственные мощности корпорации находятся в США, Японии, Малайзии, Сингапуре, Таиланде.

<<Cyrix>> (Сайрикс Корпорейшн) (<<Cyrix>> Corporation), структурное подразделение американского концерна National Semiconductor (с 1997), один из ведущих мировых производителей микропроцессоров для персональных компьютеров. Штаб-квартира находится в Ричардсоне (шт. Техас).

В начале 1990-х годов <<Cyrix>> выпустил математический сопроцессор, позволявший ускорять математические вычисления. Его коммерческий успех дал возможность <<Cyrix>> в 1992 развернуть производство клонов процессоров x86. Компания разработала целое семейство 386, 486, 5х86 микропроцессоров. В 1995 началось производство шестого поколения микропроцессоров <<Cyrix>> 6x86. В 1997 <<Cyrix>> на основе процессора 6х86 выпустил новый процессор с поддержкой MMX-инструкций. Кроме того, <<Cyrix>> наладил выпуск высокоинтегрированных процессоров MegiaGX. В том же 1997 <<Cyrix>> вошел в состав американского полупроводникового концерна National Semiconductor. В 1999 был выпущен новый микропроцессор <<Cyrix>> MXi, основанный на новом процессорном ядре. 5 августа 1999 компания была продана корпорации VIA Technologies.

Война процессоров продолжается и по сей день. Фирме <<INTEL>> приходится сдерживать натиск конкурентов, разрабатывая все более качественные и мощные процессоры.

В 1974 году фирма <<Zilog>>, один из первых конкурентов <<INTEL>>, выпускает свой первый процессор.

В 1976 году фирма <<Texas Instruments>> создает конкурентный <<INTEL>> процессор TMS 9900.

1976 год - официальное начало войны процессоров. Фирма <<AMD>> получает права и возможность копировать инструкции и микрокоды процессоров <<INTEL>>.

В 1983 году на рынке появляется процессор от фирмы <<IBM>>. Его название IBM 80286.

В 1993 году появляется новое поколение процессоров <<INTEL>>. Появляется INTEL Pentium-60, скорость процессора - 100 миллионов операций в секунду.

В 1997 году появляется INTEL Pentium II.

В 1997 году в ответ на Pentium II <<AMD>> выпускает свой новый процессор AMD K5.

В 1999 году выпущен в продажу INTEL Pentium III.

2004-2005 года разработка и внедрение двуядерных процессоров от <<INTEL>> и <<AMD>>.

2006 год появление четырёхядерных процессоров от <<INTEL>>.

4. Роль вычислительной техники в жизни человека

Персональный компьютер быстро вошел в нашу жизнь. Еще несколько лет назад было редкостью увидеть какой-нибудь персональный компьютер - они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь человека.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние, которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

Даже 30 лет назад было только около 2000 различных сфер применения микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.

Компьютеры в учреждениях. Компьютеры в буквальном смысле совершили революцию в деловом мире. Секретарь практически любого учреждения при подготовке докладов и писем производит обработку текстов. Учрежденческий аппарат использует персональный компьютер для вывода на экран дисплея широкоформатных таблиц и графического материала. Бухгалтеры применяют компьютеры для управления финансами учреждения и введение документации.

Компьютеры на производстве. Компьютеры находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов. Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов. Также управляются компьютером роботы на заводах, скажем, на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.

Компьютер в банковских операциях. Выполнение финансовых расчётов с помощью домашнего персонального компьютера - это всего лишь одно из его возможных применений в банковском деле. Мощные вычислительные системы позволяют выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк. Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка. Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт. Всё, что требуется, - вставить пластмассовую банковскую карточку в автоматическое устройство. Как только это сделано, необходимые операции будут выполнены.

Компьютер в медицине. Как часто вы болеете? Вероятно, у вас была простуда, ветрянка, болел живот? Если в этих случаях вы обращались к доктору, скорее всего он проводил осмотр быстро и достаточно эффективно. Однако медицина - это очень сложная наука. Существует множество болезней, каждая из которых имеет только ей присущие симптомы. Кроме того, существуют десятки болезней с одинаковыми и даже совсем одинаковыми симптомами. В подобных случаях врачу бывает трудно поставить точный диагноз. И здесь ему на помощь приходит компьютер. В настоящее время многие врачи используют компьютер в качестве помощника при постановке диагноза, т.е. для уточнения того, что именно болит у пациента. Для этого больной тщательно обследуется, результаты обследования сообщаются компьютеру. Через несколько минут компьютер сообщает, какой из сделанных анализов дал аномальный результат. При этом он может назвать возможный диагноз.

Компьютер в сфере образования. Сегодня многие учебные заведения не могут обходиться без компьютеров. Достаточно сказать, что с помощью компьютеров: трёхлетние дети учатся различать предметы по их форме; шести - и семилетние дети учатся читать и писать; выпускники школ готовятся к вступительным экзаменам в высшие учебные заведения; студенты исследуют, что произойдёт, если температура атомного реактора превысит допустимый предел. "Машинное обучение" - термин, обозначающий процесс обучения при помощи компьютера. Последний в этом случае выступает в роли "учителя". В этом качестве может использоваться микрокомпьютер или терминал, являющийся частью электронной сети передачи данных. Процесс усвоения учебного материала поэтапно контролируется учителем, но если учебный материал даётся в виде пакета соответствующих программ ЭВМ, то его усвоение может контролироваться самим учащимся.

Компьютер как средство общения людей. Если на одном компьютере работают хотя бы два человека, у них уже возникает желание использовать этот компьютер для обмена информацией друг с другом. На больших машинах, которыми пользуются одновременно десятки, а то и сотни человек, для этого предусмотрены специальные программы, позволяющие пользователям передавать сообщения друг другу. Стоит ли говорить о том, что как только появилась возможность объединять несколько машин в сеть, пользователи ухватились за эту возможность не только для того, чтобы использовать ресурсы удаленных машин, но и чтобы расширить круг своего общения. Создаются программы, предназначенные для обмена сообщениями пользователей, находящихся на разных машинах. Наиболее универсальное средство компьютерного общения - это электронная почта. Она позволяет пересылать сообщения практически с любой машины на любую, так как большинство известных машин, работающих в разных системах, ее поддерживают. Электронная почта - самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек. Посылка письма по электронной почте обходится значительно дешевле посылки обычного письма. Кроме того сообщение, посланное по электронной почте дойдет до адресата за несколько часов, в то время как обычное письмо может добираться до адресата несколько дней, а то и недель.

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.

Internet предоставляет уникальные возможности дешевой, надежной и конфиденциальной глобальной связи по всему миру. Это оказывается очень удобным для фирм имеющих свои филиалы по всему миру, транснациональных корпораций и структур управления. Обычно, использование инфраструктуры Internet для международной связи обходится значительно дешевле прямой компьютерной связи через спутниковый канал или через телефон.

Заключение

Выше мы рассмотрели историю и современное состояние компьютерной техники. Уже сейчас вычислительная техника достигла просто потрясающих высот. Так в 2002 году для Института наук о земле в городе Йокогама (Япония) корпорацией NEC был создан наимощнейший на сегодняшний день суперкомпьютер Eerth Simulator. Производительность новой машины, определенная при помощи стандартных тестов Linpack, составляет 35,6 TELOPS (триллионов операций с плавающей запятой в секунду). Если сопоставить полученные результаты с показателями, приведенными в перечне Top 500 (рейтинг 500 наиболее мощных компьютеров мира), становится ясно, что Earth Simulator работает быстрее, чем 18 лучших по предыдущему рейтингу, машин вместе взятых.

Каковы же перспективы совершенствования персональных компьютеров, и что нас ожидает в дальнейшем в этой сфере?

Сотрудникам Белловских лабораторий удалось создать транзистор размером в 60 атомов! Они считают, что транзисторы ко дню своего шестидесятилетия (2007 год) по ряду параметров достигнут физических пределов. Так, размер транзистора должен стать чуть меньше 0,01 мкм (уже достигнут размер 0,05 мкм). Это означает, что на чипе площадью 10 кв. см можно будет разместить 20 000 000 транзисторов.

Описывая бурно развивающуюся в настоящее время технологию производства пластиковых транзисторов, ученые приходят к достаточно логичному выводу, что сумма всех усовершенствований приведет к созданию "финального компьютера", более мощного, чем современные рабочие станции. Компьютер этот будет иметь размер почтовой марки и, соответственно, цену, не превышающую цены почтовой марки.

Представим себе, наконец, гибкий экран телевизора или компьютерного монитора, который не разобьется, если швырнуть его на землю. А что можно сказать о пластинке величиной с обычную кредитную карточку, заполненной массой нужнейшей информации, включая ту, которая обычно и хранится в кредитной карточке, но выполненной из такого материала, что она никогда не потребует замены?

В последнее время высказывались и мысли о том, что давно пора расстаться с электронами как основными действующими лицами на сценах микроэлектроники и обратиться к фотонам. Использование фотонов якобы позволит изготовить процессор компьютера размером с атом. О том, что наступление эпохи таких компьютеров уже не за горами говорит тот факт, что американским ученым удалось на доли секунды остановить фотонный пучок (луч света).

Размещено на Allbest.ru

...

Подобные документы

  • Изучение зарубежной, отечественной практики развития вычислительной техники, а также перспективы развития ЭВМ в ближайшее будущее. Технологии использования компьютеров. Этапы развития вычислительной индустрии в нашей стране. Слияние ПК и средств связи.

    курсовая работа [82,0 K], добавлен 27.04.2013

  • Средства вычислительной техники появились давно, так как потребность в различного рода расчетах существовала еще на заре развития цивилизации. Бурное развитие вычислительной техники. Создание первых ПК, мини-компьютеров начиная с 80-х годов ХХ века.

    реферат [32,3 K], добавлен 25.09.2008

  • История развития системы исчисления, первые специальные приборы для реализации простейших вычислительных операций. Первые поколения компьютеров, принцип работы, устройство и функции. Современный этап развития вычислительной техники и ее перспективы.

    презентация [2,1 M], добавлен 28.10.2009

  • Ручной этап развития вычислительной техники. Позиционная система счисления. Развитие механики в XVII веке. Электромеханический этап развития вычислительной техники. Компьютеры пятого поколения. Параметры и отличительные особенности суперкомпьютера.

    курсовая работа [55,7 K], добавлен 18.04.2012

  • Анализ истории развития вычислительной техники. Сравнительные характеристики компьютеров разных поколений. Особенности развития современных компьютерных систем. Характеристика компиляторов с общей семантической базой. Этапы развития компьютерной техники.

    презентация [2,5 M], добавлен 15.11.2012

  • Определение перспектив, направлений и тенденций развития вычислительных систем как совокупности техники и программных средств обработки информации. Развитие специализации вычислительных систем и проблема сфер применения. Тенденции развития информатики.

    реферат [19,5 K], добавлен 17.03.2011

  • Аппаратные средства вычислительной техники. Центральный процессор. Память как составляющая компьютера, ее типичная иерархическая структура. Устройства ввода-вывода, шины. История развития средств вычислительной техники. Характеристика систем на основе Р6.

    реферат [251,3 K], добавлен 08.02.2014

  • История развития вычислительной техники и информационных технологий. Ручной период автоматизации подсчетов и создание логарифмической линейки. Устройства, использующие механический принцип вычислений. Электромеханический и электронный этап развития.

    реферат [21,9 K], добавлен 30.08.2011

  • Первые шаги автоматизации умственного труда. Механические и электромеханические принципы вычислений. Применение компьютеров и баз данных, управляющих программ. Классификация ЭВМ по принципу действия, назначению, размерам и функциональным возможностям.

    презентация [3,5 M], добавлен 19.05.2016

  • Этапы развития информационного общества. Поколения ЭВМ, классификация современных компьютеров по функциональным возможностям. Краткая история докомпьютерной эпохи. Открытия, предшествующие созданию компьютеров. Информационные технологии: цель, свойства.

    курсовая работа [46,7 K], добавлен 30.03.2011

  • История развития и основные направления использования вычислительной техники как в России, так и за рубежом. Понятие, особенности и развитие операционной системы. Содержание и структура файловой системы. Системы управления базами данных и их применение.

    контрольная работа [81,4 K], добавлен 06.04.2011

  • События, предшествовавшие появлению персональных компьютеров. Важнейшие этапы развития вычислительной техники до появления персональных компьютеров. Выпуск операционной системы Windows 3.1. Микропроцессор Intel 8088. Табличный процессор VisiCalc.

    презентация [938,0 K], добавлен 21.06.2013

  • История развития вычислительной техники, основные характеристики. Основное отличие вычислительной системы от компьютера, виды архитектур. Классификация уровней программного параллелизма. Главные особенности векторной, матричной обработки регистров.

    курсовая работа [36,0 K], добавлен 21.07.2012

  • Этапы развития информатики и вычислительной техники. Аппаратная часть персональных компьютеров. Внешние запоминающие устройства персонального компьютера. Прикладное программное обеспечение персональных компьютеров. Текстовые и графические редакторы.

    контрольная работа [32,8 K], добавлен 28.09.2012

  • История развития вычислительной техники до появления ЭВМ. Поколения ЭВМ, описание, краткая характеристика, принципы фон Неймана в их построении. Представление информации в ЭВМ, ее разновидности: числовая, текстовая, графическая, видео и звуковая.

    контрольная работа [23,1 K], добавлен 23.01.2011

  • Разработка информационно-аналитической системы анализа и оптимизации конфигурации вычислительной техники. Структура автоматизированного управления средствами вычислительной техники. Программное обеспечение, обоснование экономической эффективности проекта.

    дипломная работа [831,1 K], добавлен 20.05.2013

  • Основные этапы развития вычислительных устройств до начала 50-х годов (появление серийных ЭВМ с хранимой программой). История создания новых полностью электронных цифровых компьютеров. Принципы Неймана как основополагающие концепции построения ЭВМ.

    реферат [36,7 K], добавлен 07.12.2012

  • Выдающиеся люди в истории информатики. Ада Лавлейс. Деяния Грэйс Хоппер. Сэнди Лернер. Ющенко Екатерина Логвиновна. История научной школы теоретического программирования в Украине. Эти женщины - яркие лица в истории развития вычислительной техники.

    реферат [40,1 K], добавлен 19.12.2003

  • Теоретические положения, касающиеся организации, архитектуры и особенностей технической диагностики персональных ЭВМ типа IBM PC/AT. Методики профессионального обслуживания аппаратно-программных вычислительных систем на базе персональных компьютеров.

    лекция [314,3 K], добавлен 21.03.2008

  • Примеры счетно-решающих устройств до появления ЭВМ. Суммирующая машина Паскаля. Счетная машина Готфрида Лейбница. "Аналитическая машина" Чарльза Бэббиджа, развитие вычислительной техники после ее создания. Поколения электронно-вычислительных машин.

    презентация [1,2 M], добавлен 10.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.