Многопроцессорные и многомашинные вычислительные системы. Суперкомпьютеры
Основные виды вычислительных систем (ВС). Принципы построения и основные архитектуры ВС. Структура оперативной памяти. ВС с векторной и матричной архитектурой. Технологии взаимодействия вычислительных устройств между собой и с внешними устройствами.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лекция |
Язык | русский |
Дата добавления | 25.12.2015 |
Размер файла | 75,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция 5. Многопроцессорные и многомашинные ВС. Суперкомпьютеры
Причины развития и распространения комплексных ВС
· Кризис идей. Все те принципы, которые лежали в основе классической архитектуры ЭВМ, на сегодняшний день исчерпали себя.
· Достижение физических пределов в области микроэлектроники (плотность расположения элементов на кристалле, скорость передачи данных - ограничена скоростью света).
· Экономическая целесообразность. В пределах временного интервала, характеризующегося стабильностью элементной базы, связь стоимости и производительности ЭВМ выражается квадратичной зависимостью (закон Гроша):
Таким образом, каждая дополнительная инвестиция в вычислительную систему позволяет получить квадратичный эффект в производительности.
Виды Вычислительных Систем
· Одномашинные (вычислительные машины);
· Многомашинные (например, вычислительные сети);
· Многопроцессорные.
Многомашинные вычислительные системы состоят из некоторого числа компьютеров, информационно взаимодействующих между собой. Машины могут находиться друг от друга на значительном расстоянии. Каждый компьютер работает под управлением своей ОС, поэтому обмен информацией между ЭВМ несколько замедлен (из-за необходимости согласования работы ОС). Информационное взаимодействие в многомашинной ВС может быть организовано на уровне:
· Процессоров - через регистры процессорной памяти, это требует наличия специального программного обеспечения в ОС каждой ЭВМ;
· Оперативной памяти - через программную реализацию общего поля в оперативной памяти, реализуется средствами ОС;
· Каналов связи - обмен данными и доступ к внешней памяти и периферийным устройствам осуществляется через специально организованные каналы связи, которые реализуется внешним по отношению к ОС программным обеспечением (хотя часто используются встроенные - стандартные - средства сетевых ОС).
· Однородные, то есть построенные на основе однотипных компьютеров или процессоров, что позволяет использовать стандартные наборы программных средств и типовые протоколы сопряжения устройств;
· Неоднородные, то есть включающие в свой состав различные типы компьютеров или процессоров, из-за чего при построении системы приходится учитывать их различные технические и функциональные характеристики.
Некоторые специалисты (особенно практики) дают понятие однородности вычислительных сетей, отличное от понятия однородности вычислительной системы. Однородность вычислительной сети в этом случае предполагает наличие программной совместимости ее узлов. То есть локальная сеть, в которой объединено несколько персональных компьютеров, управляемых разными ОС (например, Unix и Windows), является, по их мнению, неоднородной вычислительной сетью. Поэтому при указании однородности/неоднородности вычислительной системы/сети об этом нужно помнить и точно выяснять что имеется в виду в данном конкретном случае.
· Оперативные, то есть функционирующие в реальном масштабе времени, что позволяет реализовывать оперативные режим обмена информацией и незамедлительно получать ответы на свои запросы;
· Неоперативные, в которых допускается режим «отложенного ответа» и результаты выполнения запроса получаются с некоторой задержкой (иногда в следующем сеансе работы системы).
· С централизованным управлением (имеется выделенный компьютер или процессор, управляющей всей системой в целом);
· С децентрализованным управлением (узлы системы - равноправны и могут брать управление на себя) Примеры: Глобальные вычислительные сети, вычислительные системы с перестраиваемой структурой.
· Территориально-сосредоточенные;
· Распределенные (вычислительные сети).
· Структурно одноуровневые - имеется один общий уровень обработки данных;
· Многоуровневые (иерархические) - машины (процессоры) распределены по разным уровням обработки информации, некоторые машины могут специализироваться на выполнении определенных функций (работа с внешними устройствами, выполнение специализированных задач).
Преимущества ВС
· Повышение надежности и достоверности результатов обработки информации (Пример: в системе «Шаттл» используется 5 вычислительных машин, решающих одну и ту же задачу, чтобы уменьшить вероятность появления ошибок в вычислениях);
· Повышение скорости вычислений (Пример: Проект «SETI@Home»)
· Децентрализация хранения и обработки данных (Пример: распределенные БД);
Принципы построения ВС
· Возможность работы в разных режимах;
· Модульность структуры технических и программных средств, что позволяет совершенствовать и модернизировать ВС без их коренных переделок;
· Унификация и стандартизация технических и программных решений;
· Иерархическая организация управления процессами;
· Способность систем к адаптации, самонастройке и самоорганизации;
· Обеспечение пользователей необходимым сервисом при выполнении вычислений.
Основные архитектуры вычислительных систем
В основу классификации заложено два возможных вида параллелизма: независимость потоков заданий и независимость потоков данных. Отсюда возникает 4 возможных архитектуры ВС:
· Архитектура «Одна команда - одно данное» (ОКОД, SISD, Single Instruction Single data). К ней относятся все однопроцессорные и одномашинные вычислительные системы. Параллелизм в таких ВС может достигаться за счет многофункциональной обработки данных (управление вводом/выводом, взаимодействие с внешними устройствами осуществляется специальными аппаратными средствами - контроллерами, сопроцессорами и т.п.), а также совместного выполнения операций отдельным блоками АЛУ процессора (конвейерная обработка данных, суперскалярная архитектура и др. - см. лекцию 4).
· Векторная архитектура (ОКМД, «Одна команда - одно данное», SIMD, Single Instruction Multiple Data), на основе которой обычно строятся однородные многопроцессорные ВС. Все исполнители управляются одним и тем же потоком команд, однако каждый процессор обрабатывает свой собственный поток данных. Такая архитектура очень хорошо подходит для выполнения операций с векторами и матрицами, поэтому используется для решения линейных и дифференциальных уравнений, иных вычислительных задач.
· Магистральная архитектура (МКОД, «Много команд - одно данное», MISD - Multiple Instruction Single Data), которая предлагает построение своеобразного процессорного конвейера, в котором результаты обработки передаются от одного процессора к другому по цепочке. Такая архитектура может быть достаточно эффективной, однако не для всех задач можно построить конвейер достаточной длины. Кроме того, критичным становится время передачи данных от одного исполняющего устройства к другому.
· Матричная архитектура (МКМД, «Много команд - много данных», MSMD Multiple Instruction Multiple Data) предполагает, что все процессоры системы работают по своим программам с собственным потоком команд. Говорить о единой ВС, а не о группе «рядом стоящих» ЭВМ можно только в том случае, если они работают согласованно, то есть решают некоторые части общей задачи. Теоретическая база для построения универсальных систем с такой архитектурой пока еще недостаточна. Для эффективной работы систем с такой архитектурой требуются специальные методы и технологии программирования.
Структура многопроцессорных вычислительных систем
Вычислительные системы с векторной и матричной архитектурой принято разделять на сильносвязанные (tightly-coupled) ислабосвязанные (loosely-coupled).
Сильносвязанные вычислительные системы характеризуются наличием общей разделяемой памяти, через которую происходит обмен данными. В настоящее время для организации разделяемой памяти используются технологии SMP (Shared Memory multiProcessing) и NUMA (Non-Uniform Memory Access). Обе технологии предусматривают логически единое адресное пространство, однако физическая структура памяти у них различается. В первом случае оперативная память имеет простую структуру и является общей для всех исполняющих устройств. (рис. 5.1). Во втором - предполагается иерархическая структура памяти, в соответствии с которой у каждого вычислителя (или группы вычислителей) имеется собственная (локальная) оперативная память и возможность удаленного доступа к оперативной памяти других вычислителей. Удаленный доступ к данным осуществляется через высокоскоростной коммутатор, объединяющий все модули памяти в единую сеть (рис. 5.2).
Кроме того, сильносвязанные ВС часто имеют единый управляющий центр, который распределяет задания между вычислителями.Достоинствами таких систем являются высокая скорость взаимодействия и относительно небольшие физические размеры. Предельным случаем сильносвязанных ВС являются многоядерные процессоры - здесь два или более вычислительных устройства реализованы на одной микросхеме. У каждого ядра имеется свой кэш первого уровня. Основная задача таки процессоров - параллельное исполнение потоков сложных, многопоточных приложений (серверов БД и т.п.).
Слабосвязанные системы имеют автономные информационные ресурсы и выполняют автономные задачи. Взаимодействие между вычислителями происходит по высокоскоростным каналам связи. В западной литературе именно слабосвязанные многопроцессорные ВС называют кластерами. В отечественной литературе можно встретить такие понятия как «сильносвязанный кластер» и «слабосвязанные кластер», то есть кластером называют любую многопроцессорную (и даже многомашинную) вычислительную систему.
вычислительный система оперативный матричный
Рис. 5.1. Структура оперативной памяти для технологии SMP
Рис. 5.1. Структура оперативной памяти для технологии NUMA
Суперкомпьютеры
Суперкомпьютер - это компьютер, который на момент выпуска лидирует по своим вычислительным возможностям.
Впервые термин “Super Computing” появился в 1920 году в одной из нью-йоркских газет в статье, описывающей новую модификацию электромеханической машины Холлерита.
Вектор развития суперкомпьютеров в настоящее время довольно сильно изменился по сравнению с 60-80 годами прошлого века. До конца 80-ых суперкомпьютеры предполагали наличие собственной уникальной архитектуры. Архитектура процессоров для суперЭВМ разрабатывалась ведущими специалистами (инженерами и программистами), которые постоянно вносили в нее какие-нибудь новые идеи и технологии. Из-за этого процессоры для суперкомпьютеров становились «штучным» товаром. Все это давало мощный толчок для развития компьютерных технологий, поскольку то, что сегодня было реализовано в суперкомпьютере, завтра становилось нормой для любой ЭВМ (Примеры: конвейерная обработка данных, суперскалярная архитектура, появление кэш-памяти и т.п.). Одним из самых известных разработчиков высокопроизводительных компьютеров считается Сеймур Крэй, основатель компании Cray Inc. До начала 90-ых именно его машины во всем мире признавались суперкомпьютерами (хотя сам он никогда не использовал этот термин) и обладали наилучшими характеристиками.
С середины 90-ых ситуация изменилась. В настоящее время считается экономически более целесообразным создавать кластерные суперкомпьютеры, построенные на огромном количестве процессоров с обычной архитектурой. Нюансы архитектуры большинства суперЭВМ теперь заключаются только в технологиях взаимодействия вычислительных устройств между собой и с внешними устройствами. Многие специалисты утверждают, что такое использование «вычислительного ширпотреба» нельзя считать эффективным способом построения суперкомпьютеров. С ними во многом можно согласиться. Возможно, такое изменение вектора развития класса суперкомпьютеров является следствием общего застоя в развитии информационных технологий, который (по оценкам ряда специалистов) наблюдается уже 15 лет. Сейчас развитие вычислительной техники и информационных технологий практически на 100% носит экстенсивный характер, а качественно новых концепций становится все меньше.
Размещено на Allbest.ru
...Подобные документы
Однопроцессорные вычислительные системы не справляются с решением военно-прикладных задач в реальном времени, поэтому для повышения производительности вычислительных систем военного назначения используются многопроцессорные вычислительные системы (МВС).
реферат [70,1 K], добавлен 30.05.2008Классификации архитектур вычислительных систем. Организация компьютерных систем. Устройство центрального процессора. Принципы разработки современных компьютеров. Эволюция микропроцессорных систем. Увеличение числа и состава функциональных устройств.
дипломная работа [1,4 M], добавлен 29.01.2009История развития вычислительной техники, основные характеристики. Основное отличие вычислительной системы от компьютера, виды архитектур. Классификация уровней программного параллелизма. Главные особенности векторной, матричной обработки регистров.
курсовая работа [36,0 K], добавлен 21.07.2012Параллельные вычислительные системы, их общая характеристика и функциональные особенности, оценка возможностей, внутренняя структура и взаимосвязь элементов, типы: одно- и многопроцессорные. Параллельная форма алгоритма, его представление и реализация.
контрольная работа [118,1 K], добавлен 02.06.2014Историческое развитие средств вычислений. Структурные схемы вычислительных систем. Развитие элементной базы и развитие архитектуры самих систем. Основные классы вычислительных машин. Каналы передачи данных. Требования к составу периферийных устройств.
реферат [48,7 K], добавлен 09.01.2011Классические принципы построения электронных вычислительных машин, их основные блоки: арифметико-логический, устройства управления, ввода-вывода и памяти. Автоматизация перевода информации. Двоичное кодирование и организация оперативной памяти компьютера.
презентация [55,2 K], добавлен 22.02.2015Классификация компьютерной памяти. Использование оперативной, статической и динамической оперативной памяти. Принцип работы DDR SDRAM. Форматирование магнитных дисков. Основная проблема синхронизации. Теория вычислительных процессов. Адресация памяти.
курсовая работа [1,5 M], добавлен 28.05.2016Память для вычислительных систем ее создание и характеристика особенностей. Создание устройств памяти и основные эксплуатационные характеристики. Функциональные схемы и способ организации матрицы запоминающих элементов. Виды магнитной и флеш памяти.
презентация [184,9 K], добавлен 12.01.2009Архитектуры вычислительных систем сосредоточенной обработки информации. Архитектуры многопроцессорных вычислительных систем. Классификация и разновидности компьютеров по сферам применения. Особенности функциональной организации персонального компьютера.
контрольная работа [910,2 K], добавлен 11.11.2010Классификация вычислительных систем по способам взаимодействия потоков выполняемых команд и потоков обрабатываемых данных, их разновидности и функциональные особенности. Принципы расширения классификации Флинна. Виды топологии соединительной сети.
презентация [175,6 K], добавлен 11.10.2014Классификация ЭВМ: по принципу действия, этапам создания, назначению, размерам и функциональным возможностям. Основные виды электронно-вычислительных машин: суперЭВМ, большие ЭВМ, малые ЭВМ, МикроЭВМ, серверы.
реферат [22,8 K], добавлен 15.03.2004Программное обеспечение языков программирования, их виды и общая структура каждого поколения. Понятие архитектуры ЭВМ, ее структура и принципы функционирования. Основные характеристики вычислительной техники. Перспективы развития вычислительных средств.
реферат [105,1 K], добавлен 05.02.2011Структуры вычислительных машин и систем. Фон-неймановская архитектура, перспективные направления исследований. Аналоговые вычислительные машины: наличие и функциональные возможности программного обеспечения. Совокупность свойств систем для пользователя.
курсовая работа [797,5 K], добавлен 05.11.2011Понятие локальных вычислительных сетей, их виды и принципы построения. Топология (кольцо, звезда и шина) и древовидная структура ЛВС. Алгоритм решения экономической задачи по осуществляемой страховой деятельности на территории России по видам полисов.
курсовая работа [604,2 K], добавлен 23.04.2013Понятие и основные свойства алгоритма. Линейный, ветвящийся и циклический виды вычислительных процессов. Перевод числа из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную системы, сложение чисел, выполнение вычитания и умножения.
контрольная работа [125,7 K], добавлен 15.09.2013Вычислительные системы и программное обеспечение как важнейшие разделы информатики, условия перехода общества в информационную стадию развития. Развитие вычислительных систем и персональных компьютеров. Операционные системы и системы программирования.
реферат [906,9 K], добавлен 18.01.2011Классификация параллельных вычислительных систем. Существенные понятия и компоненты параллельных компьютеров, их компоненты. Особенности классификаций Хендера, Хокни, Флинна, Шора. Системы с разделяемой и локальной памятью. Способы разделения памяти.
курсовая работа [331,1 K], добавлен 18.07.2012Архитектура и принципы построения электронно-вычислительных машин. Стратегические задачи суперкомпьютеров. Примеры их применения в военной сфере, науке и образовании, медицине, метеорологии. Рейтинг российских мощнейших компьютеров на мировом рынке.
презентация [523,1 K], добавлен 17.06.2016Классификация вычислительных сетей. Основные причины широкого распространения локальных вычислительных сетей. Топология вычислительной сети. Обоснование дифференциального и интегрального исчисления. Характеристика основных правил дифференцирования.
контрольная работа [292,0 K], добавлен 21.12.2010Принципы, которые положены в основу построения большинства электронных вычислительных машин. Сущность принципа двоичного кодирования и программного управления. Структурный состав основной памяти. Основные блоки ЭВМ по Джону фон Нейману: память, процессор.
презентация [96,2 K], добавлен 01.04.2010