Использование автоматизированных информационных технологий в управлении
Системы распределенной обработки данных, их функциональные особенности и возможности. Модели "клиент–сервер" в технологии баз данных. Модель сервера приложений, типы параллелизма. Общая характеристика программных средств подготовки табличных документов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 31.01.2016 |
Размер файла | 33,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение
программный приложение параллелизм
Важнейшим фактором повышения эффективности производства в любой сфере является улучшение управления.
Информация в настоящее время относится к разряду наиболее важных, ценных и дорогостоящих ресурсов, экономящих трудовые, материальные и финансовые средства.
Компьютер становится основным инструментом менеджера любой специализации: финансиста, экономиста, аналитика, менеджера на государственной службе. Автоматизированные информационные технологии позволяют использовать компьютер в управлении экономическими процессами, информационных коммуникациях.
И поэтому мы проходим эту практику, что б применить свои теоретические знания, мы должны получить навыки использования автоматизированных информационных технологий в управлении: получении, обработке, анализе и подготовке информации к принятию решений, в процессе принятия решений, оценке полученных результатов и организационных и внешних коммуникациях.
1. Системы распределенной обработки данных
1.1 Распределенная обработка данных
При размещении БД на персональном компьютере, который не находится в сети, БД всегда используется в монопольном режиме. Даже если БД используют несколько пользователей, они могут работать с ней только последовательно, и поэтому вопросов о поддержании корректной модификации БД в этом случае здесь не стоит, они решаются организационными мерами-то есть определением требуемой последовательности работы конкретных пользователей с соответствующей БД. Однако даже в некоторых настольных БД требуется учитывать последовательность изменения данных при обработке, чтобы получить корректный результат: так, например, при запуске программы балансного бухгалтерского отчета все бухгалтерские проводки - финансовые операции должны быть решены заранее до запуска конечного приложения.
Однако работа на изолированном компьютере с небольшой базой данных в настоящий момент становится уже нехарактерной для большинства приложений. БД отражает информационную модель реальной предметной области, она растет по объему и резко увеличивается количество задач, решаемых с ее использованием, и в соответствии с этим увеличивается количество приложений, работающих с единой базой данных. Компьютеры объединяются в локальные сети, и необходимость распределения приложений, работающих с единой базой данных по сети, является несомненной.
Действительно, даже когда вы строите БД для небольшой торговой фирмы, у вас появляется ряд специфических пользователей БД, которые имеют свои бизнес-функции и территориально могут находиться в разных помещениях, но все они должны работать с единой информационной моделью организации, то есть с единой базой данных.
Параллельный доступ к одной БД нескольких пользователей, в том случае если БД расположена на одной машине, соответствует режиму распределенного доступа к централизованной БД. (Такие системы называются системами распределенной обработки данных.)
Если же БД распределена по нескольким компьютерам, расположенным в сети, и к ней возможен параллельный доступ нескольких пользователей, то мы имеем дело с параллельным доступом к распределенной БД. Подобные системы называются системами распределенных баз данных
1.2 Терминология
Пользователь БД - программа или человек, обращающийся к БД на ЯМД.
Запрос - процесс обращения пользователя к БД с целью ввода, получения или изменения информации в БД.
Транзакция - последовательность операций модификации данных в БД, переводящая БД из одного непротиворечивого состояния в другое непротиворечивое состояние.
Логическая структура БД определение БД на физически независимом уровне, ближе всего соответствует концептуальной модели БД.
Топология БД = Структура распределенной БД - схема распределения физической БД по сети.
Локальная автономность означает, что информация локальной БД и связанные с ней определения данных принадлежат локальному владельцу и им управляются.
Удаленный запрос - запрос, который выполняется с использованием модемной связи.
Возможность реализации удаленной транзакции - обработка одной транзакции, состоящей из множества SQL-запросов на одном удаленном узле.
Поддержка распределенной транзакции - допускает обработку транзакции, состоящей из нескольких запросов SQL, которые выполняются на нескольких узлах сети (удаленных или локальных), но каждый запрос в этом случае обрабатывается только на одном узле, то есть запросы не являются распределенными. При обработке одной распределенной транзакции разные локальные запросы могут обрабатываться в разных узлах сети.
Распределенный запрос - запрос, при обработке которого используются данные из БД, расположенные в разных узлах сети.
Системы распределенной обработки данных в основном связаны с первым поколением БД, которые строились на мультипрограммных операционных системах и использовали централизованное хранение БД на устройствах внешней памяти центральной ЭВМ и терминальный многопользовательский режим доступа к ней. При этом пользовательские терминалы не имели собственных ресурсов-то есть процессоров и памяти, которые могли бы использоваться для хранения и обработки данных. Первой полностью реляционной системой, работающей в многопользовательском режиме, была СУБД SYSTEM R, разработанная фирмой IBM, именно в ней были реализованы как язык манипулирования данными SQL, так и основные принципы синхронизации, применяемые при распределенной обработке данных, которые до сих пор являются базисными практически во всех коммерческих СУБД.
Общая тенденция движения от отдельных mainframe-систем к открытым распределенным системам, объединяющим компьютеры среднего класса, получила название DownSizing. Этот процесс оказал огромное влияние на развитие архитектур СУБД и поставил перед их разработчиками ряд сложных задач. Главная проблема состояла в технологической сложности перехода от централизованного управления данными на одном компьютере и СУБД, использовавшей собственные модели, форматы представления данных и языки доступа к данным и т.д., к распределенной обработке данных в неоднородной вычислительной среде, состоящей из соединенных в глобальную сеть компьютеров различных моделей и производителей.
В то же время происходил встречный процесс - UpSizing. Бурное развитие персональных компьютеров, появление локальных сетей также оказали серьезное влияние на эволюцию СУБД. Высокие темпы роста производительности и функциональных возможностей PC привлекли внимание разработчиков профессиональных СУБД, что привело к их активному распространению на платформе настольных систем.
Сегодня возобладала тенденция создания информационных систем на такой платформе, которая точно соответствовала бы ее масштабам и задачам. Она получила название RightSizing (помещение ровно в тот размер, который необходим).
Однако и в настоящее время большие ЭВМ сохраняются и сосуществуют с современными открытыми системами. Причина этого проста - в свое время в аппаратное и программное обеспечение больших ЭВМ были вложены огромные средства: в результате многие продолжают их использовать, несмотря на морально устаревшую архитектуру. В то же время перенос данных и программ с больших ЭВМ на компьютеры нового поколения сам по себе представляет сложную техническую проблему и требует значительных затрат.
1.3 Модели «клиент-сервер» в технологии баз данных
Вычислительная модель «клиент-сервер» исходно связана с парадигмой открытых систем, которая появилась в 90-х годах и быстро эволюционировала. Сам термин «клиент-сервер» исходно применялся к архитектуре программного обеспечения, которое описывало распределение процесса выполнения по принципу взаимодействия двух программных процессов, один из которых в этой модели назывался «клиентом», а другой «сервером». Клиентский процесс запрашивал некоторые услуги, а серверный процесс обеспечивал их выполнение. При этом предполагалось, что один серверный процесс может обслужить множество клиентских процессов.
Ранее приложение (пользовательская программа) не разделялась на части, оно выполнялось некоторым монолитным блоком. Но возникла идея более рационального использования ресурсов сети. Действительно, при монолитном исполнении используются ресурсы только одного компьютера, а остальные компьютеры в сети рассматриваются как терминалы. Но теперь, в отличие от эпохи main-фреймов, все компьютеры в сети обладают собственными ресурсами, и разумно так распределить нагрузку на них, чтобы максимальным образом использовать их ресурсы.
И как в промышленности, здесь возникает древняя как мир идея распределения обязанностей, разделения труда. Конвейеры Форда сделали в свое время прорыв в автомобильной промышленности, показав наивысшую производительность труда именно из-за того, что весь процесс сборки был разбит на мелкие и максимально простые операции и каждый рабочий специализировался на выполнении только одной операции, но эту операцию он выполнял максимально быстро и качественно.
Конечно, в вычислительной технике нельзя было напрямую использовать технологию автомобильного или любого другого механического производства, но идею использовать было можно. Однако для воплощения идеи необходимо было разработать модель разбиения единого монолитного приложения на отдельные части и определить принципы взаимосвязи между этими частями.
Основной принцип технологии «клиент-сервер» применительно к технологии баз данных заключается в разделении функций стандартного интерактивного приложения на 5 групп, имеющих различную природу:
· функции ввода и отображения данных (Presentation Logic);
· прикладные функции, определяющие основные алгоритмы решения задач приложения (Business Logic);
· функции обработки данных внутри приложения (Database Logic),
· функции управления информационными ресурсами (Database Manager System);
· служебные функции, играющие роль связок между функциями первых четырех групп.
Презентационная логика (Presentation Logic) как часть приложения определяется тем, что пользователь видит на своем экране, когда работает приложение. Сюда относятся все интерфейсные экранные формы, которые пользователь видит или заполняет в ходе работы приложения, к этой же части относится все то, что выводится пользователю на экран как результаты решения некоторых промежуточных задач либо как справочная информация. Поэтому основными задачами презентационной логики являются:
· формирование экранных изображений;
· чтение и запись в экранные формы информации;
· управление экраном;
· обработка движений мыши и нажатие клавиш клавиатуры.
Некоторые возможности для организации презентационной логики приложений предоставляет знако-ориентированный пользовательский интерфейс, задаваемый моделями CICS (Customer Control Information System) и IMS/DC фирмы IBM и моделью TSO (Time Sharing Option) для централизованной main-фреймовой архитектуры. Модель GUI графического пользовательского интерфейса, поддерживается в операционных средах Microsoft's Windows, Windows NT, в OS/2 Presentation Manager, X-Windows и OSF/Motif.
Бизнес-логика, или логика собственно приложений (Business processing Logic), - это часть кода приложения, которая определяет собственно алгоритмы решения конкретных задач приложения. Обычно этот код пишется с использованием различных языков программирования, таких как С, C++, Cobol, SmallTalk, Visual-Basic.
Логика обработки данных (Data manipulation Logic) - это часть кода приложения, которая связана с обработкой данных внутри приложения. Данными управляет собственно СУБД (DBMS). Для обеспечения доступа к данным используются язык запросов и средства манипулирования данными стандартного языка SQL
Обычно операторы языка SQL встраиваются в языки 3-го или 4-го поколения (3GL, 4GL), которые используются для написания кода приложения.
Процессор управления данными (Database Manager System Processing) - это собственно СУБД, которая обеспечивает хранение и управление базами данных. В идеале функции СУБД должны быть скрыты от бизнес-логики приложения, однако для рассмотрения архитектуры приложения нам надо их выделить в отдельную часть приложения.
В централизованной архитектуре (Host-based processing) эти части приложения располагаются в единой среде и комбинируются внутри одной исполняемой программы.
В децентрализованной архитектуре эти задачи могут быть по-разному распределены между серверным и клиентским процессами. В зависимости от характера распределения можно выделить следующие модели распределений (см. рис. 10.3):
· распределенная презентация (Distribution presentation, DP);
· удаленная презентация (Remote Presentation, RP);
· распределенная бизнес-логика (Remote business logic, RBL);
· распределенное управление данными (Distributed data management, DDM);
· удаленное управление данными (Remote data management, RDA).
Эта условная классификация показывет, как могут быть распределены отдельные задачи между серверным и клиенскими процессами. В этой классификации отсутствует реализация удаленной бизнес-логики. Действительно, считается, что она не может быть удалена сама по себе полностью. Считается, что она может быть распределена между разными процессами, которые в общем-то могут выполняться на разных платформах, но должны корректно кооперироваться (взаимодействовать) друг с другом.
1.4 Двухуровневые модели
Двухуровневая модель фактически является результатом распределения пяти указанных функций между двумя процессами, которые выполняются на двух платформах: на клиенте и на сервере. В чистом виде почти никакая модель не существует, однако рассмотрим наиболее характерные особенности каждой двухуровневой модели.
Модель удаленного управления данными. Модель файлового сервера
Модель удаленного управления данными также называется моделью файлового сервера (File Server, FS). В этой модели презентационная логика и бизнес-логика располагаются на клиенте. На сервере располагаются файлы с данными и поддерживается доступ к файлам. Функции управления информационными ресурсами в этой модели находятся на клиенте.
В этой модели файлы базы данных хранятся на сервере, клиент обращается к серверу с файловыми командами, а механизм управления всеми информационными ресурсами, собственно база мета-данных, находится на клиенте.
Достоинства этой модели в том, что мы уже имеем разделение монопольного приложения на два взаимодействующих процесса. При этом сервер (серверный процесс) может обслуживать множество клиентов, которые обращаются к нему с запросами. Собственно СУБД должна находиться в этой модели на клиенте.
Каков алгоритм выполнения запроса клиента?
Запрос клиента формулируется в командах ЯМД. СУБД переводит этот запрос в последовательность файловых команд. Каждая файловая команда вызывает перекачку блока информации на клиента, далее на клиенте СУБД анализирует полученную информацию, и если в полученном блоке не содержится ответ на запрос, то принимается решение о перекачке следующего блока информации и т.д.
Перекачка информации с сервера на клиент производится до тех пор, пока не будет получен ответ на запрос клиента.
Недостатки:
· высокий сетевой трафик, который связан с передачей по сети множества блоков и файлов, необходимых приложению;
· узкий спектр операций манипулирования с данными, который определяется только файловыми командами;
· отсутствие адекватных средств безопасности доступа к данным (защита только на уровне файловой системы).
Модель удаленного доступа к данным
В модели удаленного доступа (Remote Data Access, RDA) база данных хранится на сервере. На сервере же находится ядро СУБД. На клиенте располагается презентационная логика и бизнес-логика приложения. Клиент обращается к серверу с запросами на языке SQL.
Преимущества данной модели;
· перенос компонента представления и прикладного компонента на клиентский компьютер существенно разгрузил сервер БД, сводя к минимуму общее число процессов в операционной системе;
· сервер БД освобождается от несвойственных ему функций; процессор или процессоры сервера целиком загружаются операциями обработки данных, запросов и транзакций. (Это становится возможным, если отказаться от терминалов, не располагающих ресурсами, и заменить их компьютерами, выполняющими роль клиентских станций, которые обладают собственными локальными вычислительными ресурсами);
· резко уменьшается загрузка сети, так как по ней от клиентов к серверу передаются не запросы на ввод-вывод в файловой терминологии, а запросы на SQL, и их объем существенно меньше. В ответ на запросы клиент получает только данные, релевантные запросу, а не блоки файлов, как в FS-модели.
Основное достоинство RDA-модели - унификация интерфейса «клиент-сервер», стандартом при общении приложения-клиента и сервера становится язык SQL.
Недостатки:
· все-таки запросы на языке SQL при интенсивной работе клиентских приложений могут существенно загрузить сеть;
· так как в этой модели на клиенте располагается и презентационная логика, и бизнес-логика приложения, то при повторении аналогичных функций в разных приложениях код соответствующей бизнес-логики должен быть повторен для каждого клиентского приложения. Это вызывает излишнее дублирование кода приложений;
· сервер в этой модели играет пассивную роль, поэтому функции управления информационными ресурсами должны выполняться на клиенте. Действительно, например, если нам необходимо выполнять контроль страховых запасов товаров на складе, то каждое приложение, которое связано с изменением состояния склада, после выполнения операций модификации данных, имитирующих продажу или удаление товара со склада, должно выполнять проверку на объем остатка, и в случае, если он меньше страхового запаса, формировать соответствующую заявку на поставку требуемого товара. Это усложняет клиентское приложение, с одной стороны, а с другой - может вызвать необоснованный заказ дополнительных товаров несколькими приложениями.
1.5 Модель сервера баз данных
Для того чтобы избавиться от недостатков модели удаленного доступа, должны быть соблюдены следующие условия:
1. Необходимо, чтобы БД в каждый момент отражала текущее состояние предметной области, которое определяется не только собственно данными, но и связями между объектами данных. То есть данные, которые хранятся в БД, в каждый момент времени должны быть непротиворечивыми.
2. БД должна отражать некоторые правила предметной области, законы, по которым она функционирует (business rules). Например, завод может нормально работать только в том случае, если на складе имеется некоторый достаточный запас (страховой запас) деталей определенной номенклатуры, деталь может быть запущена в производство только в том случае, если на складе имеется в наличии достаточно материала для ее изготовления, и т.д.
3. Необходим постоянный контроль за состоянием БД, отслеживание всех изменений и адекватная реакция на них: например, при достижении некоторым измеряемым параметром критического значения должно произойти отключение определенной аппаратуры, при уменьшении товарного запаса ниже допустимой нормы должна быть сформирована заявка конкретному поставщику на поставку соответствующего товара.
4. Необходимо, чтобы возникновение некоторой ситуации в БД четко и оперативно влияло на ход выполнения прикладной задачи.
5. Одной из важнейших проблем СУБД является контроль типов данных. В настоящий момент СУБД контролирует синтаксически только стандартно-допустимые типы данных, то есть такие, которые определены в DDL (data definition language) - языке описания данных, который является частью SQL. Однако в реальных предметных областях у нас действуют данные, которые несут в себе еще и семантическую составляющую, например, это координаты объектов или единицы различных метрик, например рабочая неделя в отличие от реальной имеет сразу после пятницы понедельник.
Данную модель поддерживают большинство современных СУБД: Informix, Ingres, Sybase, Oracle, MS SQL Server. Основу данной модели составляет механизм хранимых процедур как средство программирования SQL-сервера, механизм триггеров как механизм отслеживания текущего состояния информационного хранилища и механизм ограничений на пользовательские типы данных, который иногда называется механизмом поддержки доменной структуры.
В этой модели бизнес-логика разделена между клиентом и сервером. На сервере бизнес-логика реализована в виде хранимых процедур - специальных программных модулей, которые хранятся в БД и управляются непосредственно СУБД. Клиентское приложение обращается к серверу с командой запуска хранимой процедуры, а сервер выполняет эту процедуру и регистрирует все изменения в БД, которые в ней предусмотрены. Сервер возвращает клиенту данные, релевантные его запросу, которые требуются клиенту либо для вывода на экран, либо для выполнения части бизнес-логики, которая расположена на клиенте. Трафик обмена информацией между клиентом и сервером резко уменьшается.
Централизованный контроль в модели сервера баз данных выполняется с использованием механизма триггеров. Триггеры также являются частью БД.
Термин «триггер» взят из электроники и семантически очень точно характеризует механизм отслеживания специальных событий, которые связаны с состоянием БД. Триггер в БД является как бы некоторым тумблером, который срабатывает при возникновении определенного события в БД. Ядро СУБД проводит мониторинг всех событий, которые вызывают созданные и описанные триггеры в БД, и при возникновении соответствующего события сервер запускает соответствующий триггер. Каждый триггер представляет собой также некоторую программу, которая выполняется над базой данных. Триггеры могут вызывать хранимые процедуры.
Механизм использования триггеров предполагает, что при срабатывании одного триггера могут возникнуть события, которые вызовут срабатывание других триггеров. Этот мощный инструмент требует тонкого и согласованного применения, чтобы не получился бесконечный цикл срабатывания триггеров.
В данной модели сервер является активным, потому что не только клиент, но и сам сервер, используя механизм триггеров, может быть инициатором обработки данных в БД.
И хранимые процедуры, и триггеры хранятся в словаре БД, они могут быть использованы несколькими клиентами, что. существенно уменьшает дублирование алгоритмов обработки данных в разных клиентских приложениях.
Для написания хранимых процедур и триггеров используется расширение стандартного языка SQL, так называемый встроенный SQL.
Недостатком данной модели является очень большая загрузка сервера. Действительно, сервер обслуживает множество клиентов и выполняет следующие функции:
· осуществляет мониторинг событий, связанных с описанными триггерами;
· обеспечивает автоматическое срабатывание триггеров при возникновении связанных с ними событий;
· обеспечивает исполнение внутренней программы каждого триггера;
· запускает хранимые процедуры по запросам пользователей;
· запускает хранимые процедуры из триггеров;
· возвращает требуемые данные клиенту;
· обеспечивает все функции СУБД: доступ к данным, контроль и поддержку целостности данных в БД, контроль доступа, обеспечение корректной параллельной работы всех пользователей с единой БД.
Если мы переложили на сервер большую часть бизнес-логики приложений, то требования к клиентам в этой модели резко уменьшаются. Иногда такую модель называют моделью с «тонким клиентом», в отличие от предыдущих моделей, где на клиента возлагались гораздо более серьезные задачи. Эти модели называются моделями с «толстым клиентом».
Для разгрузки сервера была предложена трехуровневая модель.
1.6 Модель сервера приложений
Эта модель является расширением двухуровневой модели и в ней вводится дополнительный промежуточный уровень между клиентом и сервером.
В этой модели компоненты приложения делятся между тремя исполнителями:
· Клиент обеспечивает логику представления, включая графический пользовательский интерфейс, локальные редакторы; клиент может запускать ло-кальный код приложения клиента, который может содержать обращения к локальной БД, расположенной на компьютере-клиенте. Клиент исполняет коммуникационные функции front-end части приложения, которые обеспечивают доступ клиенту в локальную или глобальную сеть. Дополнительно реализация взаимодействия между клиентом и сервером может включать в себя управление распределенными транзакциями, что соответствует тем случаям, когда клиент также является клиентом менеджера распределенных транзакций.
· Серверы приложений составляют новый промежуточный уровень архитектуры. Они спроектированы как исполнения общих незагружаемых функций для клиентов. Серверы приложений поддерживают функции клиентов как частей взаимодействующих рабочих групп, поддерживают сетевую доменную операционную среду, хранят и исполняют наиболее общие правила бизнес-логики, поддерживают каталоги с данными, обеспечивают обмен сообщениями и поддержку запросов, особенно в распределенных транзакциях.
· Серверы баз данных в этой модели занимаются исключительно функциями СУБД: обеспечивают функции создания и ведения БД, поддерживают целостность реляционной БД, обеспечивают функции хранилищ данных (warehouse services). Кроме того, на них возлагаются функции создания резервных копий БД и восстановления БД после сбоев, управления выполнением транзакций и поддержки устаревших (унаследованных) приложений (legacy application).
Отметим, что эта модель обладает большей гибкостью, чем двухуровневые модели. Наиболее заметны преимущества модели сервера приложений в тех случаях, когда клиенты выполняют сложные аналитические расчеты над базой данных, которые относятся к области OLAP-прнложений. (On-line analytical processing.) В этой модели большая часть бизнес-логики клиента изолирована от возможностей встроенного SQL, реализованного в конкретной СУБД, и может быть выполнена на стандартных языках программирования, таких как С, C++, SmallTalk, Cobol. Это повышает переносимость системы, ее масштабируемость.
Функции промежуточных серверов могут быть в этой модели распределены в рамках глобальных транзакций путем поддержки ХА-протокола (X/Open transaction interface protocol), который поддерживается большинством поставщиков СУБД.
1.7 Модели серверов баз данных
В период создания первых СУБД технология «клиент-сервер» только зарождалась. Поэтому изначально в архитектуре систем не было адекватного механизма организации взаимодействия процессов типа «клиент» и процессов типа «сервер». В современных же СУБД он является фактически основополагающим и от эффективности его реализации зависит эффективность работы системы в целом.
Рассмотрим эволюцию типов организации подобных механизмов. В основном этот механизм определяется структурой реализации серверных процессов, и часто он называется архитектурой сервера баз данных.
Первоначально, как мы уже отмечали, существовала модель, когда управление данными (функция сервера) и взаимодействие с пользователем были совмещены в одной программе. Это можно назвать нулевым этапом развития серверов БД.
Затем функции управления данными были выделены в самостоятельную группу - сервер, однако модель взаимодействия пользователя с сервером соответствовала парадигме «один-к-одному», то есть сервер обслуживал запросы только одного пользователя (клиента), и для обслуживания нескольких клиентов нужно было запустить эквивалентное число серверов.
Выделение сервера в отдельную программу было революционным шагом, который позволил, в частности, поместить сервер на одну машину, а программный интерфейс с пользователем - на другую, осуществляя взаимодействие между ними по сети. Однако необходимость запуска большого числа серверов для обслуживания множества пользователей сильно ограничивала возможности такой системы.
Для обслуживания большого числа клиентов на сервере должно быть запущено большое количество одновременно работающих серверных процессов, а это резко повышало требования к ресурсам ЭВМ, на которой запускались все серверные процессы. Кроме того, каждый серверный процесс в этой модели запускался как независимый, поэтому если один клиент сформировал запрос, который был только, что выполнен другим серверным процессом для другого клиента, то запрос, тем не менее, выполнялся повторно. В такой модели весьма сложно обеспечить взаимодействие серверных процессов. Эта модель самая простая, и исторически она появилась первой.
Проблемы, возникающие в модели «один-к-одному», решаются в архитектуре «систем с выделенным сервером», который способен обрабатывать запросы от многих клиентов. Сервер единственный обладает монополией на управление данными и взаимодействует одновременно со многими клиентами. Логически каждый клиент связан с сервером отдельной нитью («thread»), или потоком, по которому пересылаются запросы. Такая архитектура получила название многопотоковой односерверной («multi-threaded»).
Она позволяет значительно уменьшить нагрузку на операционную систему, возникающую при работе большого числа пользователей («trashing»).
Кроме того, возможность взаимодействия с одним сервером многих клиентов позволяет в полной мере использовать разделяемые объекты (начиная с открытых файлов и кончая данными из системных каталогов), что значительно уменьшает потребности в памяти и общее число процессов операционной системы. Например, системой с архитектурой «один-к-одному» будет создано 100 копий процессов СУБД для 100 пользователей, тогда как системе с многопотоковой архитектурой для этого понадобится только один серверный процесс.
Однако такое решение имеет свои недостатки. Так как сервер может выполняться только на одном процессоре, возникает естественное ограничение на применение СУБД для мультипроцессорных платформ. Если компьютер имеет, например, четыре процессора, то СУБД с одним сервером используют только один из них, не загружая оставшиеся три.
В некоторых системах эта проблема решается вводом промежуточного диспетчера. Подобная архитектура называется архитектурой виртуального сервера («virtual server»).
В этой архитектуре клиенты подключаются не к реальному серверу, а к промежуточному звену, называемому диспетчером, который выполняет только функции диспетчеризации запросов к актуальным серверам. В этом случае нет ограничений на использование многопроцессорных платформ. Количество актуальных серверов может быть согласовано с количеством процессоров в системе.
Однако и эта архитектура не лишена недостатков, потому что здесь в систему добавляется новый слой, который размещается между клиентом и сервером, что увеличивает трату ресурсов на поддержку баланса загрузки актуальных серверов («load balancing») и ограничивает возможности управления взаимодействием «клиент-сервер». Во-первых, становится невозможным направить запрос от конкретного клиента конкретному серверу, во-вторых, серверы становятся равноправными - нет возможности устанавливать приоритеты для обслуживания запросов.
Подобная организация взаимодействия клиент-сервер может рассматриваться как аналог банка, где имеется несколько окон кассиров, и специальный банковский служащий администратор зала (диспетчер) направляет каждого вновь пришедшего посетителя (клиента) к свободному кассиру (актуальному серверу). Система работает нормально, пока все посетители равноправны (имеют равные приоритеты), однако стоит лишь появиться посетителям с высшим приоритетом, которые должны обслуживаться в специальном окне, как возникают проблемы. Учет приоритета клиентов особенно важен в системах оперативной обработки транзакций, однако именно эту возможность не может предоставить архитектура систем с диспетчеризацией.
Современное решение проблемы СУБД для мультипроцессорных платформ заключается в возможности запуска нескольких серверов базы данных, в том числе и на различных процессорах. При этом каждый из серверов должен быть многопотоковым. Если эти два условия выполнены, то есть основания говорить о многопотоковой архитектуре с несколькими серверами.
Она также может быть названа многонитевой мультисерверной архитектурой. Эта архитектура связана с вопросами распараллеливания выполнения одного пользовательского запроса несколькими серверными процессами.
Существует несколько возможностей распараллеливания выполнения запроса. В этом случае пользовательский запрос разбивается на ряд подзапросов, которые могут выполняться параллельно, а результаты их выполнения потом объединяются в общий результат выполнения запроса. Тогда для обеспечения оперативности выполнения запросов их подзапросы могут быть направлены отдельным серверным процессам, а потом полученные результаты объединены в общий результат. В данном случае серверные процессы не являются независимыми процессами, такими, как рассматривались ранее. Эти серверные процессы принято называть нитями (treads), и управление нитями множества запросов пользователей требует дополнительных расходов от СУБД, однако при оперативной обработке информации в хранилищах данных такой подход наиболее перспективен.
1.8 Типы параллелизма
Рассматривают несколько путей распараллеливания запросов.
Горизонтальный параллелизм. Этот параллелизм возникает тогда, когда хранимая в БД информация распределяется по нескольким физическим устройствам хранения - нескольким дискам. При этом информация из одного отношения разбивается на части по горизонтали. Этот вид параллелизма иногда называют распараллеливанием или сегментацией данных. И параллельность здесь достигается путем выполнения одинаковых операций, например фильтрации, над разными физическими хранимыми данными. Эти операции могут выполняться параллельно разными процессами, они независимы. Результат: выполнения целого запроса складывается из результатов выполнения отдельных операций.
Время выполнения такого запроса при соответствующем сегментировании данных существенно меньше, чем время выполнения этого же запроса традиционными способами одним процессом.
Вертикальный параллелизм. Этот параллелизм достигается конвейерным выполнением операций, составляющих запрос пользователя. Этот подход требует серьезного усложнения в модели выполнения реляционных операций ядром СУБД. Он предполагает, что ядро СУБД может произвести декомпозицию запроса, базируясь на его функциональных компонентах, и при этом ряд подзапросов может выполняться параллельно, с минимальной связью между отдельными шагами выполнения запроса.
Действительно, если мы рассмотрим, например, последовательность операций реляционной алгебры:
R5=R1 [А, С]
R6=R2 [A.B.D]
R7 = R5 [A > 128]
R8 =R5 [A] R6
то операции первую и третью можно объединить и выполнить параллельно с операцией два, а затем выполнить над результатами последнюю четвертую операцию.
Общее время выполнения подобного запроса, конечно, будет существенно меньше, чем при традиционном способе выполнения последовательности из четырех операций.
И третий вид параллелизма является гибридом двух ранее рассмотренных.
Наиболее активно применяются все виды параллелизма в OLAP-приложениях, где эти методы позволяют существенно сократить время выполнения сложных запросов над очень большими объемами данных.
2. Общая характеристика программных средств подготовки табличных документов
Электронная таблица (табличные процессоры) - пакеты программ, предназначенные для обработки табличным образом организованных данных. Пользователь имеет возможность с помощью средств пакета осуществлять разнообразные вычисления, строить графики, управлять форматом ввода-вывода данных, компоновать данные, проводить аналитические исследования и т.п.
В настоящие время наиболее популярными и эффективными пакетами данного класса является: Excel, Improv, Quattro Pro, Lotus 1-2-3.
2.1 Lotus 1-2-3
Появившейся в 1982 г. на рынке программирования средств Lotus 1-2-3 был первым табличным процессором, интегрировавшим в своем составе, помимо обычных инструментов, графику и возможность работы с системами управления базами данных. Поскольку Lotus был разработан для компьютеров типа IBM, он сделал для этой фирмы то же, что VisiCalc в свое время сделал для фирмы Apple. Дальше на рынке вышли новые электронные таблицы, такие как VP Planner компании Paperback Software и Quattro Pro компании Borland International, которые предложили пользователю практически тот же набор инструментария, но по значительно более низким ценам.
2.2 QUATTRO PRO
Процессор QUATTRO PRO почти всех версий обладает такими достоинствами, как:
- чрезвычайно удобный пользовательский интерфейс, дающий возможность представления данных в самой разнообразной и нестандартной форме и обеспечивающий широкие возможности по обработке данных;
- многооконный режим работы, позволяющий организовать на экране удобную рабочую среду и создавать системы связанных электронных таблиц (ЭТ)
- доступ к любым, неограниченным по размерам внешним базам данных, созданным на основе наиболее популярных систем управления базой данных (СУБД);
- высокое качество печати выходных документов; возможность построения разнообразных графиков, диаграмм, рисунков, а также возможность создания слайд-фильмов для презентации готовых результатов и приложений;
- легкость создания программ автоматической обработки информации в таблицах и удобные средства отладки и редактирования созданных программ.
Основное внимание в данной работе будет уделено следующим вопросам:
- оформление для вывода на принтер выходных документов с высоким качеством печати;
- графическое представление полученных результатов и вывод их на принтер в составе выходных документов;
- способы графического анализа результатов.
2.3 Excel
Одним из наиболее распространенных средств работы с документами, имеющими табличную структуру, является Microsoft Excel.
Эта программа предназначена для работы с таблицами данных, преимущественно числовых. При формировании таблицы выполняют ввод, редактирование и форматирование текстовых и числовых данных, а так же формул. Наличие средств автоматизации облегчает эти операции. Созданная таблица может быть выведена на печать.
Документ Excel называется рабочей книгой. Рабочая книга представляет собой набор рабочих листов, каждый из которых имеет табличную структуру и может содержать одну или несколько таблиц. В окне документа в программе Excel отображается только текущий рабочий лист, с которым и ведется работа. Каждый рабочий лист имеет названия, которое отображается на ярлычке листа, отображаемом в его нижней части. С помощью ярлычков можно переключиться к другим рабочим листам, входящим в ту же самую рабочую книгу. Чтобы переименовать рабочий лист, надо дважды щелкнуть на его ярлычке.
Рабочий лист состоит из строк и столбцов. Столбцы озаглавлены прописными латинскими буквами и, далее, двухбуквенными комбинациями. Всего рабочий лист может содержать до 256 столбцов, пронумерованных от A до ЙV. Строки последовательно нумеруются цифрами, от 1 до 65 536 (максимально допустимый номер строки).
На пересечении столбцов и строк образуется ячейки таблицы. Они являются минимальными элементами для хранения данных. Обозначение отдельной ячейки сочетает в себе номера столбца и строки (в этом порядке), на пересечении которых она расположена, например: A1 или DE234. Обозначение ячейки (ее номер) выполняет функции ее адреса. Адреса ячеек используются при записи формул, определяющих взаимосвязь между значениями, расположенными в разных ячейках.
Одна из ячеек всегда является активной и выделяется рамкой активной ячейки. Эта рамка в программе играет роль курсора. Операции ввода и редактирования всегда производятся в активной ячейке. Переместить рамку активной ячейки можно с помощью курсорных клавиш или указателя мыши.
На данные, расположенные в соседних ячейках, можно ссылаться в формулах как единое целое. Такую группу ячеек называют диапазоном.
Отдельная ячейка может содержать данные, относящиеся к одному из трех типов: текста, число или формула, - а так же оставаться пустой. Программа при сохранение рабочей книги записывает в файл только прямоугольную область рабочих листов, примыкающих к левому верхнему углу (ячейка A1) и содержать все заполненные ячейки.
Тип данных, размещаемых в ячейке, определяется автоматически при вводе. Если эти данные можно интерпретировать как число, программа так и делает. В противном случае данные рассматриваются как текст. Ввод формулы всегда начинается с символа знака равенства.
Содержание электронной таблицы: формулы, ссылки и ячейки, абсолютные и относительные ссылки, автоматизация ввода (автозавершение, автозаполнение), надстройки, построение диаграмм и графиков, и многое другое.
Заключение
После проделанной работы и освоенного материала я пришла к выводу, что данная работа не проделана зря, т.к. я получила новую информацию в частности при работе с табличными программами, изучила материалы при подготовке к теоретическим вопросам по базе данных. И применила, свои знания в сферы информатике на практике проделав данную практику: сдела презентацию, выяснила что существует много программ, выраженных табличными документами.
Список использованной литературы
1. Информатика: Учеб. для вузов. - М.: Высш.шк., 2000. Острейковский В.А.
2. Информатика: Учеб.3-е перераб. изд. / Под ред. проф. Н.В. Макаровой. - .:Финансы и статистика, 1999.
3. Компьютерный сайт www.5ballov.ru
4. Информатика. Базовый курс. 2-е изд. / Под ред. С.В. Симоновича. - Питер, 2006.
5. Базы данных: Учебное пособие / Под общей редакцией профессора Ахмадеева И.А. - Набережные Челны: КамПи, 2004.
6. Курс лекции, и методических указаний к нему Лысанова Д.М., 2007 г., ИНЭКА.
Размещено на Allbest.ru
...Подобные документы
Распределенная обработка данных. Двухуровневые модели распределения основных функций. Применение модели сервера приложений и баз данных. Основные пути распараллеливания запросов. Общая характеристика программных средств подготовки табличных документов.
отчет по практике [52,6 K], добавлен 30.09.2009Рассмотрение архитектуры "файл-сервер" и двух- и трехуровневых архитектур "клиент-сервер". Модель сервера приложений и свойства "идеальной" системы управления распределенными базами данных. Способы распределения функций обработки логики запроса.
презентация [60,2 K], добавлен 19.08.2013Характеристики распределенных систем баз данных, формируемые путем "интеграции" разнородных аппаратных и программных средств. Концепция дифференциального файла для различных приложений. Сравнение разных технологий файлового сервера и "клиент-сервера".
курсовая работа [411,9 K], добавлен 28.05.2015Разработка приложений на платформе Win32 для исследования взаимодействия между процессами через отображение файла в память. Модель приложений "клиент - сервер". Описание алгоритма работы программы-клиента и программы-сервера. Результаты работы приложений.
курсовая работа [869,3 K], добавлен 18.05.2014Функциональная модель системы. Проектирование схемы базы данных. Проектирование архитектуры системы. Принцип технологии клиент-сервер. Построение схемы ресурсов. Выбор программных средств. Разработка базы данных с использованием Microsoft SQL Server.
дипломная работа [1,1 M], добавлен 30.03.2015Характеристика модели клиент-сервер как технологии взаимодействия в информационной сети. Разработка и описание алгоритмов работы приложений на платформе Win32 в среде Microsoft Visual Studio, использующих для межпроцессного взаимодействия сокеты.
курсовая работа [544,6 K], добавлен 02.06.2014Система управление базами данных, реляционная модель. Принципы взаимодействия между клиентскими и серверными частями. Трехуровневая модель технологии "клиент-сервер". Фрактальные методы сжатия больших объемов данных. Анализ концепции хранилища данных.
курс лекций [265,0 K], добавлен 05.06.2009Архитектура "клиент-сервер". Системный анализ базы данных "Газета объявлений", ее инфологическое и физическое проектирование. Программирование на стороне SQL-сервера. Разработка клиентской части в Borland C++ Builder 6.0 и с помощью Web-технологий.
курсовая работа [1,3 M], добавлен 07.07.2013Характеристика сущности и назначения автоматизированных информационных систем (АИС), под которыми понимают совокупность информационных массивов технических, программных и языковых средств, предназначенных для сбора, хранения, поиска, обработки данных.
контрольная работа [24,4 K], добавлен 29.08.2010Изучение сущности, принципа работы и основного назначения удаленных баз данных. Модель удаленного управления данными (модель файлового сервера). Типы параллелизма. Триггер - механизм отслеживания специальных событий, которые связаны с состоянием БД.
контрольная работа [19,8 K], добавлен 24.02.2011Представление данных в памяти компьютера. Обобщенные структуры и модели данных. Методы доступа к информации. Физическая организация системы управления базами данных, структура сервера. Архитектура "клиент-сервер". Создание базы данных с помощью "Денвер".
курсовая работа [770,3 K], добавлен 17.11.2014Модели данных в управлении базами данных. Концептуальные модели данных. Роль баз данных в информационных системах. Реляционная модель данных. Определение предметной области. Построение модели базы данных для информационной системы "Домашние животные".
курсовая работа [1,9 M], добавлен 19.04.2011Устройство веб-приложений, преимущества их построения. Характеристика технологий веб-программирования, используемых на стороне сервера и на стороне клиента. Формирование и обработка запросов, создание интерактивного и независимого от браузера интерфейса.
контрольная работа [76,4 K], добавлен 08.07.2014Преимущества распределенных система обработки данных. Классификация интегрированных технологий. Модели реализации технологии "клиент-сервер". Мониторы обработки транзакций. Глобальные вычислительные и информационные сети. Виды доступа к глобальным сетям.
презентация [2,1 M], добавлен 20.11.2013Файловая и сетевая системы операционной системы Windows. Характеристика модели "клиент-сервер". Функциональные требования и архитектура программы, которая должна обеспечивать передачу файлов от клиента к серверу, сервера к клиенту, обмен сообщениями.
курсовая работа [1,4 M], добавлен 24.04.2013Модели информационного процесса обработки данных. Классификация баз данных. Сеть архитектуры и технология клиент-сервер. Создание запросов к реляционным базам данных на SQL. Работа с электронными таблицами MS Excel: форматирование данных, вычисления.
контрольная работа [17,8 K], добавлен 17.01.2010Определение, свойства и характеристики распределенных систем баз данных. Основная задача систем управления ими. Архитектура распределения СУБД. Сравнение технологий файлового сервера и "клиент-сервера". Стратегия распределения данных по узлам сети ЭВМ.
курсовая работа [601,3 K], добавлен 24.05.2015Определение базы данных и банков данных. Компоненты банка данных. Основные требования к технологии интегрированного хранения и обработки данных. Система управления и модели организации доступа к базам данных. Разработка приложений и администрирование.
презентация [17,1 K], добавлен 19.08.2013Понятие и назначение, принципы построения и внутренняя структура системы управления базами данных, их функциональные особенности и возможности, критерии оценки эффективности. Языковые и программные средства. Использование SQL, типы и модели данных.
презентация [677,3 K], добавлен 18.03.2015Анализ архитектуры информационной системы, в структуру которой входят системы файл-сервер и клиент-сервер. Сравнение языков запросов SQL и QBE. Принципы разработки приложений архитектуры клиент-сервер при помощи структурированного языка запросов SQL.
курсовая работа [88,9 K], добавлен 11.04.2010