Создание модели базы данных

Недостатки иерархических и сетевых систем управления базами данных, манипулирование информацией, хранящейся в таблицах при использовании реляционной модели создания базы данных. Цель, уровни и компоненты построения модели данных, их специфические функции.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 03.02.2016
Размер файла 74,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема: Создание модели базы данных

План

Введение

Модели организации баз данных

Модели данных и концептуальное моделирование

Объектные модели данных

Уровни моделей базы данных

Заключение

Литература

Введение

Как отмечалось, инфологическая модель отображает реальный мир в некоторые понятные человеку концепции, полностью независимые от параметров среды хранения данных. Существует множество подходов к построению таких моделей: графовые модели, семантические сети, модель "сущность-связь" и т.д. Наиболее популярной из них оказалась модель "сущность-связь", которая будет рассмотрена в главе 2.

Инфологическая модель должна быть отображена в компьютеро-ориентированную даталогическую модель, "понятную" СУБД. В процессе развития теории и практического использования баз данных, а также средств вычислительной техники создавались СУБД, поддерживающие различные даталогические модели.

Сначала стали использовать иерархические даталогические модели. Простота организации, наличие заранее заданных связей между сущностями, сходство с физическими моделями данных позволяли добиваться приемлемой производительности иерархических СУБД на медленных ЭВМ с весьма ограниченными объемами памяти. Но, если данные не имели древовидной структуры, то возникала масса сложностей при построении иерархической модели и желании добиться нужной производительности.

Сетевые модели также создавались для мало ресурсных ЭВМ. Это достаточно сложные структуры, состоящие из "наборов" - поименованных двухуровневых деревьев. "Наборы" соединяются с помощью "записей-связок", образуя цепочки и т.д. При разработке сетевых моделей было выдумано множество "маленьких хитростей", позволяющих увеличить производительность СУБД, но существенно усложнивших последние. Прикладной программист должен знать массу терминов, изучить несколько внутренних языков СУБД, детально представлять логическую структуру базы данных для осуществления навигации среди различных экземпляров, наборов, записей и т.п. Один из разработчиков операционной системы UNIX сказал "Сетевая база - это самый верный способ потерять данные".

Сложность практического использования иерархических и и сетевых СУБД заставляла искать иные способы представления данных. В конце 60-х годов появились СУБД на основе инвертированных файлов, отличающиеся простотой организации и наличием весьма удобных языков манипулирования данными. Однако такие СУБД обладают рядом ограничений на количество файлов для хранения данных, количество связей между ними, длину записи и количество ее полей.

Сегодня наиболее распространены реляционные модели, которые будут подробно рассмотрены в главе 3.

Физическая организация данных оказывает основное влияние на эксплуатационные характеристики БД. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий для поднастройки модели под конкретную БД. Разнообразие способов корректировки физических моделей современных промышленных СУБД не позволяет рассмотреть их в этом разделе.

Модели организации баз данных

1. Иерархический подход к организации баз данных. Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными - одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых, все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель - единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково - таблицами. Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели - реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления (полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL.

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности. Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор, называемый первичным ключом. Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты - текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая объектно-ориентированная модель данных, не существует. В большой степени поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем - реализация сложных типов данных, связь с языками программирования и т.п. - на ближайшее время превосходство реляционных СУБД гарантировано.

Модели данных и концептуальное моделирование

Выше уже упоминалось, что схема создается с помощью некоторого языка определения данных. На самом деле она создается на основе языка определения данных конкретной целевой СУБД, являющегося языком относительно низкого уровня; с его помощью трудно описать требования к данным так, чтобы созданная схема была доступна пониманию пользователей самых разных категорий. Чтобы достичь такого понимания, требуется составить описание схемы на некотором, более высоком уровне, которое будем называть моделью данных. При этом под моделью данных мы будем понимать интегрированный набор понятий для описания данных, связей между ними и ограничений, накладываемых на данные в пределах некоторой предметной области.

Модель является представлением объектов и событий предметной области, а также существующих между ними связей. Модель данных можно рассматривать как сочетание трех указанных ниже компонентов.

· Структурная часть, т.е. набор правил, по которым может быть построена база данных.

· Управляющая часть, определяющая типы допустимых операций с данными (сюда относятся операции обновления и извлечения данных, а также операции изменения структуры базы данных).

· Набор ограничений поддержки целостности данных , гарантирующих корректность используемых данных.

Цель построения модели данных заключается в представлении данных в понятном виде. Если такое представление возможно, то модель данных можно будет легко применить при проектировании базы данных. Для отображения архитектуры ANSI-SPARC можно определить следующие три связанные модели данных:

· внешнюю модель данных, отображающую представления каждого существующего в организации типа пользователей;

· концептуальную модель данных, отображающую логическое (или обобщенное) представление о данных, независимое от типа выбранной СУБД;

· внутреннюю модель данных, отображающую концептуальную схему определенным образом, понятным выбранной целевой СУБД.

В литературе предложено и опубликовано достаточно много моделей данных. Они подразделяются на три категории: объектные (object-based) модели данных, модели данных на основе записей (record-based) и физические модели данных. Первые две используются для описания данных на концептуальном и внешнем уровнях, а последняя - на внутреннем уровне.

Объектные модели данных

При построении объектных моделей данных используются такие понятия как сущности, атрибуты и связи. Сущность - это отдельный элемент (сотрудник, изделие, понятие или событие) предметной области, который должен быть представлен в базе данных. Атрибут - это свойство, которое описывает некоторый аспект объекта и значение которого следует зафиксировать, а связь является ассоциативным отношением между сущностями. Ниже перечислены некоторые наиболее общие типы объектных моделей данных.

o Модель типа "сущность-связь", или ER-модель (Entity-Relationship model).

o Семантическая модель.

o Функциональная модель.

o Объектно-ориентированная модель.

В настоящее время ER-модель стала одним из основных методов концептуального проектирования баз данных. Объектно-ориентированная модель расширяет определение сущности с целью включения в него не только атрибутов, которые описывают состояние объекта, но и действий, которые с ним связаны, т.е. его поведение. В таком случае говорят, что объект инкапсулирует состояние и поведение.

Модели данных на основе записей. В модели на основе записей база данных состоит из нескольких записей фиксированного формата, которые могут иметь разные типы. Каждый тип записи определяет фиксированное количество полей, каждое из которых имеет фиксированную длину. Существует три основных типа логических моделей данных на основе записей: реляционная модель данных (relational data model), сетевая модель данных (network data model) и иерархическая модель данных (hierarchical data model). база таблица иерархический реляционный

Реляционная модель данных. Реляционная модель данных основана на понятии математических отношений. В реляционной модели данные и связи представлены в виде таблиц, каждая из которых имеет несколько столбцов с уникальными именами.

При этом в реляционной модели данных единственное требование состоит в том, чтобы база данных с точки зрения пользователя выглядела как набор таблиц. Однако такое восприятие относится только к логической структуре базы данных, т.е. к внешнему и концептуальному уровням архитектуры ANSI/SPARC. Оно не относится к физической структуре базы данных, которая может быть реализована с помощью разнообразных структур хранения.

Сетевая модель данных. В сетевой модели данные представлены в виде коллекций записей, а связи - в виде наборов. В отличие от реляционной модели, связи здесь явным образом моделируются наборами, которые реализуются с помощью указателей. Сетевую модель можно представить как граф с записями в виде узлов графа и наборами в виде его ребер.

Иерархическая модель данных. Иерархическая модель является ограниченным подтипом сетевой модели. В ней данные также представлены как коллекции записей, а связи - как наборы. Однако в иерархической модели узел может иметь только одного родителя. Иерархическая модель может быть представлена как древовидный граф с записями в виде узлов (которые также называются сегментами) и множествами в виде ребер. Для моделирования информации с помощью древовидной структуры используется обобщенное дерево, состоящее из узлов, соединенных связями, называемых дугами или ребрами. Самый верхний узел называется корневым узлом. В структуре дерева могут быть выделены поддеревья, каждое из которых исходит из одного родительского узла (дочернего для узла более высокого уровня). Все узлы дерева, за исключением корневого, должны иметь родительский узел. Узлы представляют интересующие нас объекты, а связи между ними определяются самим расположением узлов и ребер, образующих данную древовидную структуру.

Основанные на записях (логические) модели данных используются для определения общей структуры базы данных и высокоуровневого описания ее реализации. Их основной недостаток заключается в том, что они не дают адекватных средств для явного указания ограничений, накладываемых на данные. В то же время в объектных моделях данных отсутствуют средства указания их логической структуры, но за счет предоставления пользователю возможности указать ограничения для данных, они позволяют в большей мере представить семантическую суть хранимой информации.

Большинство современных систем БД основано на реляционной парадигме, тогда как самые первые системы баз данных строились на основе сетевой или иерархической модели. При использовании последних двух моделей от пользователя требуется знание физической организации базы данных, к которой он должен осуществлять доступ, в то время как при работе с реляционной моделью независимость от данных обеспечивается в значительно большей степени. Следовательно, если в реляционных системах для обработки информации в базе данных принят декларативный подход (т.е. они указывают, какие данные следует извлечь), то в сетевых и иерархических системах - навигационный подход (т.е. они указывают, как их следует извлечь).

Физические модели данных. Физические модели данных описывают то, как данные хранятся в компьютере, представляя информацию о структуре записей, их упорядоченности и существующих путях доступа.

Концептуальное моделирование. Как показывает изучение трехуровневой архитектуры СУБД, концептуальная схема является "сердцем" базы данных. Она поддерживает все внешние представления, а сама поддерживается средствами внутренней схемы. Однако внутренняя схема является всего лишь физическим воплощением концептуальной схемы. Именно концептуальная схема призвана быть полным и точным представлением требований к данным в рамках некоторой предметной области. В противном случае определенная часть информации о предприятии будет упущена или искажена, в результате чего могут возникнуть трудности при попытках полной реализации одного или нескольких внешних представлений.

Концептуальное моделирование базы данных - это процесс конструирования модели использования информации. Этот процесс не зависит от таких подробностей, как используемая СУБД, прикладные программы, языки программирования или любые другие вопросы физической организации информации. Подобная модель называется концептуальной моделью данных.

Первой и самой важной функцией базы данных, является функция хранения информации. Информация должна хранится упорядоченно для более быстрого и понятного пользователю доступа к ней. Упорядоченность информации в базе данных, помимо удобств доступа, может привести к значительному сокращению аппаратных ресурсов, необходимых для ее обслуживания. Упорядоченность достигается путем нормализации.

Здесь мы вплотную подошли ко второй функции базы данных - ввод информации. Какую информацию будет вводить пользователь? Хорошая база данных построена из главного документа, справочников, из которых пользователь вводит информацию и нескольких полей для ручного ввода, например, текстов назначения платежа в платежных поручениях и суммы. База данных должна заполняться средствами, наиболее полно автоматизирующими этот процесс. При этом плохим тоном являются:

ввод информации об одном объекте разными способами или в разных местах;

ввод одной и той же информации в нескольких местах;

ввод информации разрозненно, без поддержания общей структуры объекта. Одной из основных функций базы данных является автоматизация. Под автоматизацией, как правило, понимают автоматическое создание выходных документов и пересчет данных, например печать накладной, счета фактуры и протокола согласования цен в складской программе для исходящей накладной.

Далее, нужно вспомнить о системах принятия решений. Информационная система должна позволять создавать статистические отчеты в реальном режиме времени о состоянии описываемого в базе данных процесса. Эта функция удобна для руководителей подразделений, которые могут прогнозировать поведение описываемой системы на основе статистических данных, полученных из базы данных.

Собственно, описанные выше функции информационной системы являются “джентльменским набором”, которого достаточно в большинстве случаев. Из дополнительных функций необходимо упомянуть возможность поиска по нескольким взаимосвязанным характеристикам.

В единой информационной системе необходима возможность идентификации пользователя с целью ограничения доступа пользователя к определенным частям базы данных и введения информации о создателе документа и лиц, редактировавших его. Это придаст пользователям ощущение ответственности за выполняемые действия.

Хорошая информационная система должна легко расширяться при необходимости добавления в нее новых возможностей. Расширяемость подразумевает элементы объектной ориентированности, встроенные в базу данных. Настраивая эти объекты, возможно вносить незначительные изменения в структуру базы данных, что продляет срок морального устаревания всей информационной системы. Одним из факторов расширяемости является возможность сочленять разнородные базы данных в единый комплекс. Такая возможность сейчас реализуется через дополнительные модули, которые по своей сути являются серверами приложений, или правильное построение базы данных по классическим реляционным законам. Последний случай затрудняется тем, что некоторые серверы базы данных не могут выполнить один SQL запрос к разным базам данных, тем более находящимся в географической удаленности друг от друга. Еще одна удобная функция в базе данных - это сквозное прохождение по документам.

Описанные выше функции в разных реализациях информационных систем имеют специфические черты, ориентированные на конкретное прикладное применения.

Уровни моделей базы данных

Разработка любой информационной системы включает в себя несколько взаимно перекрывающихся во времени процессов:

1. определение пользователей системы и формулировка их требований к ней;

2. анализ стоящей задачи;

3. проектирование (базы данных, приложений и т.д.);

4. реализация (в том числе, программирование);

5. документирование;

6. тестирование и возврат к одному из предыдущих процессов.

Следует заметить, что анализ и проектирование базы данных являются самыми ответственными частями работы, поскольку от одной БД обычно зависит создание сразу многих приложений, а требования к БД меняются медленнее, тем требования к приложениям. Чем крупнее информационная система, тем больший упор должен быть сделан на проектирование базы данных по сравнению с остальными процессами разработки.

Результатом анализа и проектирования информационной системы являются модели. Они используются для следующих целей:

1. связывание понятий различных участников разработки информационной системы;

2. формализация и систематизация этих понятий (в т.ч. разбиение по категориям);

3. детальное описание (спецификация) компонентов системы и связей между ними;

4. анализ этих компонентов для лучшего понимания структуры системы и её дальнейшего развития (что возможно благодаря наглядному представлению модели).

Прежде всего, разработчики информационной системы создают обобщенное и не слишком формальное описание базы данных, объединяя частные представления об её содержимом, полученные из опроса пользователей (сотрудников организации, для которой предназначена система). Это описание, выполненное с использованием естественного языка, таблиц, формул, графиков и тому подобных средств, называют инфологической (или информационной, или концептуальной, или семантической) моделью данных (см. Рис. 2.1). Такая ориентированная на человека модель полностью независима от физических параметров среды хранения данных, и этой средой может быть, например, память человека, а не компьютера. Остальные модели ориентированы не на смысл (семантику) данных, а на их компьютерное представление. На базе второй модели - даталогической (или просто логической) - СУБД предоставляет доступ к хранимым данным лишь по их именам, не заботясь о физическом размещении этих данных. Даталогические модели должны быть описаны на языке описания данных этой СУБД (к счастью, разные СУБД имеют близкие языки, см. 1.3.2). Нужные данные отыскиваются СУБД на внешних запоминающих устройствах в соответствии с третьей - физической - моделью данных. Структура данных этой модели (данных конфигурации) уже слишком зависит от СУБД, поэтому в данном курсе она практически не рассматривается.

Три уровня моделей БД (семантический, логический и физический) обеспечивают независимость данных от использующих их приложений. Разработчик (или администратор) информационной системы может при необходимости переписывать данные на другие носители информации, оптимизировать их физическую структуру и даже переносить систему на другую СУБД, изменяя тем самым лишь физическую модель данных. Он также может подключить к системе любое число новых пользователей и новых приложений, дополняя, если надо, логическую модель. Указанные изменения физической и логической моделей не будут замечены существующими пользователями системы, которые работают с БД на семантическом уровне. Приложения же зависят от данных логического уровня, поэтому их код может меняться, однако при правильном проектировании БД изменения незначительны.

Данный курс напрямую касается лишь двух из перечисленных в начале этого раздела процессов разработки - проектирования БД (часть пункта 3) и реализации доступа к ней (часть пункта 4), которые в совокупности представляют собой формирование логической (даталогической) модели данных. Однако формулировку требований и анализ (пункты 1 и 2), результаты которых выражаются в семантической (инфологической) модели, также необходимо кратко рассмотреть, поскольку на них основывается дальнейшая работа по проектированию БД.

Заключение

Читатель, познакомившийся лишь с материалом данной и предшествующей глав, не сможет правильно воспринять и оценить тех советов и рекомендаций по построению хорошей инфологической модели, которые десятилетиями формировались крупнейшими специалистами в области обработки данных. Для этого надо, по крайней мере, изучить последующие материалы. В идеале же необходимо, чтобы читатель предварительно реализовал хотя бы один проект информационной системы, предложил его реальным пользователям и побыл администратором базы данных и приложений столь долго, чтобы осознать хотя бы небольшую толику проблем, возникающих из-за недостаточно продуманного проекта. Опыт автора и всех знакомых ему специалистов по информационным системам показывает, что любые теоретические рекомендации воспринимаются всерьез лишь после нескольких безрезультатных попыток оживления неудачно спроектированных систем. (Хотя есть и такие проектировщики, которые продолжают верить, что смогут реанимировать умирающий проект с помощью изменения программ, а не инфологической модели базы данных.)

Основная сложность восприятия рекомендаций, приведенных в четвертой главе и приложении Б, чисто психологического плана.

Действительно, для определения перечня и структуры хранимых данных надо собрать информацию о реальных и потенциальных приложениях, а также о пользователях базы данных, а при построении инфологической модели следует заботиться лишь о надежности хранения этих данных, напрочь забывая о приложениях и пользователях, для которых создается база данных.

Это связано с абсолютно различающимися требованиями к базе данных прикладных программистов и администратора базы данных. Первые хотели бы иметь в одном месте (например, в одной таблице) все данные, необходимые им для реализации запроса из прикладной программы или с терминала. Вторые же заботятся о исключении возможных искажений хранимых данных при вводе в базу данных новой информации и обновлении или удалении существующей. Для этого они удаляют из базы данных дубликаты и нежелательные функциональные связи между атрибутами, разбивая базу данных на множество маленьких таблиц (см. п. 4.6). Так как многолетний мировой опыт использования информационных систем, построенных на основе баз данных, показывает, что недостатки проекта невозможно устранить любыми ухищрениями в программах приложений, то опытные проектировщики не позволяют себе идти навстречу прикладным программистам (даже тогда, когда они сами являются таковыми).

И хотя автор осознает, что большинство людей предпочитает учиться на собственных ошибках, он все же еще раз советует неопытным проектировщикам баз данных:

· четко разграничивать такие понятия как запрос на данные и ведение данных (ввод, изменение и удаление);

· помнить, что, как правило, база данных является информационной основой не одного, а нескольких приложений, часть их которых появится в будущем;

· плохой проект базы данных не может быть исправлен с помощью любых (даже самых изощренных) приложений.

Литература

1. Атре Ш. Структурный подход к организации баз данных. - М.: Финансы и статистика, 1983. - 320 с.

2. Бойко В.В., Савинков В.М. Проектирование баз данных информационных систем. - М.: Финансы и статистика, 1989. - 351 с.

3. Дейт К. Руководство по реляционной СУБД DB2. - М.: Финансы и статистика, 1988. - 320 с.

4. Джексон Г. Проектирование реляционных баз данных для использования с микроЭВМ. -М.: Мир, 1991. - 252 с.

5. Кириллов В.В. Структуризованный язык запросов (SQL). - СПб.: ИТМО, 1994. - 80 с.

6. Мартин Дж. Планирование развития автоматизированных систем. - М.: Финансы и статистика, 1984. - 196 с.

7. Мейер М. Теория реляционных баз данных. - М.: Мир, 1987. - 608 с.

8. Тиори Т., Фрай Дж. Проектирование структур баз данных. В 2 кн., - М.: Мир, 1985. Кн. 1. - 287 с.: Кн. 2. - 320 с.

9. Ульман Дж. Базы данных на Паскале. - М.: Машиностроение, 1990. - 386 с.

10. Хаббард Дж. Автоматизированное проектирование баз данных. - М.: Мир, 1984. - 294 с.

11. Цикритизис Д., Лоховски Ф. Модели данных. - М.: Финансы и статистика, 1985. - 344 с.

Размещено на Allbest.ru

...

Подобные документы

  • Построение концептуальной модели, процесс моделирования смыслового наполнения базы данных. Основные компоненты концептуальной модели. Построение реляционной модели. Целостность данных в реляционной базе. Нормализация. Проектирование базы данных в ACCESS.

    курсовая работа [1,8 M], добавлен 29.10.2008

  • Сущность базы данных. Процесс построения концептуальной модели. Построение реляционной модели, создание ключевого поля. Процесс нормализации. Проектирование базы данных в ACCESS. Порядок создание базы данных. Создание SQL запросов и работа в базе данных.

    курсовая работа [185,6 K], добавлен 08.11.2008

  • Понятие информации, автоматизированных информационных систем и банка данных. Общая характеристика описательной модели предметной области, концептуальной модели и реляционной модели данных. Анализ принципов построения и этапы проектирования базы данных.

    курсовая работа [1,7 M], добавлен 18.01.2012

  • Особенности разработки инфологической модели и создание структуры реляционной базы данных. Основы проектирования базы данных. Разработка таблиц, форм, запросов для вывода информации о соответствующей модели. Работа с базами данных и их объектами.

    курсовая работа [981,4 K], добавлен 05.11.2011

  • Основные виды баз данных. Система управления базами данных. Анализ деятельности и информации, обрабатываемой в поликлинике. Состав таблиц в базе данных и их взаимосвязи. Методика наполнения базы данных информацией. Алгоритм создания базы данных.

    курсовая работа [3,1 M], добавлен 17.12.2014

  • Базы данных с двумерными файлами и реляционные системы управления базами данных (СУБД). Создание базы данных и обработка запросов к ним с помощью СУБД. Основные типы баз данных. Базовые понятия реляционных баз данных. Фундаментальные свойства отношений.

    реферат [57,1 K], добавлен 20.12.2010

  • Разработка базы данных с информацией о сотрудниках, товарах, со справочником типов товаров средствами системы управления базами данных MySQL с помощью SQL-запросов. Разработка инфологической модели предметной области. Структура таблиц, полей базы данных.

    контрольная работа [648,7 K], добавлен 13.04.2012

  • Разработка модели и создание структуры реляционной базы данных. Организация данных в таблицах для предоставления оперативного доступа к данным. Основные структурные единицы базы данных Access: таблицы, запросы, формы, отчеты, страницы, макросы и модули.

    реферат [4,0 M], добавлен 03.02.2013

  • Формы представляемой информации. Основные типы используемой модели данных. Уровни информационных процессов. Поиск информации и поиск данных. Сетевое хранилище данных. Проблемы разработки и сопровождения хранилищ данных. Технологии обработки данных.

    лекция [15,5 K], добавлен 19.08.2013

  • Понятие базы данных, модели данных. Классификация баз данных. Системы управления базами данных. Этапы, подходы к проектированию базы данных. Разработка базы данных, которая позволит автоматизировать ведение документации, необходимой для деятельности ДЮСШ.

    курсовая работа [1,7 M], добавлен 04.06.2015

  • Особенности создания учетных записей на файловом сервере. Разработка функциональной модели базы данных. Отчет по дугам модели. Сущность, атрибуты и связи информационной модели. Разработка базы данных в системе управления базами данных MS Access.

    контрольная работа [2,3 M], добавлен 23.01.2014

  • Система управления базами данных (СУБД). Программные средства, предназначенные для создания, наполнения, обновления и удаления базы данных. Структура, модели и классификация баз данных. Создание каталогов, псевдонимов, таблиц, шаблонов и форм СУБД.

    презентация [1,1 M], добавлен 09.01.2014

  • Анализ баз данных и систем управления ими. Проектирование и создание реляционной базы данных в среде MS Access для ресторана "Дельфин": построение информационно логической модели, разработка структур таблиц базы данных и схемы данных, создание Web-узла.

    курсовая работа [3,7 M], добавлен 15.11.2010

  • Модели данных как формальный аппарат для описания информационных потребностей пользователей. Структура информационной базы. Типы взаимосвязей. Разработка логической структуры базы для хранения данных о пяти поставщиках. Детализация реляционной модели.

    презентация [28,9 K], добавлен 07.12.2013

  • Методика и основные этапы проектирования логической и физической модели базы данных. Реализация спроектированной модели в системе управления базами данных, принципы создания и апробация специального клиентского приложения для работы данной программы.

    курсовая работа [1,3 M], добавлен 27.06.2013

  • Понятие реляционной модели данных, целостность ее сущности и ссылок. Основные этапы создания базы данных, связывание таблиц на схеме данных. Проектирование базы данных книжного каталога "Books" с помощью СУБД Microsoft Access и языка запросов SQL.

    курсовая работа [838,9 K], добавлен 25.11.2010

  • Освоение сервисной системы управления базами данных Microsoft SQL. Разработка базы данных "Служба АТС" в среде Microsoft SQL Server Management Studio и создание запросов на языке SQL. Апробация инфологической модели "сущность - связь" базы данных.

    курсовая работа [2,9 M], добавлен 29.06.2015

  • Модели баз данных. Современные системы управления базами данных, основные требования к их организации. Преимущества справочно-правовых систем: "Гарант", "Кодекс" и "Консультант-Плюс". Базы данных по законодательству в интернете и на компакт-дисках.

    реферат [49,7 K], добавлен 11.03.2014

  • Определение базы данных и банков данных. Компоненты банка данных. Основные требования к технологии интегрированного хранения и обработки данных. Система управления и модели организации доступа к базам данных. Разработка приложений и администрирование.

    презентация [17,1 K], добавлен 19.08.2013

  • Преимущества и недостатки иерархической модели данных. Целостная часть реляционной модели данных. Базовые требования целостности сущностей и по ссылкам. Ограничения целостности сущности и по ссылкам. Аксиомы Армстронга, аномалии обновления и их виды.

    контрольная работа [262,3 K], добавлен 05.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.