Анализ и разработка вычислительной сети на основе технологий Fast и Gigabit Ethernet для Управления Пенсионного Фонда Российской Федерации
Характеристика основных групп топологии сетей, их преимуществ, недостатков. Спецификация физической среды Ethernet. Определение топологии и технологии компьютерной сети для реализации локальной вычислительной сети. Выбор сетевого программного обеспечения.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 15.02.2016 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
- Введение
- 1. Анализ проблемной области и постановка задач исследования
- 1.1 Постановка задачи
- 1.2 Требования, предъявляемые к сети
- 2. Обзор технологий КС для реализации компьютерной сети
- 2.1 Сетевые топологии
- 2.1.1 Сети с полносвязной топологией
- 2.1.2 Сети шинной топологии
- 2.1.3 Звездообразная топология
- 2.1.4 Кольцевая топология
- 2.1.5 Смешанная топология
- 2.2 Среда передачи данных
- 2.2.1 Физическая среда передачи данных
- 2.2.2 Проводные (воздушные) линии связи
- 2.2.3 Кабельные линии
- 2.2.4 Радиоканалы наземной и спутниковой связи
- 2.3 Кабельные системы
- 2.3.1 Коаксиальный кабель
- 2.3.2 Витая Пара
- 2.3.3 Оптоволоконный кабель
- 2.4 Сетевые технологии
- 2.4.1 Технология Ethernet
- 2.4.2 Технология Fast Ethernet
- 2.4.3 Gigabit Ethernet
- 2.4.4 Token Ring
- 2.4.5 Сравнение технологий
- 2.4.6 VPN
- 2.5 Сетевое оборудование
- 2.5.1 Коммутаторы
- 2.5.2 Маршрутизаторы
- 2.5.3 Мосты
- 2.5.4 Концентраторы
- 2.5.5 Повторители
- 2.5.6 Конверторы
- 2.5.7 Сетевые адаптеры
- 3. Проектная часть
- 3.1 Общий план сети
- 3.2 Выбор технологии и топологии сети
- 3.3 Общая политика безопасности
- 3.3.1 Брандмауэр и его достоинства
- 3.3.2 Антивирусное программное обеспечение
- 3.4 Сетевое оборудование
- 3.4.1 Сетевые адаптеры
- 3.4.2 Коммутаторы
- 3.4.3 Маршрутизаторы и межсетевые экраны
- 3.4.4 Рабочие станции
- 3.3.5 Мониторы для рабочих станций
- 3.4.6 Серверы
- 3.4.7 Сетевой принтер
- 3.5 Выбор операционных систем
- 3.5.1 Серверная операционная система
- 3.5.2 Операционная система рабочих станций
- 3.6 Расчет стоимости компонентов сети
- Заключение
Введение
Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределённых вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах. Обмен информацией на больших расстояниях не может быть организован при помощи стандартных простых средств операционных систем (ОС) и прикладных программ, а требует организации принципиально новой информационной структуры - сети. Локальные сети называют также сетями масштаба предприятия, что соответствует дословному переводу термина «enterprise-wide networks», используемого в англоязычной литературе для обозначения этого типа сетей. Сети масштаба предприятия (корпоративные сети) объединяют большое количество компьютеров на всех территориях отдельного предприятия. Они могут быть сложно связанны и покрывать город, регион или даже континент. Число пользователей и компьютеров может измеряться тысячами, а число серверов -- сотнями, расстояние между сетями отдельных территорий может оказаться такими, что становиться необходимым использование глобальных связей. Для соединения удалённых локальных сетей и отдельных компьютеров в корпоративной сети применяются разнообразные телекоммуникационные средства, в том числе телефонные каналы, радиоканалы, спутниковая связь. Корпоративную сеть можно представить в виде «островков локальных сетей», плавающих в телекоммуникационной среде. Появление корпоративных сетей -- хорошая иллюстрация известного философского постулата о переходе количества в качество. При объединении отдельных сетей крупного предприятия, имеющего филиалы в разных городах и даже странах, в единую сеть многие количественные характеристики объединённой сети превосходят некоторый критический порог, за которым начинается новое качество. В этих условиях существующие методы и подходы к решению традиционных задач сетей меньших масштабов для корпоративных сетей оказались непригодными. На первый план вышли такие задачи и проблемы, которые в сетях рабочих групп, отделов и даже кампусов либо имели второстепенное значение, либо вообще не проявлялись. При переходе от более простого типа сетей к более сложному -- от сетей отдела к корпоративной сети -- сеть должна быть всё более надёжной и отказоустойчивой, при этом требования к её производительности также существенно возрастают.
Современные информационные технологии позволяют создавать информационно-вычислительные, способные быстро и безопасно передавать данные.
Любое предприятия при создании единой информационной сети получает ряд преимуществ таких как единое информационное пространство, возможность обработки потоков данных, возможность оперативного сбора информации и снижение затрат на связь между подразделениями фирмы. Но эти преимущества фирма получит только в случае тщательного проектирования информационной сети. Сеть должна отвечать требованиям производительности, надежности, безопасности, масштабируемости и расходов на ее установку и обслуживание. При успешном решении этих задач можно рассчитывать на эффективное функционирование внедренной сети с учетом предъявляемых требований.
1. Анализ проблемной области и постановка задач исследования
1.1 Постановка задачи
Целью курсовой работы является анализ и разработка вычислительной сети на основе технологий Fast и Gigabit Ethernet для Управления Пенсионного Фонда Российской Федерации в Бежецком районе с целью повышения эффективности функционирования.
Разрабатываемая система должна отвечать следующим требованиям:
· Обеспечение информационной безопасности
· Обработка и хранение информации
· Возможность масштабирования
· Обеспечение безопасного обмена информацией с УПФР в Твери
· Выход в Интернет
Для достижения поставленной цели, необходимо решить следующие задачи:
· проанализировать организационную структуру предприятия;
· исследовать информационные потоки и их объемы;
· определить топологию разрабатываемой сети и технологию метода доступа;
· определить необходимое техническое оборудование;
· выбрать сетевое ПО;
· выполнить расчет стоимости оборудования сети.
1.2 Требования, предъявляемые к сети
Требования, важные для пользователя:
· Критерии производительности:
ь время реакции,
ь пропускная способность
ь сложность оценки производительности сложной системы
· Основные факторы, влияющие на производительность транспортной подсистемы сети:
ь пропускная способность среды передачи,
ь размер пакета,
ь загруженность сети
· Надёжность - свойство системы выполнять свои функции в заданных условиях с заданным качеством:
ь готовность (availability)
ь отказоустойчивость (fault tolerance)
ь сохранность и непротиворечивость данных
· Безопасность:
ь защита данных от несанкционированного доступа
ь избирательный контроль и мандатный доступ
ь средства учета и наблюдения
ь шифровка сообщений
ь фильтрация пакетов
Это наиболее важные для пользователя характеристики транспортных услуг - возможность без потерь и перерывов в обслуживании (надёжность) передавать с заданной скоростью (производительность) защищённую от несанкционированного доступа и подмены информацию (безопасность).
Существует ряд характеристик сети, которые не интересуют пользователей.
Требования, важные для разработчика:
o Расширяемость (extensibility) - возможность сравнительно легкого добавления отдельных элементов сети и замены их более мощными.
o Масштабируемость (scalability) - возможность системы одинаково хорошо функционировать как на небольших, так и на очень больших конфигурациях.
o Совместимость (compatibility) - способность системы включать в себя разнородное программное и аппаратное обеспечение.
o Прозрачность (transparency) - способность системы скрывать от пользователя механизмы разделения ресурсов.
o Управляемость - возможность централизованно контролировать состояние основных элементов сети.
2. Обзор технологий КС для реализации компьютерной сети
2.1 Сетевые топологии
Набор правил для физического соединения узлов сети и организации взаимодействия сетевых устройств называется сетевой топологией.
Конфигурация физических связей определяется электрическими соединениями узлов сети между собой и может отличаться от конфигурации логических связей. Логические связи представляют сбой маршруты передачи данных между узлами сети и образуются путем соответствующей настройки коммуникационного оборудования.
Топологии сетей можно разделить на две основные группы: полносвязные и неполносвязные (рисунок 1).
Рисунок 1. Топологии сетей
2.1.1 Сети с полносвязной топологией
В сети с полносвязной топологией каждый компьютер сети напрямую связан с каждым компьютером этой сети (рис. 2). Примером такой сети является сеть ячеистой (сотовой) топологии.
Рисунок 2. Сеть сотовой топологии
Преимущества сотовых сетей:
· Высокая надежность, обусловленная избыточностью физических связей.
· простота диагностики.
Недостатки сотовых сетей:
· Необходимость наличия у каждого компьютера сети большого числа коммуникационных портов для соединения со всеми другими компьютерами.
· Необходимость выделения отдельной электрической линии связи для каждой пары компьютеров.
· Вышеперечисленное обуславливает высокую стоимость сотовой сети.
· Сложность инсталляции и реконфигурации добавления или удаления новых узлов).
Большинство сетевых топологий имеет неполносвязную структуру. К основным видам неполносвязных топологий можно отнести: шину, звезду, кольцо и смешанную топологию.
2.1.2 Сети шинной топологии
В сетях с шинной топологией каждый компьютер сети подключен к одному общему кабелю (рисунок 3).
Рисунок 3. Сеть с шинной топологией
В шинной топологии отсутствуют активные схемы передачи сигнала от одного компьютера к другому. Когда одна из машин посылает сигнал, он свободно путешествует по всей длине кабеля. Достигнув конца кабеля, сигнал отражается и идет в обратном направлении (зацикливание). Для предотвращения зацикливания сигнала в сетях с шинной топологией обязательно использование терминатора на обоих концах кабеля. Сигнал, посланный одной машиной, получают все компьютеры, подключенные к шине. Принимает же его только машина, адрес которой совпал с адресом получателя, закодированном в сообщении. В каждый момент времени только один из компьютеров может передавать сигнал, остальные должны ждать своей очереди. Соответственно, пропускная способность сетей с шинной топологией невелика и ограничивается не только характеристиками кабеля, но и логической структурой сети.
Достоинства шинной топологии:
· Низкая стоимость.
· Простота расширения (простота подключения новых узлов и объединения двух подсетей с помощью повторителя).
Недостатки шинной топологии:
· Низкая производительность.
· Низкая надежность (частые дефекты кабелей и разъемов).
· Сложность диагностики при разрыве кабеля или отказе разъема.
· Любой дефект кабеля или разъема приводит к неработоспособности всей сети.
Из всего вышесказанного можно заключить, что шинная топология может применяться при небольшом числе узлов в сети и невысокой степени взаимодействия между ними. Вместе с тем, такая сеть отличается низкой стоимостью.
2.1.3 Звездообразная топология
В сетях звездообразной топологии каждый узел подключается
отдельным кабелем к общему устройству, называемому концентратором (хабом) (рисунок 4). Концентратор передает данные от одного компьютера другому или всем остальным компьютерам сети.
Рисунок 4. Сеть звездообразной топологии
Топология звезда позволяет использовать для подключения компьютеров различные типы кабелей. Наличие концентратора чаще всего делает возможным использование нескольких типов кабелей одновременно.
Достоинства звездообразной топологии:
· Более высокая пропускная способность по сравнению с шинной топологией.
· Выход из строя одного узла или нескольких узлов не влияет на работоспособность остальной сети.
· Легкость включения в сеть новых узлов.
· Возможность использования вместо хаба коммутатора (для фильтрации трафика, а также для мониторинга сети).
· Возможность использования в одной сети нескольких типов кабелей.
· Легкость создания подсетей путем приобретения дополнительного концентратора, подсоединения к нему машин и соединения концентраторов между собой.
Недостатки звездообразной топологии:
· Ограниченная возможность увеличения числа узлов сети (ограничивается количеством портов концентратора).
· Зависимость работоспособности сети от состояния концентратора.
· Высокий расход кабеля (отдельный кабель для подключения каждого компьютера).
· Более высокая стоимость по сравнению с шинной топологией (затраты на хаб и кабель).
Таким образом, сети звездообразной топологии целесообразно прокладывать в зданиях (помещениях), в которых от каждого компьютера можно проложить кабель до концентратора. При планировании такой сети особое внимание следует уделить выбору концентратора.
2.1.4 Кольцевая топология
В сетях с кольцевой топологией (рисунок 5) каждый компьютер
подключается к общему сетевому кабельному кольцу, по которому передаются данные (в одном направлении).
Рисунок 5. Сеть с кольцевой топологией
Каждый компьютер, получив данные, сверяет адрес получателя с собственным и в случае совпадения копирует данные в свой внутренний буфер. Сами данные при этом продолжают движение по кольцу и возвращаются к отправителю. Если, получив данные, компьютер обнаружил, что его адрес не совпадает с адресом получателя, он ретранслирует данные следующему компьютеру в кольце.
В качестве среды передачи данных для построения сети кольцевой топологии чаще всего используют экранированную или неэкранированную «витую пару», а также оптоволоконный кабель.
Для решения проблемы коллизий (когда два или более компьютеров одновременно пытаются передать данные) в сетях с кольцевой топологией применяется метод маркерного доступа. Специальное короткое сообщение-маркер постоянно циркулирует по кольцу. Прежде чем передать данные, компьютер должен дождаться маркера, прикрепить данные и служебную информацию к нему и передать это сообщение в сеть. В быстрых сетях по кольцу циркулируют несколько маркеров.
Существуют две наиболее известных технологии сетей, основанные на кольцевой топологии - технология Token Ring и технология FDDI.
Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения сети.
В технологии Token Ring реализован метод маркерного доступа, описанный выше.В технологии FDDI применяется два кольца. При нормальном состоянии сети функционирует только одно из колец, второе позволяет сохранить работоспособность сети в случае отказа узла. Такая сеть обладает высоким быстродействием и чрезвычайной отказоустойчивостью.
Достоинства кольцевой топологии:
· При передачи данных не возникает потери сигнала (благодаря ретрансляции).
· Не возникает коллизий (благодаря маркерному доступу).
· Высокая отказоустойчивость (в технологии FDDI).
Недостатки кольцевой топологии:
· Отказ одного узла может привести к неработоспособности всей сети (в технологии Token Ring).
· Добавление/удаление узла вынуждает разрывать сеть.
Таким образом, кольцевая топология целесообразна для построения надежной или/и высокоскоростной сети, существенное наращивание которой не планируется или маловероятно.
2.1.5 Смешанная топология
Появление смешанных топологий обусловлено, как правило, необходимостью наращивать и модернизировать сеть. Часто суммарные затраты на постепенную модернизацию оказываются существенно большими, а результаты меньшими, чем при тратах на глобальную замену морально устаревших сетей.
Сети смешанной топологии (рисунок 6) обладают достоинствами и недостатками, характерными для составляющих их топологий.
Рисунок 6. Сеть со смешанной топологией
2.2 Среда передачи данных
2.2.1 Физическая среда передачи данных
Может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
В зависимости от среды передачи данных линии связи разделяются на:
· проводные (воздушные);
· кабельные (медные и волоконно-оптические);
· радиоканалы наземной и спутниковой связи.
2.2.2 Проводные (воздушные) линии связи представляют собой провода без каких-либо, изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.
2.2.3 Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.
Скрученная пара проводов называется витой парой (twisted pair). Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded TwistedPair, UTP), когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения -- для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (opticalfiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля -- он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.
2.2.4 Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн, называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн, для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.
В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.
2.3 Кабельные системы
Кабель (cable), используемый для построения компьютерных сетей, представляет собой сложную конструкцию, состоящую, в общем случае, из проводников, изолирующих и экранирующих слоев. В современных сетях используются три типа кабеля:
- коаксиальный кабель (coaxial cable);
- «витая пара» (twisted pair);
- оптоволоконный кабель (fiber optic).
2.3.1 Коаксиальный кабель
Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа (рисунок 7) состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля -- «Толстый коаксиальный кабель» (Thicknet) и «Тонкий коаксиальный кабель» (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.
Рисунок 7. Устройство коаксиального кабеля
2.3.2 Витая Пара
Кабель типа «витая пара» (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время (рисунок 8). Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса -- «экранированная витая пара» («Shielded twisted pair») и «неэкранированная витая пара» («Unshielded twisted pair»). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе «витой пары» в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с - 10 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).
Рисунок 8. Устройство кабеля типа «витая пара»
2.3.3 Оптоволоконный кабель
Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой (рисунок 9). Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.
Рисунок 9. Устройство оптоволоконного кабеля.
2.4 Сетевые технологии
топология компьютерный сеть ethernet
2.4.1 Технология Ethernet
Общее количество сетей, работающих по протоколу Ethernet в настоящее время, оценивается в 5 миллионов, а количество компьютеров с установленными сетевыми адаптерами Ethernet - в 50 миллионов.
Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1970г. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт версии II построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet DIX или Ethernet II.
На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, в нем различаются уровни MAC(Media Access Control - уровень управления доступом к среде) и LLC (Logical Link Control - уровень логической передачи данных), в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.
Для передачи информации по кабелю для всех вариантов физического уровня технологии Ethernet используется пропускная способность 10 Мбит/с.
Метод доступа CSMA/CD.
В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий.
Этот метод применяется исключительно в сетях с логической общей шиной. Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа.
Этапы доступа к среде.
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.
Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Если среда свободна, то узел имеет право начать передачу кадра.
Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.
После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.
Возникновение коллизии.
При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкиваются на общем кабеле, и происходит искажение информации - методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.
Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра.
Спецификация физической среды Ethernet.
Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0,5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных. Метод доступа CSMA/CD и все временные параметры остаются одними и теми же для любой спецификации физической среды технологии Ethernet 10Мбит/с.
Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных.
- 10Base-5 - коаксиальный кабель диаметром 0,5 дюйма, называемый «толстым» коаксиалом. Максимальная длина сегмента - 500 метров (без повторителей)
- 10Base-2 - коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиалом. Максимальная длина сегмента - 185 метров (без повторителей)
- 10Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию на основе концентратора. Расстояние между концентратором и конечным узлом - не более 100 м.
- 10Base-F - волоконно-оптический кабель. Топология аналогична топологии стандарта 10Base-T. Имеется несколько вариантов этой спецификации - FOIRL (расстояние до 1000 м),10Base-FL (расстояние до 2000 м),10Base-FB (расстояние до 2000 м).
- Параметры спецификаций физического уровня для стандарта Ethernet представлены в таблице 1.
Таблица 1. Параметры спецификаций физического уровня для стандарта Ethernet
10Base-5 |
10Base-2 |
10Base-T |
10Base-F |
||
Кабель |
Толстый коаксиальный кабель RG-8 или RG-11 |
Тонкий коаксиальный кабель RG-58 |
Неэкранированная витая пара категории 3,4,5 |
Многомодовый волоконно-оптический кабель |
|
Максимальная длина сегмента, м |
500 |
185 |
100 |
2000 |
|
Максимальное расстояние между узлами сети (при использовании повторителей), м |
2500 |
925 |
500 |
2500 м (в 10Base-FB 2750 м) |
|
Максимальное число станций в сегменте |
100 |
30 |
1024 |
1024 |
|
Максимальное число повторителей между любыми станциями сети |
4 |
4 |
4 |
4 (5 для 10Base-FB) |
2.4.2 Технология Fast Ethernet
10-Мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако уже в начале 1996 года начала ощущаться его недостаточная пропускная способность. Игры стали использовать трехмерные ускорители, начал расти размер, занимаемый ими на жестком диске, появились новые мультимедийные возможности (передача голоса в реальном времени). Теперь же у мощных клиентских станций с процессорами Pentium4, Celeron или AthlonXP, с мощными видеоадаптерами сегменты 10-Мегабитного Ethernet'а стали перегруженными, реакция серверов в них значительно упала, а частота возникновения коллизий существенно возросла, еще более снижая пропускную способность.
Как упоминалось выше, игры предъявляют высокие требования к пропускной способности каналов между клиентами сети и серверами. Это объясняется разными причинами:
- высокая производительность клиентских компьютеров
- большое число одновременно подключенных пользователей в сети
- использование играми мультимедийной информацией, которая хранится в файлах очень больших размеров
Следовательно, появилась потребность в экономичном решении, предоставляющем нужную пропускную способность во всех перечисленных случаях.
Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet. Ее основными достоинствами являются:
- увеличение пропускной способности сегментов сети до 100 Мб/c;
- сохранение метода случайного доступа Ethernet;
- сохранение звездообразной топологии сетей и поддержка традиционных сред передачи данных - витой пары и оптоволоконного кабеля.
Указанные свойства позволяют осуществлять постепенный переход от сетей 10Base-T - наиболее популярного на сегодняшний день варианта Ethernet - к скоростным сетям, сохраняющим значительную преемственность с хорошо знакомой технологией: Fast Ethernet не требует коренного переобучения персонала и замены оборудования во всех узлах сети. Официальный стандарт 100Base-T (802.3u) установил три различных спецификации для физического уровня (в терминах семиуровневой модели OSI) для поддержки следующих типов кабельных систем:
- 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5, или экранированной витой паре STP Type 1;
- 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;
- 100Base-FX для многомодового оптоволоконного кабеля.
Ethernet был и остается наиболее эффективной технологией по отношению цена/производительность среди низкоскоростных (4 - 20 Мб/с) технологий. Это свойство относится теперь и к Fast Ethernet, но применительно к технологиям со скоростью 100 Мб/c. Однако, Fast Ethernet кроме положительных свойств, унаследовал и недостатки технологии Ethernet - большие задержки доступа к среде при коэффициенте использования среды выше 30-40%, являющиеся следствием применения алгоритма доступа CSMA/CD, небольшие расстояния между узлами даже при использования оптоволокна - следствие метода обнаружения коллизий, отсутствие определения резервных связей в стандарте и отсутствие поддержки приоритетного трафика приложений реального времени.
2.4.3 Gigabit Ethernet
Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, работающие также на скорости 100 Мбит/с - магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей. В 1995 году более высокий уровень скорости могли предоставить только коммутаторы АТМ, а при отсутствии в то время удобных средств миграции этой технологии в локальные сети (хотя спецификация LAN Emulation - LANE была принята в начале 1995 года, практическая ее реализация была впереди) внедрять их в локальную сеть почти никто не решался. Кроме того, технология АТМ отличалась очень высоким уровнем стоимости.Основная идея разработчиков стандарта Gigabit Ethernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с.
Так как при разработке новой технологии естественно ожидались некоторые технические новинки, идущих в общем русле развития сетевых технологий, то важно отметить, что Gigabit Ethernet, так же как и его менее скоростные собратья, на уровне протокола не поддерживается:
· качественное обслуживание;
· избыточные связи.
Эти свойства считаются весьма перспективными и полезными в современных сетях, а особенно в сетях ближайшего будущего.
Если магистраль сети будет работать со скоростью в 20 000 раз превышающей среднюю скорость сетевой активности клиентского компьютера и в 100 раз превышающей среднюю сетевую активность сервера с сетевым адаптером 100 Мбит/с, то о задержках пакетах на магистрали во многих случаях можно не заботиться вообще. При небольшом коэффициенте загрузки магистрали 1000 Мбит/с очереди в коммутаторах Gigabit Ethernet будут небольшими, а время буферизации и коммутации на такой скорости составляет единицы и даже доли микросекунд.
Если же магистраль загрузится на достаточную величину, то приоритет чувствительный к задержкам или требовательный к средней скорости трафика, можно предоставить с помощью техники приоритетов в коммутаторах.
Главная идея разработчиков технологии Gigabit Ethernet состоит в том, что существует весьма много сетей, в которых высокая скорость магистрали и возможность назначения пакетам приоритетов в коммутаторах будут вполне достаточны для обеспечения качества транспортного обслуживания всех клиентов сети. И только в тех редких случаях, когда и магистраль достаточно загружена, и требования к качеству обслуживания очень жесткие, нужно применять технологию АТМ, которая действительно за счет высокой технической сложности дает гарантии качества обслуживания для всех основных видов трафика.
Избыточные связи и тестирование оборудования не будут поддерживаться технологией Gigabit Ethernet из-за того, что с этими задачами хорошо справляются протоколы более высоких уровней, например Spanning Tree, протоколы маршрутизации и т. п. Поэтому разработчики технологии решили, что нижний уровень просто должен быстро передавать данные, а более сложные и более редко встречающиеся задачи должны передаваться верхним уровням.
2.4.4 Token Ring
Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в, станцию - отправитель. В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например, может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а устранение выполняется вручную обслуживающим персоналом.
Для контроля сети одна из станций выполняет роль так называемого активного монитора. Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует -специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора
Топология сети больше похожа на топологию звезды, чем на топологию кольца. Вместо того чтобы, соединяясь друг с другом, образовывать кольцо, рабочие станции Token-Ring подключаются радиально к концентратору типа 8228 производства IBM. Концентраторов может быть несколько, и в этом случае концентраторы действительно объединяются в кольцо через специальные разъемы.
Однако если используется один концентратор, то объединяющие разъемы можно не закольцовывать.
Скорость передачи данных в сети Token-Ring может достигать 16 Мбит в секунду, однако стоимость сетевого оборудования выше, чем для сети Ethernet. Кроме того, существуют и другие ограничения.
Маркерный метод доступа заключается в том, что каждой из станции поочередно дается право на передачу путем пересылки ей специального служебного пакета-маркера. Это может происходить централизованно (для чего требуется топология типа «звезда» и активное центральное устройства) или децентрализовано (станции просто передают маркер друг другу). Наиболее известные стандарты, использующие доступ с передачей маркера - это ARC net, Token Ring, FDDI. Первый предусматривает различные виды топологий («звезда», шина, смешанная) и передачу маркера от станции: станция получает маркер, в случае готовности передает имеющиеся данные и вслед за ними маркер для следующей станции. В сетях Token Ring и FDDI используется кольцевая топология и передача от станции к станции. Они также используют особые методы инициализации и восстановления целостности. Важно отметить, что в ЛВС с передачей маркера функционирование сети организовано так, что коллизии возникнуть не могут.
Рисунок 11. Принцип маркерного доступа
На рисунке 11 описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце, состоящем из 6 станций, от станции 1 к станции 3. После прохождения станции назначения 3 в пакете А устанавливаются два признака - признак распознавания адреса и признак копирования пакета в буфер (что на рисунке отмечено точками внутри пакета). После возвращения пакета в станцию 1 отправитель распознает свой пакет по адресу источника и удаляет пакет из кольца.
2.4.5 Сравнение технологий
В следующей таблице представлены результаты сравнения технологии FDDI, Ethernet (Fast Ethernet) и Тоken ring.
Таблица сравнения технологий
Характеристика |
Token Ring |
Ethernet |
|
Битовая скорость |
16Мб/с |
10/100 Мб/с |
|
Топология |
звезда/кольцо |
Шина/звезда |
|
Метод доступа |
Приоритетный оборот токена |
CSMA/CD |
|
Среда передачи |
Экранированная неэкранированная витая пара, оптоволокно |
Толстый и тонкий коаксиал, неэкранированная и экранированнаявитая пара, оптоволокно |
|
Максимальная длина сети(без мостов) |
1000м |
2500м |
|
Максимальное Расстояние |
100м |
2500м |
2.4.6 VPN
VPN, или Virtual Private Network, что в переводе означает Виртуальная Частная Сеть - это криптосистема, позволяющая защитить данные при передаче их по незащищенной сети, такой, как Интернет. Цель VPN - прозрачный доступ к ресурсам сети, где пользователь может делать все то, что он делает обычно независимо от того, насколько он удален. По этой причине VPN приобрел популярность среди дистанционных работников и офисов, которые нуждаются в совместном использовании ресурсов территориально разделенных сетей.
VPN-туннели.
VPN соединение всегда состоит из канала типа точка-точка, также известного под названием туннель. Туннель создается в незащищенной сети, в качестве которой чаще всего выступает Интернет. Соединение точка-точка подразумевает, что оно всегда устанавливается между двумя компьютерами, которые называются узлами или peers. Каждый peer отвечает за шифрование данных до того, как они попадут в туннель и расшифровку этих данных после того, как они туннель покинут.
Хотя VPN-туннель всегда устанавливается между двумя точками, каждый peer может устанавливать дополнительные туннели с другими узлами. Для примера, когда трем удаленным станциям необходимо связаться с одним и тем же офисом, будет создано три отдельных VPN-туннеля к этому офису. Для всех туннелей peer на стороне офиса может быть одним и тем же. Это возможно благодаря тому, что узел может шифровать и расшифровывать данные от имени всей сети, как это показано на рисунке 1.
Рисунок 1. VPN-шлюз к сети.
В этом случае VPN-узел называется VPN-шлюзом, а сеть за ним - доменом шифрования (encryption domain). Использование шлюзов удобно по нескольким причинам. Во-первых, все пользователи должны пройти через одно устройство, которое облегчает задачу управления политикой безопасности и контроля входящего и исходящего трафика сети. Во-вторых, персональные туннели к каждой рабочей станции, к которой пользователю надо получить доступ, очень быстро станут неуправляемыми (так как туннель - это канал типа точка-точка). При наличии шлюза, пользователь устанавливает соединение с ним, после чего пользователю открывается доступ к сети (домену шифрования).
Интересно отметить, что внутри домена шифрования самого шифрования не происходит. Причина в том, что эта часть сети считается безопасной и находящейся под непосредственным контролем в противоположность Интернет. Это справедливо и при соединении офисов с помощью VPN-шлюзов. Таким образом гарантируется шифрование только той информации, которая передается по небезопасному каналу между офисами. Рисунок показывает VPN, соединяющую два офиса.
Рисунок 2. Защищенная сеть на основе незащищенной сети.
Сеть A считается доменом шифрования VPN-шлюза A, а сеть B - доменом шифрования VPN-шлюза B, соответственно. Когда пользователь сети A изъявляет желание отправить данные в сеть B, VPN шлюз A зашифрует их и отошлет через VPN-туннель. VPN шлюз B расшифрует информацию и передаст получателю в сети B. Всякий раз, когда соединение сетей обслуживают два VPN-шлюза, они используют режим туннеля. Это означает, что шифруется весь пакет IP, после чего к нему добавляется новый IP-заголовок. Новый заголовок содержит IP-адреса двух VPN-шлюзов, которые и увидит пакетный сниффер при перехвате. Невозможно определить компьютер-источник в первом домене шифрования и компьютер-получатель во втором домене.
Независимо от используемого ПО, все VPN работают по следующим принципам:
Ш Каждый из узлов идентифицирует друг друга перед созданием туннеля, чтобы удостовериться, что шифрованные данные будут отправлены на нужный узел.
Ш Оба узла требуют заранее настроенной политики, указывающей, какие протоколы могут использоваться для шифрования и обеспечения целостности данных.
Ш Узлы сверяют политики, чтобы договориться об используемых алгоритмах; если это не получается, то туннель не устанавливается.
Ш Как только достигнуто соглашение по алгоритмам, создается ключ, который будет использован в симметричном алгоритме для шифрования/расшифровки данных.
2.5 Сетевое оборудование
2.5.1 Коммутаторы
Сетевой коммутатор или свитч - устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.
Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.
Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном (втором) и сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например Layer 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство -- стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).
2.5.2 Маршрутизаторы
Рисунок 12. Маршрутизатор
Маршрутизамтор или роутер - сетевое устройство, на основании информации о топологии сети и определённых правил, принимающее решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети (рисунок 12). Работает на более высоком уровне, нежели коммутатор и сетевой мост.
Обычно маршрутизатор использует адрес получателя, указанный в пакетах данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.
Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа,шифрование/дешифрование передаваемых данных и т.д.
Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы xDSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.
2.5.3 Мосты
Рисунок 13. Мост
Мост добавляет к сетевой связи некоторый уровень «интеллектуальности». Мост можно рассматривать как некий «сортировщик почты», который анализирует адреса пакетов и направляет их в соответствующие сетевые сегменты (рисунок 13). Каждый сегмент локальной сети может иметь различный тип сети (Ethernet, Token Ring, Arcnet и др.). Встроенные функции передачи через мост распределяют сетевой трафик по различным сегментам локальной сети.
Каждый сегмент локальной сети связывается мостом со своим сетевым адресом.
2.5.4 Концентраторы
Рисунок 14. Концентратор
Сетевой концентратор или Хаб -- сетевое устройство, предназначенное для объединения нескольких устройств Ethernet в общий сегмент сети (рисунок 14). Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна.
Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.
В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы -- устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизии.
2.5.5 Повторители
Рисунок 15. Повторитель
Повторитель предназначен для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Бывают однопортовые повторители и многопортовые. В терминах модели OSI работает на физическом уровне. Одной из первых задач, которая стоит перед любой технологией транспортировки данных, является возможность их передачи на максимально большое расстояние (рисунок 15).
Первоначально в Ethernet использовался коаксиальный кабель с топологией «шина», и нужно было соединять между собой всего несколько протяжённых сегментов. Для этого обычно использовались повторители (repeater), имевшие два порта. Несколько позже появились многопортовые устройства, называемые концентраторами (concentrator). Их физический смысл был точно такой же, но восстановленный сигнал транслировался на все активные порты, кроме того, с которого пришёл сигнал.
С появлением протокола 10baseT (витой пары) для избежания терминологической путаницы многопортовые повторители для витой пары стали называться сетевыми концентраторами (хабами), а коаксиальные - повторителями (репитерами), по крайней мере, в русскоязычной литературе. Эти названия хорошо прижились, и используются в настоящее время очень широко.
2.5.6 Конверторы
Рисунок 16. Конвертор
Конверторы служат для соединения сетей Ethernet с различным типом кабеля, но одинаковой скоростью передачи, например для подключения сегмента 10Base2 к концентратору 10Base-T. считается за один повторитель (рисунок 16).
2.5.7 Сетевые адаптеры
Рисунок 17. Сетевой адаптер
Сетевая плата (также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер) -- периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети (рисунок 17).
...Подобные документы
Обзор и анализ возможных технологий построения сети: Ethernet, Token Ring, FDDI, Fast Ethernet. Основные виды кабелей и разъемов. Выбор архитектуры, топологии ЛВС; среды передачи данных; сетевого оборудования. Расчет пропускной способности локальной сети.
дипломная работа [476,4 K], добавлен 15.06.2015Два типа локальных сетей: одноранговые и сети с выделенным сервером, их преимущества и недостатки. Выбор топологии сети. Спецификация физической среды ETHERNET. Расчет корректности сети - величин PDV и PVV и оценка их с предельно допустимыми в Ethernet.
курсовая работа [569,2 K], добавлен 01.09.2014Структура ОАО "Ростовского-на-Дону электровозоремонтного завода". Выбор топологии для проектируемой локальной вычислительной сети на основе Fast Ethernet. Рассмотрение базовой модели взаимодействия открытых систем OSI; описание технологий Ethernet и ADSL.
контрольная работа [276,4 K], добавлен 26.01.2013Понятие локальной вычислительной сети. Активное и пассивное сетевое оборудование. Топологии "Шина", "Кольцо", "Звезда". Структурированная кабельная система. Математическая модель компьютерной сети. Основные стандарты реализации Ethernet и Fast Ethernet.
курсовая работа [441,2 K], добавлен 21.12.2014Разработка сети на 17 компьютеров стандарта Fast Ethernet, расчет ее стоимости. Выбор оптимальной топологии сети и расчет минимальной суммарной длины соединительного кабеля. План расположения строений и размещения узлов локальной вычислительной сети.
реферат [836,0 K], добавлен 18.09.2010Понятия и назначение одноранговой и двухранговой вычислительных сетей. Изучение сетевой технологии IEEE802.3/Ethernet. Выбор топологии локальной сети, рангового типа и протокола с целью проектирования вычислительной сети для предприятия ОАО "ГКНП".
курсовая работа [432,9 K], добавлен 14.10.2013Способы связи разрозненных компьютеров в сеть. Основные принципы организации локальной вычислительной сети (ЛВС). Разработка и проектирование локальной вычислительной сети на предприятии. Описание выбранной топологии, технологии, стандарта и оборудования.
дипломная работа [2,3 M], добавлен 19.06.2013Выбор локальной вычислительной сети среди одноранговых и сетей на основе сервера. Понятие топологии сети и базовые топологии (звезда, общая шина, кольцо). Сетевые архитектуры и протоколы, защита информации, антивирусные системы, сетевое оборудование.
курсовая работа [3,4 M], добавлен 15.07.2012Сравнительный анализ различных топологий сетей. Исследование элементов структурированной кабельной системы. Методы доступа и форматы кадров технологии Ethernet. Локальные сети на основе разделяемой среды: технология TokenRing, FDDI, Fast Ethernet.
курсовая работа [1,2 M], добавлен 19.12.2014Выбор и обоснование технического обеспечения для разрабатываемой локальной сети в школе с использованием технологии Ethernet и топологией "звезда". Перечень активного и пассивного технического оборудования, необходимого для локальной вычислительной сети.
курсовая работа [190,4 K], добавлен 15.11.2012- Выбор конфигурации сети малого предприятия. Расчет стоимости проекта. Мобильные операционные системы
Разработка проекта компьютерной сети на основе технологии Fast Ethernet. Выбор топологии сети, кабельной системы, коммутатора, платы сетевого адаптера, типа сервера и его аппаратного обеспечения. Характеристика существующих мобильных операционных систем.
курсовая работа [381,4 K], добавлен 06.08.2013 Классификация локальных сетей по топологии. Сетевая архитектура Ethernet. Функциональная схема локальной вычислительной сети. Конфигурация сетевого оборудования: количество серверов, концентраторов, сетевых принтеров. Типовые модели использования доменов.
дипломная работа [447,5 K], добавлен 08.05.2011Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.
курсовая работа [861,6 K], добавлен 27.02.2013Проектирование компьютерной локальной сети по технологии Ethernet 10Base-T, 1000Base-LX , выбор топологии и необходимого аппаратное и программное обеспечение. Расчет затрат на сетевое оборудование, проектирование и монтаж локальной сети организации.
курсовая работа [73,5 K], добавлен 09.07.2014Разработка локальной вычислительной сети для Тверского государственного университета. Топологии и технологии для реализации компьютерных сетей. Составление конфигурации сетевого оборудования. Выбор сетевых устройств для компьютерной сети. Структура сети.
курсовая работа [3,0 M], добавлен 23.06.2012Организационная структура предприятия "ЛЕПСЕ", состав сетевых приложений. Выбор конфигурации сети Fast Ethernet, применение сетевой топологии "звезда". Структура кабельной системы сети организации. Проверка работоспособности проектируемой сети.
контрольная работа [64,3 K], добавлен 10.05.2011Анализ технологий, применяемых для построения современных ЛВС. Моделирование функционирования локальной вычислительной сети по технологии Fast Ethernet. Разработка клиент-серверного приложения и программного обеспечения, работающего в сети APMов.
курсовая работа [2,0 M], добавлен 23.11.2011Характеристика предприятия ООО "Промагро". Обоснование необходимости внедрения локально вычислительной сети в организации. Выбор топологии, планирование логической и физической структуры сети. Выбор операционной системы и сетевого аппаратного обеспечения.
курсовая работа [595,6 K], добавлен 12.09.2015Особенности выбора сетевой операционной системы, виды топологии сети и методов доступа. Характеристика кольцевой, шинной топологии и типа "звезда". Сущность технологии Fast Ethernet. Виды сетевого оборудования. Технология коллективного доступа CSMA/CA.
дипломная работа [1,2 M], добавлен 07.02.2011Описание структурированной кабельной системы, сетевого оборудования и среды передачи данных. Особенности технологии Ethernet. Выбор топологии сети и способа управления ею. Проектирование проводной и беспроводной локальных сетей. Конфигурирование сервера.
аттестационная работа [2,1 M], добавлен 25.12.2012