Системы организации удаленного обмена файлами с использованием протокола

Принципы разработки системы организации удаленного обмена файлами, организация удаленного обмена файлами с использованием протокола. Протоколы, используемые в системах организации обмена файлами. Компоненты систем контроля и управления и их назначение.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 28.03.2016
Размер файла 835,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

Актуальность темы исследования.

В современных условиях, когда компьютер стал непременным атрибутом многих профессий, стали создаваться программные комплексы, автоматизирующие как частично, так и полностью деятельность человека. Конструируемый проект не носил в себе цели автоматизировать все моменты образовательной деятельности. Первоначально необходимо было создать оболочку (среду), которая включала в себя комплекс программного обеспечения, где человек мог удобно получать инструменты для работы с информацией. Далее был произведен анализ деятельности различных структур, который показал, что необходимо автоматизировать процесс работы любой области. И любая область для удобства и простоты пользования а также для экономии средств и времени предпочитает применять системы с организованным процессом удаленной передачей файлов, а в частности с использованием протокола.

Цель исследования - разработка системы организации удаленного обмена файлами с использованием протокола.

Для достижения поставленной цели были решены следующие задачи исследования:

-исследованы теоретические принципы разработки системы организации удаленного обмена файлами.

-произведена разработка системы организации удаленного обмена файлами с использованием протокола.

-произведен расчет экономической эффективности проекта.

-рассмотрена охрана труда и безопасность жизнедеятельности.

Объектом исследования - информационные системы обмена файлами.

Предмет исследования - система организации удаленного обмена файлами.

Степень изученности проблемы. Теоретические основы разработки программных обеспечений отображены в трудах: А.Я. Архангельский [1], М.Р. Когловский [10], А.В. Симонович [11], В.В. Бойко [13].

Методы исследования: всеобщий диалектический метод, сравнительный, аналитический, исторический и логические методы, а также системно-структурный, системно-функциональный методы и метод обобщения.

Научная новизна, практическая значимость исследования заключается в том, что будет реализована возможность организации удаленного обмена файлами с использованием протоколов. Один администратор, сможет распространить софт одним кликом мыши на десятки тысяч пользовательских машин. Программный комплекс будет содержать в себе характерные для системы механизмы отображения и управления данными с возможностью управления элементами системы. Система будет кроссплатформенной и получит возможность использования на популярных компьютерных и мобильных устройствах.

Практической базой написания дипломной работы стали современные программные обеспечения и технологии организации удаленный обмен данными.

Структура работы: состоит из введения, четырех глав, заключения списка использованной литературы и приложение .

Во введении раскрыты актуальность, цели, задачи, предмет, метод исследования, научная новизна и структура работы;

В первой главе теоретические принципы разработки системы организации удаленного обмена файлами;

Во второй главе произведена разработка системы организации удаленного обмена файлами с использованием протокола;

В третьей главе произведен расчет экономической эффективности проекта.

В четвертой главе рассмотрена охрана труда и безопасность жизнедеятельности.

Результаты исследования обобщены в заключении.

1. ТЕОРЕТИЧЕСКИЕ ПРИНЦИПЫ РАЗРАБОТКИ СИСТЕМЫ ОРГАНИЗАЦИИ УДАЛЕННОГО ОБМЕНА ФАЙЛАМИ

1.1 Принцип организации удаленного обмена файлами

Любую программу удаленного администрирования, ориентированную на работу в локальной сети, можно попытаться использовать для реализации удаленного доступа к ПК через Интернет. К примеру, для организации удаленного доступа к компьютеру через Интернет можно попытаться воспользоваться стандартными средствами и программами, такими как утилита Remote Desktop Connection, входящая в состав операционной системы Windows XP. Однако на практике это не даст должного результата. Все дело в том, что подобные утилиты ориентированы на создание соединения между двумя компьютерами с известными IP-адресами. В локальной сети это не вызывает проблем, однако если нужно получить удаленный доступ к компьютеру через Интернет, то не все так просто. Проблема заключается в том, что компьютеры пользователей, находящиеся в локальных сетях, не имеют внешнего (публичного) IP-адреса. Действительно, компьютеры в составе локальной корпоративной сети с выходом в Интернет, как правило, находятся за интернет- шлюзом с интегрированным NAT-устройством и со стороны внешней сети (Интернета) имеют один IP-адрес, который является IP-адресом самого интернет- шлюза. Внутри локальной сети компьютерам присваиваются адреса из зарезервированного для частного использования диапазона IP-адресов. Частное адресное пространство регламентируется документом RFC 1918. К таким адресам относятся следующие IP-диапазоны: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255.

Для того чтобы понять, почему установление соединения между компьютером локальной сети, защищенной маршрутизатором, и компьютером в Интернете (с внешним IP-адресом) или с компьютерами из разных локальных сетей, защищенных маршрутизаторами, может вызывать проблемы, необходимо ознакомиться с особенностями функционирования протокола NAT.

Прежде всего рассмотрим, как происходит сетевое соединение между двумя ПК.

Когда один компьютер сети устанавливает соединение с другим компьютером, открывается сокет, определяемый IP-адресом источника, портом источника, IP-адресом назначения, портом назначения и сетевым протоколом. Формат IP-пакета предусматривает двухбайтовое поле для номеров портов. Это позволяет определить 65 535 портов, которые играют роль своеобразных каналов связи. Из 65 535 портов первые 1023 зарезервированы для хорошо известных серверных сервисов, таких как web, FTP, Telnet и т.д. Все остальные порты могут применяться для любых других целей.

Если, к примеру, один сетевой компьютер обращается к FTP-серверу (порт 21), то при открытии сокета операционная система присваивает сессии любой порт выше 1023. Например, это может быть порт 2153. Тогда IP-пакет, отправляемый со стороны ПК к FTP-серверу, будет содержать IP-адрес отправителя, порт отправителя (2153), IP-адрес получателя и порт назначения (21). IP-адрес и порт отправителя будут использоваться для ответа сервера клиенту. Применение разных портов для различных сетевых сессий позволяет клиентам сети одновременно устанавливать несколько сессий с разными серверами или с сервисами одного сервера.

Теперь рассмотрим процесс установления сессии при использовании маршрутизатора на границе внутренней сети и Интернета. Когда клиент внутренней сети устанавливает связь с компьютером внешней сети, открывается сокет, определяемый IP-адресом источника, портом источника, IP-адресом назначения, портом назначения и сетевым протоколом. Когда приложение передает данные через этот сокет, IP-адрес источника и порт источника вставляются в пакет в поля параметров источника. Поля параметров пункта назначения будут содержать IP-адрес получателя и порт получателя. К примеру, компьютер внутренней сети с IP-адресом 192.168.0.1 может обратиться к web-серверу Глобальной сети с IP-адресом 64.233.188.104. В этом случае операционная система клиента может назначить установленной сессии порт 1251 (порт источника), а порт назначения -- это порт web-сервиса, то есть 80. Тогда в заголовке отправляемого пакета будут указаны следующие атрибуты (рис. 1):

Примечание: [составлено автором]

Рисунок 1. - Принцип работы маршрутизатора при передаче пакета

IP-адрес источника -- 192.168.0.1;

порт источника -- 1251;

IP-адрес получателя -- 64.233.183.104;

порт получателя -- 80;

протокол -- TCP.

Устройство NAT (маршрутизатор) перехватывает исходящий из внутренней сети пакет и заносит в свою внутреннюю таблицу сопоставление портов источника и получателя пакета, используя IP-адрес назначения, порт назначения, внешний IP-адрес устройства NAT, внешний порт, сетевой протокол, а также внутренние IP-адрес и порт клиента.

Предположим, что в рассмотренном выше примере NAT-маршрутизатор имеет внешний IP-адрес 195.2.91.103 (адрес WAN-порта), а для установленной сессии внешний порт NAT-устройства -- 3210. В этом случае внутренняя таблица сопоставления портов источника и получателя пакета содержит следующую информацию:

IP-адрес источника -- 192.168.0.1;

порт источника -- 1251;

внешний IP-адрес NAT-устройства -- 195.2.91.103;

внешний порт NAT-устройства -- 3210;

IP-адрес получателя -- 64.233.183.104;

порт получателя -- 80;

протокол -- TCP.

Затем устройство NAT «транслирует» пакет, преобразуя в пакете поля источника: внутренние IP-адрес и порт клиента заменяются внешними IP-адресом и портом устройства NAT. В рассмотренном примере преобразованный пакет будет содержать следующую информацию:

IP-адрес источника -- 195.2.91.103;

порт источника -- 3210;

IP-адрес получателя -- 64.233.183.104;

порт получателя -- 80;

протокол -- TCP.

Преобразованный пакет пересылается по внешней сети и в итоге попадает на заданный сервер.

Получив пакет, сервер будет направлять ответные пакеты на внешний IP-адрес и порт устройства NAT (маршрутизатора), указывая в полях источника свои собственные IP-адрес и порт (рис. 2). В рассмотренном примере ответный пакет от сервера будет содержать в заголовке следующую информацию:

Примечание: [составлено автором]

Рисунок 1. - Принцип работы маршрутизатора при передаче пакета из внешней сети

во внутреннюю

IP-адрес источника -- 64.233.183.104;

порт источника -- 80;

IP-адрес получателя -- 195.2.91.103;

порт получателя -- 3210;

протокол -- TCP.

Маршрутизатор принимает эти пакеты от сервера и анализирует их содержимое на основе своей таблицы сопоставления портов. Если в таблице будет найдено сопоставление порта, для которого IP-адрес источника, порт источника, порт назначения и сетевой протокол из входящего пакета совпадают с IP-адресом удаленного узла, с удаленным портом и с сетевым протоколом, указанным в сопоставлении портов, то маршрутизатор выполнит обратное преобразование: заменит внешний IP-адрес и внешний порт в полях назначения пакета на IP-адрес и внутренний порт клиента внутренней сети. Таким образом, пакет, передаваемый во внутреннюю сеть, для рассмотренного выше примера будет иметь следующие атрибуты:

IP-адрес источника -- 64.233.183.104;

порт источника -- 80;

IP-адрес получателя -- 192.168.0.1;

порт получателя -- 1251;

протокол -- TCP.

Однако если в таблице сопоставления портов не находится соответствия, то входящий пакет отвергается и соединение разрывается.

Любой ПК внутренней сети может передавать данные в Глобальную сеть с использованием внешнего IP-адреса и порта маршрутизатора. При этом IP-адреса внутренней сети, как присвоенные сессиям порты, остаются невидимыми со стороны внешней сети.

Однако маршрутизатор позволяет обмениваться данными между компьютерами внутренней и внешней сетей только в том случае, если этот обмен инициируется компьютером внутренней сети. Если же какой-нибудь компьютер внешней сети попытается получить доступ к компьютеру внутренней сети по собственной инициативе, то такое соединение маршрутизатором отвергается. Именно поэтому получить удаленный доступ к компьютеру, расположенному во внутренней локальной сети, защищенной маршрутизатором, не так-то просто. В то же время существуют технологии, позволяющее решить проблему доступа к компьютеру в составе локальной сети из Интернета.

Для того чтобы сделать компьютер в составе локальной сети доступным из Интернета, необходимо произвести специфические настройки на маршрутизаторе, то есть либо организовать так называемую демилитаризованную зону и добавить в нее нужный компьютер, либо реализовать статическое перенаправление портов на маршрутизаторе (Port Forwarding, Port mapping).

Демилитаризованная зона (DMZ-зона) -- это способ обхода ограничений протокола NAT. Компьютер внутренней локальной сети, размещенный в зоне DMZ, становится прозрачным для протокола NAT. Фактически это означает, что компьютер внутренней сети виртуально располагается перед брандмауэром. Для ПК, находящегося в DMZ-зоне, осуществляется перенаправление всех портов на один внутренний IP-адрес, что позволяет организовать передачу данных из внешней сети во внутреннюю.

Если, к примеру, компьютер с IP-адресом 192.168.1.10, находящийся во внутренней локальной сети, размещен в DMZ-зоне, а сама локальная сеть защищена маршрутизатором, то при поступлении по любому порту запроса из внешней сети по адресу WAN-порта маршрутизатора этот запрос будет переадресован на IP-адрес 192.168.1.10, то есть на адрес компьютера в DMZ-зоне.

Поскольку компьютер, размещенный в DMZ-зоне, становится доступным из внешней сети и никак не защищен брандмауэром, он становится уязвимым местом сети. Прибегать к размещению компьютеров в демилитаризованной зоне нужно только в самом крайнем случае, когда никакие другие способы обхода ограничений протокола NAT по тем или иным причинам не подходят.

Наиболее часто для удаленного доступа к компьютеру, расположенному во внутренней сети, применяется так называемое статическое перенаправление портов. Технология статического перенаправления портов позволяет сделать доступными из внешней сети определенные приложения, запускаемые на компьютере во внутренней сети. Для того чтобы реализовать перенаправление портов, в маршрутизаторе необходимо задать сопоставление между портами, используемыми определенными приложениями, и IP-адресами тех компьютеров внутренней сети, на которых эти приложения работают (такие компьютеры называют виртуальными серверами). В результате любой запрос из внешней сети на внешний IP-адрес маршрутизатора по указанному порту будет автоматически перенаправлен на указанный виртуальный сервер внутренней сети.

К примеру, если во внутренней сети конфигурируется виртуальный сервер, который запускается на ПК с IP-адресом 192.168.0.10, то при настройке виртуального сервера задаются IP-адрес виртуального сервера (192.168.0.10), применяемый протокол и порт приложения, к которому необходимо получить доступ извне. Так, если приложение использует протокол TCP и порт 12345, то при обращении по внешнему IP-адресу маршрутизатора по порту 12345 пользователь внешней сети может получить доступ к приложению виртуального сервера внутренней сети, несмотря на использование протокола NAT.

Как правило, маршрутизаторы позволяют создавать несколько статических перенаправлений портов. То есть на одном виртуальном сервере можно открыть сразу несколько портов или создать несколько виртуальных серверов с различными IP-адресами. Однако при статическом перенаправлении портов нельзя перенаправлять один порт на несколько IP-адресов, то есть порт может соответствовать только одному IP-адресу.

Отметим, что если речь идет о корпоративной сети, то без согласия сетевого администратора получить доступ к настройкам маршрутизатора невозможно, и очевидно, что ни один системный администратор на это не пойдет.

Несмотря на сложность установления соединения между двумя компьютерами через Интернет в том случае, когда они защищены маршрутизаторами, существуют программные средства, позволяющие получать удаленный доступ к компьютеру через Интернет. Все программы подобного типа используют два возможных сценария: установление либо прямого соединения между компьютерами, либо соединения через сервер-посредник, который играет роль ретранслятора при взаимодействии двух компьютеров и позволяет обойти ограничения протокола NAT за счет того, что инициатором установления соединения выступает сам удаленный компьютер, расположенный во внутренней локальной сети. В случае установления прямого соединения между компьютерами образуется высокоскоростной канал связи, однако к недостаткам такого решения можно отнести необходимость настройки сетевого оборудования, причем установление прямого соединения возможно далеко не всегда. При использовании сервера-посредника между компьютерами образуется низкоскоростной канал связи и вероятность успешного установления соединения между компьютерами повышается.

1.2 Способы обмена файлами

Transmission Control Protocol/Internet Protocol (TCP/IP) - это промышленный стандарт стека протоколов, разработанный для глобальных сетей.

TCP/IP -- набор протоколов передачи данных, получивший название от двух принадлежащих ему протоколов: TCP (англ. Transmission Control Protocol) и IP (англ. Internet Protocol)

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу сети Internet. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC определяют стандарты.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Если в настоящее время стек TCP/IP распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров (Windows NT 3.5, NetWare 4.1, Windows 95) является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.

Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:

Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.

Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.

Это метод получения доступа к сети Internet.

Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.

Все современные операционные системы поддерживают стек TCP/IP.

Это гибкая технология для соединения разнородных систем, как на уровне транспортных подсистем, так и на уровне прикладных сервисов.

Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

Структура стека TCP/IP. Краткая характеристика протоколов

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP . делятся на 4 уровня.

Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом, то есть он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль. Для доступа к публичным каталогам FTP-архивов Internet парольная аутентификация не требуется, и ее обходят за счет использования для такого доступа предопределенного имени пользователя Anonymous.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленного компьютера. При использовании сервиса telnet пользователь фактически управляет удаленным компьютером так же, как и локальный пользователь, поэтому такой вид доступа требует хорошей защиты. Поэтому серверы telnet всегда используют как минимум аутентификацию по паролю, а иногда и более мощные средства защиты, например, систему Kerberos.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Internet, которые традиционно часто называют также шлюзами. С ростом популярности протокол SNMP стали применять и для управления любым коммуникационным оборудованием - концентраторами, мостами, сетевыми адаптерами и т.д. и т.п. Проблема управления в протоколе SNMP разделяется на две задачи.

Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия SNMP-агента, работающего в управляемом оборудовании, и SNMP-монитора, работающего на компьютере администратора, который часто называют также консолью управления. Протоколы передачи определяют форматы сообщений, которыми обмениваются агенты и монитор.

Вторая задача связана с контролируемыми переменными, характеризующими состояние управляемого устройства. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в устройствах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые управляемое устройство должно сохранять, и допустимые операции над ними.

Отчасти популярность стека протоколов TCP/IP объясняется возможностью его реализации на базе большого числа разнообразных каналов и протоколов канального уровня, таких как T1 и Х.25, Ethernet и линии RS-232. Большинство организаций использует в своих ЛВС Ethernet для объединения хостов и клиентских систем, а затем присоединяет эти сети с помощью T1 к региональной сети. (например, региональной магистральной сети TCP/IP), которая соединяет в свою очередь с сетями других организаций и другими магистральными каналами. Как правило, организации имеют одно соединение с Интернетом, но большие организации могут иметь два и более соединений. Скорости модемов увеличиваются по мере появления новых коммуникационных стандартов, поэтому версии TCP/IP, которые работают в среде коммутируемых телефонных каналов, становятся все более популярными. Многие организации и просто отдельные люди используют PPP (Point-to-Point Protocol) и SLIP (Serial Line IP) для подключения своих сетей и рабочих станций к другим сетям, используя телефонные каналы.

Если говорить строго, то TCP/IP - это стек протоколов, включающий TCP, IP, UDP (User Datagram Protocol), ICMP (Internet Control Message Protocol), и ряд других протоколов. Стек протоколов TCP/IP не соответствует модели взаимодействия открытых систем (ВОС), и его структура показа на рисунке 1.1

Примечание: [составлено автором]

Рисунок 2. - Взаимодействие протоколов

Уровень IP получает пакеты, доставлемые нижними уровнями, например драйвером интерфейса с ЛВС, и передает их лежащим выше уровням TCP или UDP. И наоборот, IP передает пакеты, полученные от уровней TCP и UDP к нижележащим уровням.

Пакеты IP являются дейтаграмами с негарантированной доставкой, потому что IP ничего не делает для обеспечения гарантии доставки пакетов IP по порядку и без ошибок. Пакеты IP содержат адрес хоста, с которого был послан пакет, называемый адресом отправителя, и адрес хоста, который должен получить пакет, называемый адресом получателя.

Высокоуровневые сервисы TCP и UDP при приеме пакета предполагают, что адрес отправителя, указанный в пакете, является истинным. Другими словами, адрес IP является основой для аутентификации во многих сервисах; сервисы предполагают, что пакет был послан от существующего хоста, и именно от того хоста, чей адрес указан в пакете. IP имеет опцию, называемую опция маршрутизации источника, которая может быть использована для для указания точного прямого и обратного пути между отправителем и получателем. Этот путь может задействовать для передачи пакета маршрутизаторы или хосты, обычно не использующиеся для передачи пакетов к данному хосту-получателю. Для некоторых сервисов TCP и UDP пакет IP c такой опцией кажется пришедшим от последней системы в указанном пути, а не от своего истинного отправителя. Эта опция появилась в протоколе для его тестирования, но [Bel89] отмечает, что маршрутизация источника может использоваться для обмана систем с целью установления соединения с ними тех хостов, которым запрещено с ними соединяться. Поэтому, то, что ряд сервисов доверяют указанному IP-адресу отправителя и полагаются на него при аутентификации, очень опасно и может привести к проникновению в систему.

IP ( Internet Protocol) - межсетевой протокол. Протокол IP используется для доставки данных, разделяемых на так называемые пакеты от одного узла сети к другому. В частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться, оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прибыть вовсе. Гарантию безошибочной доставки пакетов дают протоколы более высокого (транспортного уровня) - например, TCP - которые используют IP в качестве транспорта.

(TCP) Transmission Control Protocol - (протокол управления передачей) - один из основных сетевых протоколов Интернета, предназначенный для управления передачей данных в сетях и подсетях TCP/IP. TCP - это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета. Гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь. Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

2. РАЗРАБОТКА СИСТЕМЫ ОРГАНИЗАЦИИ УДАЛЕННОГО ОБМЕНА ФАЙЛАМИ С ИСПОЛЬЗОВАНИЕМ ПРОТОКОЛА

2.1 Протокола используемые в системах организации удаленного обмена файлами

HTTP (Hyper Text Transfer Protocol) -- это протокол передачи гипертекста. Протокол HTTP используется при пересылке Web-страниц с одного компьютера на другой. Протокол передачи гипертекста -- протокол прикладного уровня передачи данных изначально -- в виде гипертекстовых документов. Основой HTTP является технология клиент сервер, то есть предполагается существование потребителей клиентов которые инициируют соединение и посылают запрос, и поставщиков серверов, которые ожидают соединения для получения запроса, производят необходимые действия и возвращают обратно сообщение с результатом.

HTTP в настоящее время повсеместно используется во Всемирной паутине для получения информации с веб-сайтов. HTTP используется также в качестве «транспорта» для других протоколов прикладного уровня, таких как SOAP, XML-RPC,Web-DAV.

Основным объектом манипуляции в HTTP является ресурс, на который указывает URI(англ. Uniform Resource Identifier) в запросе клиента. Обычно такими ресурсами являются хранящиеся на сервере файлы, но ими могут быть логические объекты или что-то абстрактное. Особенностью протокола HTTP является возможность указать в запросе и ответе способ представления одного и того же ресурса по различным параметрам: формату, кодировке, языку и т. д. (В частности для этого используется HTTP-заголовок.) Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными, хотя данный протокол является текстовым.

HTTP -- протокол прикладного уровня, аналогичными ему являются FTP и SMTP. Обмен сообщениями идёт по обыкновенной схеме «запрос-ответ». Для идентификации ресурсов HTTP использует глобальные URI. В отличие от многих других протоколов, HTTP не сохраняет своего состояния. Это означает отсутствие сохранения промежуточного состояния между парами «запрос-ответ». Компоненты, использующие HTTP, могут самостоятельно осуществлять сохранение информации о состоянии, связанной с последними запросами и ответами (например, «куки» на стороне клиента, «сессии» на стороне сервера). Браузер, посылающий запросы, может отслеживать задержки ответов. Сервер может хранить IP-адреса и заголовки запросов последних клиентов. Однако сам протокол не осведомлён о предыдущих запросах и ответах, в нём не предусмотрена внутренняя поддержка состояния, к нему не предъявляются такие требования.

2.FTP (File Transfer Protocol) -- это протокол передачи файлов со специального файлового сервера на компьютер пользователя. FTP дает возможность абоненту обмениваться двоичными и текстовыми файлами с любым компьютером сети. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.

FTP (англ. File Transfer Protocol --протол передачи файлов) -- стандартный протокол, предназначенный для передачи файлов по TCP-сетям (например, Интернет). FTP часто используется для загрузки сетевых страниц и других документов с частного устройства разработки на открытые сервера хостинга.

Протокол построен на архитектуре "клиент - сол ервер" и использует разные сетевые соединения для передачи команд и данных между клиентом и сервером. Пользователи FTP могут пройти аутентификацию, передавая логин и пароль открытым текстом, или же, если это разрешено на сервере, они могут подключиться анонимно. Можно использовать протокол SSH для безопасной передачи, скрывающей (шифрующей) логин и пароль, а также шифрующей содержимое.

Первые клиентские FTP-приложения были интерактивными инструментами командной строки, реализующими стандартные команды и синтаксис. Графические пользовательские интерфейсы тех пор были разработаны для многих используемых по сей день операционных систем. Среди этих интерфейсов как программы общего веб-дизайна вроде Microsoft Expression web, так и специализированные FTP-клиенты (например,Cute FTP).

FTP является одним из старейших прикладных протоколов, появившимся задолго до HTTP, в 1971 году. Он и сегодня широко используется для распространения ПО и доступа к удалённым хостам.

3. POP (Post Office Protocol) -- это стандартный протокол почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.

POP3 (англ. Post Office Protocol Version 3 --протокол почтового отделения, версия 3) -- стандартный Интернет- протокол прикладного уровня, используемый клиентами электронной почты для извлечения электронного сообщения с удаленного сервера по TSP/IP - соединению.

POP и IMAP (Internet Message Access Protocol) -- наиболее распространенные Интернет - протоколы для извлечения почты. Практически все современные клиенты и серверы электронной почты поддерживают оба стандарта. Протокол POP был разработан в нескольких версиях, нынешним стандартом является третья версия (POP3). Большинство поставщиков услуг электронной почты (такие как Hotmail, Gmail и Yahoo! Mail) также поддерживают IMAP и POP3. Предыдущие версии протокола (POP, POP2) устарели.

4.SMTP (Simple Mail Transfer Protocol) -- протокол, который задает набор правил для передачи почты. Сервер SMTP возвращает либо подтверждение о приеме, либо сообщение об ошибке, либо запрашивает дополнительную информацию.

SMTP (англ. Simple Mail Transfer Protocol -- простой протокол передачи почты) -- это широко используемый сетевой протокол, предназначенный для передачи электронной почты в сетях TCP/IP.

SMTP впервые был описан в RFC 821 (1982 год); последнее обновление в RFC 5321 (2008) включает масштабируемое расширение -- ESMTP (англ. Extended SMTP). В настоящее время под «протоколом SMTP», как правило, подразумевают и его расширения. Протокол SMTP предназначен для передачи исходящей почты с использованием порта TCP 25.

В то время, как электронные почтовые серверы и другие агенты пересылки сообщений используют SMTP для отправки и получения почтовых сообщений, работающие на пользовательском уровне клиентские почтовые приложения обычно используют SMTP только для отправки сообщений на почтовый сервер для ретрансляции. Для получения сообщений клиентские приложения обычно используют либо POP (англ. Post Office Protocol -- протокол почтового отделения), либо IMAP (англ. Internet Message Access Protocol), либо патентованные системы (такие как Microsoft Exchange и Lotus Notes/Domino) для доступа к учетной записи своего почтового ящика на сервере.

5.telnet -- это протокол удаленного доступа. TELNET дает возможность абоненту работать на любой ЭВМ сети Интернет, как на своей собственной, то есть запускать программы, менять режим работы и так далее. На практике возможности лимитируются тем уровнем доступа, который задан администратором удаленной машины.

Выполняет функции TELNET (англ. TErminaL NETwork) -- сетевой протокол для реализации текстового интерфейса по сети (в современной форме -- при помощи транспорта TCP). Название «telnet» имеют также некоторые утилиты, реализующие клиентскую часть протокола. Современный стандарт протокола описан в RFC 854.

Telnet - это одна из самых старых информационных технологий Internet. Она входит в число стандартов, которых насчитывается три десятка на полторы тысячи рекомендуемых официальных материалов сети, называемых RFC (Request For Comments).

Под telnet понимают триаду, состоящую из:

· telnet-интерфейса пользователя;

· telnetd-процесса;

· TELNET-протокола.

Эта триада обеспечивает описание и реализацию сетевого терминала для доступа к ресурсам удаленного компьютера.

В настоящее время существует достаточно большое количество программ - от Kermit до различного рода BBS (Belluten Board System), которые позволяют работать в режиме удаленного терминала, но ни одна из них не может сравниться с telnet по степени проработанности деталей и концепции реализации. Для того, чтобы оценить это, знакомство с telnet стоит начать с протокола.

3.3.1. Протокол Telnet

Telnet как протокол описан в RFC-854 (май, 1983 год). Его авторы J.Postel и J.Reynolds во введении к документу определили назначение telnet так:

"Назначение TELNET-протокола - дать общее описание, насколько это только возможно, двунаправленного, восьмибитового взаимодействия, главной целью которого является обеспечение стандартного метода взаимодействия терминального устройства и терминал-ориентированного процесса. При этом этот протокол может быть использован и для организации взаимодействий "терминал-терминал" (связь) и "процесс-процесс" (распределенные вычисления)."

Telnet строится как протокол приложения над транспортным протоколом TCP. В основу telnet положены три фундаментальные идеи:

· концепция сетевого виртуального терминала (Network Virtual Terminal) или NVT;

· принцип договорных опций (согласование параметров взаимодействия);

· симметрия связи "терминал-процесс".

При установке telnet-соединения программа, работающая с реальным терминальным устройством, и процесс обслуживания этой программы используют для обмена информацией спецификацию представления правил функционирования терминального устройства или Сетевой Виртуальный Терминал (Network Virtual Terminal). Для краткости будем обозначать эту спецификацию NVT. NVT - это стандартное описание наиболее широко используемых возможностей реальных физических терминальных устройств. NVT позволяет описать и преобразовать в стандартную форму способы отображения и ввода информации. Терминальная программа ("user") и процесс ("server"), работающий с ней, преобразовывают характеристики физических устройств в спецификацию NVT, что позволяет, с одной стороны, унифицировать характеристики физических устройств, а с другой обеспечить принцип совместимости устройств с разными возможностями. Характеристики диалога диктуются устройством с меньшими возможностями.

Если взаимодействие осуществляется по принципу "терминал-терминал" или "процесс-процесс", то "user" - это сторона, инициирующая соединение, а "server" - пассивная сторона.

Принцип договорных опций или команд позволяет согласовать возможности представления информации на терминальных устройствах. NVT - это минимально необходимый набор параметров, который позволяет работать по telnet даже самым допотопным устройствам, реальные современные устройства обладают гораздо большими возможностями представления информации. Принцип договорных команд позволяет использовать эти возможности. Например, NVT является терминалом, который не может использовать функции управления курсором, а реальный терминал, с которого осуществляется работа, умеет это делать. Используя команды договора, терминальная программа предлагает обслуживающему процессу использовать Esc-последовательности для управления выводом информации. Получив такую команду процесс начинает вставлять управляющие последовательности в данные, предназначенные для отображения.

Симметрия взаимодействия по протоколу telnet позволяет в течении одной сессии программе-"user" и программе-"server" меняться местами. Это принципиально отличает взаимодействие в рамках telnet от традиционной схемы "клиент-сервер". Симметрия взаимодействия тесно связана с процессом согласования формы обмена данными между участниками telnet-соединения. Когда речь идет о работе на удаленной машине в режиме терминала, то возможности ввода и отображения информации определяются только конкретным физическим терминалом и договорной процесс сводится к заказу терминальной программой характеристик этого терминала. Гораздо сложнее обстоит дело, когда речь идет об обмене информацией между двумя терминальными программами в режиме "терминал-терминал". В этом случае каждая из сторон может выступать инициатором изменения принципов представления информации и здесь проявляется еще одна особенность протокола telnet. Протокол не использует принцип "запрос-подтверждение", а применяет принцип "прямого действия". Это значит, что если терминальная программа хочет расширить возможности представления информации, то она делает это (например, вставляет в информационный поток Esc-последовательности), если в ответ она получает информацию в новом представлении, то это означает, что попытка удалась, в противном случае происходит возврат к стандарту NVT.

Обычно процесс согласования форм представления информации происходит в начальный момент организации telnet-соединения. Каждый из процессов старается установить максимально возможные параметры сеанса. Однако эти параметры могут быть изменены и позже, в процессе взаимодействия (например, после запуска прикладной программы).

В Unix-системах параметры терминалов обычно описаны в базе данных описания терминалов termcap. При инициировании telnet-соединения обычно именно эти параметры используются в процессе согласования формы представления данных. При этом из одной системы в другую обычно передается значение переменной окружения TERM. Если для этого значения переменной TERM имеются одинаковые описания в termcap, то проблем с представлением информации обычно не бывает; если терминал, заказанный в TERM, не определен, то берется стандартный терминал системы. При этом не все функции этого терминала будут задействованы. В процессе договора останутся только те, которые поддерживаются на обоих концах соединения. Часто можно столкнуться с ситуацией, когда значения переменных TERM на локальной и удаленной машинах совпадают, а информация на экране отображается не так, как этого бы хотелось. Скорее всего это вызвано различиями в описании данного устройства в базе данных termcap.

Сетевой виртуальный терминал (NVT). Концепция сетевого виртуального терминала позволяет обеспечить доступ к ресурсам удаленной машины с любого терминального устройства. Под терминальным устройством понимают любую комбинацию физических устройств, позволяющих вводить и отображать информацию. Для тех кто знаком с универсальными машинами серии EC, такое определение терминала не является новым: в момент загрузки системы можно было назначить составную консоль, в которую могли входить устройство ввода с перфокарт и алфавитно-цифровое печатающее устройство (АЦПУ). В более ранних вычислительных комплексах такими терминалами могли быть системная печать и устройство чтения перфоленты (как на МИНСК-22) или телетайп (как на М-6000). Понятно, что за таким понятием терминала стоит требование устойчивости системы, которое было основополагающим для проекта ARPA.

В протоколе TELNET NVT определен как "двунаправленное символьное устройство, состоящее из принтера и клавиатуры". Принтер предназначен для отображения приходящей по сети информации, а клавиатура - для ввода данных, передаваемых по сети и, если включен режим "echo", вывода их на принтер. По умолчанию предполагается, что для обмена информацией используется 7-битовый US ASCII, каждый символ которого закодирован в 8-битовое поле. Любое преобразование символов является расширением стандарта NVT.

NVT предполагается буферизованным устройством. Это означает, что данные, вводимые с клавиатуры, не посылаются сразу по сети, а собираются в пакеты, которые отправляются либо по мере заполнения буфера, либо по специальной команде. Такая организация NVT призвана с одной стороны минимизировать сетевой трафик, а с другой обеспечить совместимость с реальными буферизованными терминалами. Например, таковым и являются терминалы ЕС-7920, из-за которых можно было потерять целый экран информации в случае зависания машины.

В моменты окончания печати на принтере NVT или отсутствия символов в буфере клавиатуры по сети должна посылаться специальная команда GA (Go Ahead). Смысл этой команды заключается в следующем: в реальных компьютерах линия "терминал-процесс" находится под управлением либо терминальной программы (ввод данных), либо печатающей программы. После выполнения своей функции каждая из них возвращает управление и освобождает линию. Обычно это происходит при работе с полудуплексными устройствами, такими как IBM-2741. Для того, чтобы протокол позволял работать и с этими устройствами, введен сигнал GA.

2.2 Описание существующей системы организации удаленного обмена файлами с использованием протокола

Современная АСУТП (автоматизированная система управления технологическим процессом) представляет собой многоуровневую человеко-машинную систему управления. Создание АСУ сложными технологическими процессами осуществляется с использованием автоматических информационных систем сбора данных и вычислительных комплексов, которые постоянно совершенствуются по мере эволюции технических средств и программного обеспечения.

АСУ ТП и диспетчерское управление

Непрерывную во времени картину развития АСУТП можно разделить на три этапа, обусловленные появлением качественно новых научных идей и технических средств. В ходе истории меняется характер объектов и методов управления, средств автоматизации и других компонентов, составляющих содержание современной системы управления.

Первый этап отражает внедрение систем автоматического регулирования (САР). Объектами управления на этом этапе являются отдельные параметры, установки, агрегаты; решение задач стабилизации, программного управления, слежения переходит от человека к САР. У человека появляются функции расчета задания и параметры настройки регуляторов.

Второй этап - автоматизация технологических процессов. Объектом управления становится рассредоточенная в пространстве система; с помощью систем автоматического управления (САУ) реализуются все более сложные законы управления, решаются задачи оптимального и адаптивного управления, проводится идентификация объекта и состояний системы. Характерной особенностью этого этапа является внедрение систем телемеханики в управление технологическими процессами. Человек все больше отдаляется от объекта управления, между объектом и диспетчером выстраивается целый ряд измерительных систем, исполнительных механизмов, средств телемеханики, мнемосхем и других средств отображения информации (СОИ).

...

Подобные документы

  • Принцип организации и способы удаленного обмена файлами с использованием протокола. Разработка проекта распространения софта на множество пользовательских машин. Создание программного комплекса системы с механизмами отображения и управления данными.

    дипломная работа [920,0 K], добавлен 03.04.2014

  • Демографическая динамика и оптимизация использования ресурсов для обмена файлами в P2P-сетях (при условии, что доступность требуемого файла не гарантируется). Оценка времени жизни системы. Система детерминированной жидкостной модели, анализ цепи Маркова.

    статья [235,6 K], добавлен 27.09.2014

  • Общая характеристика протокола ICMP, его назначение и формат сообщений. Анализ применимости протокола ICMP при переходе с набора протоколов IP v4 на набор IP v6. Свойства и принцип работы, сферы применения протоколов обмена маршрутной информацией.

    курсовая работа [210,8 K], добавлен 24.08.2009

  • Изучение сущности и основных задач файловой системы. Принципы работы с папками и файлами. Комплекс системных программных средств, реализующих управление файлами: создание, уничтожение, чтение, запись, именование, поиск и другие операции над файлами.

    курсовая работа [309,6 K], добавлен 11.11.2013

  • Поиск информации в Интернет с помощью каталогов и поисковых машин. Мгновенный обмен информацией в Интернете. Основные программы и браузеры для поиска и обмена информацией. Программное обеспечение для просмотра веб-сайтов. Программы для обмена файлами.

    дипломная работа [81,1 K], добавлен 23.06.2012

  • Принципы и порядок работы с файлами на языке Delphi, получение навыков программирования с использованием файлов. Создание каталога продуктов. Страница палитры компонентов, настраиваемые компоненты и их значения. Текст программы и ее тестирование.

    лабораторная работа [243,9 K], добавлен 09.01.2009

  • Создание приложения Windows, позволяющего автоматизировать процесс обработки информации студентов университета. Организация работы с физическими файлами в языках программирования. Изучение средств IDE Delphi для организации работы с текстовыми файлами.

    курсовая работа [1,5 M], добавлен 08.11.2011

  • Изучение инструментария для работы с pdf-файлами. iTextSharp – инструмент, имеющий много функций для полноценного контроля PDF. Visual Studio - линейка продуктов компании Майкрософт, включающих интегрированную среду разработки программного обеспечения.

    контрольная работа [394,6 K], добавлен 12.09.2012

  • Файловая и сетевая системы операционной системы Windows. Характеристика модели "клиент-сервер". Функциональные требования и архитектура программы, которая должна обеспечивать передачу файлов от клиента к серверу, сервера к клиенту, обмен сообщениями.

    курсовая работа [1,4 M], добавлен 24.04.2013

  • Циклы обмена информацией в режиме прямого доступа к памяти. Управляющие сигналы, формируемые процессором и определяющие моменты времени. Запросы на обмен информацией по прерываниям. Мультиплексирование шин адреса и данных. Протоколы обмена информацией.

    лекция [29,0 K], добавлен 02.04.2015

  • Теоретическое изучение и практическое применение приёмов работы с файлами в операционной системе Windows 95. Файлы и папки: основные понятия и правила формирования имен файлов в Windows. Характеристика и анализ особенностей операций с файлами и папками.

    контрольная работа [139,9 K], добавлен 09.03.2011

  • Изучение основных правил проектирования операционных систем. Структура файловой системы. Компоненты, обеспечивающие способы организации, поиска и управления информацией. Краткий обзор специальных и обыкновенных файлов. Основные команды системы UNIX.

    методичка [36,4 K], добавлен 02.12.2009

  • Характеристика буфера обмена как области памяти, резервируемой системой Windows для организации обмена данными между приложениями. Копирование и перемещение файлов как функции буфера обмена. Изучение абсолютной и относительной адресации ячеек MS Excel.

    контрольная работа [13,9 K], добавлен 11.09.2011

  • Назначение буфера обмена, управление его данными в среде Windows. Взаимодействие между владельцем и клиентом буфера. Данные и тип дескриптора, для каждого типа предопределенных форматов. Воспроизведение данных буфера обмена с задержкой, окна просмотра.

    реферат [58,9 K], добавлен 04.10.2010

  • Свойства и режимы реализации удаленного доступа. Организация удаленного доступа. Интеграция удаленного доступа в корпоративную интрасеть. Установка клиентских средств удаленного доступа для Windows. Утилита, работающая в архитектуре клиент-сервер.

    курсовая работа [28,2 K], добавлен 17.12.2011

  • Понятие и содержание баз данных, их разновидности и значение, принципы внутренней организации. История и этапы перехода к использованию централизованных систем управления файлами. Уровни абстракции в системах управления базами данных, их функции.

    презентация [298,3 K], добавлен 29.09.2013

  • Интернет-мессенджеры как современные коммуникационные центры. Характеристика программ, мобильных приложений, веб-сервисов для мгновенного обмена сообщениями. Типы и рынок мессенджеров; реализация голосовой и видеосвязи, обмен файлами, веб-конференции.

    статья [16,0 K], добавлен 18.04.2016

  • Разработка проводной локальной сети и удаленного доступа к данной сети с использованием беспроводной сети (Wi-Fi), их соединение между собой. Расчет времени двойного оборота сигнала сети (PDV). Настройка рабочей станции, удаленного доступа, сервера.

    курсовая работа [2,0 M], добавлен 10.11.2010

  • Использование программы "Total Commander": пользовательский интерфейс, клавиатурные сочетания, операции с файлами, контекстные меню, внутренний просмотр файлов. Назначение и применение функциональных клавиш. Особенности работы с каталогами и файлами.

    презентация [462,3 K], добавлен 25.09.2014

  • Анализ аппаратно-программных средств для проекта системы удаленного контроля состояния объекта на основе модулей фирмы Advantech. Техническая характеристика программируемых контроллеров. Информационный расчёт системы, моделирование работы отдельных узлов.

    дипломная работа [3,4 M], добавлен 24.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.