Компьютерная графика

Компьютерная графика как область информатики, занимающаяся проблемами получения различных изображений, рисунков, чертежей и мультипликации на компьютере. Художественные и оформительские работы с графическими программами в работе редакций и издательств.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 22.05.2016
Размер файла 84,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Ставропольского края

Муниципальное бюджетное общеобразовательное учреждение

лицей №14

Реферат на тему: "Компьютерная графика"

Выполнила: ученица 9 класса Д

Гречкосеева А.А.

Проверил: учитель информатики и ИКТ

Горшкова А.А.

Ставрополь

2013

Содержание

Введение

1. История компьютерной графики

2. Основные области применения компьютерной графики

2.1 Научная графика

2.2 Деловая графика

2.3 Конструкторская графика

2.4 Иллюстративная графика

2.5 Художественная и рекламная графика

2.6 Компьютерная анимация

3. Технические средства

Введение

Компьютерная графика - это область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.

Работа с компьютерной графикой - одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агенством, но часто обходятся собственными силами и доступными программными средствами.

Без компьютерной графики не обходится ни одна современная программа. Работа над графикой занимает до 90% рабочего времени программистки коллективов, выпускающих программы массового применения.

Основные трудозатраты в работе редакций и издательств тоже составляют художественные и оформительские работы с графическими программами.

Необходимость широкого использования графических программных средств , стала особенно ощутимой в связи с развитием Интернета и, в первую очередь, благодаря службе World Wide Web, связавшей в единую "паутину" миллионы "домашних страниц". У страницы, оформленной без компьютерной графики мало шансов привлечь к себе массовое внимание.

Область применения компьютерной графики не ограничивается одними художественными эффектами. Во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности используются построенные с помощью компьютера схемы, графики, диаграммы, предназначенные для наглядного отображения разнообразной информации. Конструкторы, разрабатывая новые модели автомобилей и самолетов, используют трехмерные графические объекты, чтобы представить окончательный вид изделия. Архитекторы создают на экране монитора объемное изображение здания, и это позволяет им увидеть, как оно впишется в ландшафт.

Основные области применения компьютерной графики:

· Научная графика

· Деловая графика

· Конструкторская графика

· Иллюстративная графика

· Художественная и рекламная графика

· Компьютерная анимация

· Векторный метод

1. История компьютерной графики

Практически с самого момента появления компьютеров появилась и компьютерная графика. В настоящее время можно сказать, что нет ни одной области в деятельности человека, где бы она ни применялась.

Редко какой фильм обходится без компьютерной графики, не говоря уж о рекламе, издательском деле, анимации и компьютерных играх. Виртуальная реальность находит свою нишу в индустрии развлечений и видеоиграх. Число виртуальных галерей и развлекательных парков быстро растет. Практически ни одно производство не обходится без компьютерной графики. Такая отрасль как космическая, пользуется компьютерной графикой с самого её появления, особенно с приходом автоматических пилотируемых аппаратов.

"Классическая" векторная графика до сих пор используется в различных приложениях бизнеса, включая разработку концепции, тестирование и создание новых продуктов. Можно считать, что первые системы компьютерной графики появились вместе с первыми цифровыми компьютерами. Сейчас ее рассматривают как средство, которое обеспечивает мощную взаимосвязь между человеком и компьютером, заставляя компьютер говорить с человеком на языке изображений.

Прошло несколько лет, пока компьютерная графика стала основным средством связи между человеком и компьютером, постоянно расширяющим сферы своего применения. Проект "вихрь" Массачусетского технологического института был отмечен как начало эры компьютерной графики. "Вихрь" стал основой создания опытного образца командноуправляемой системы воздушной защиты, разработанной как средство преобразования данных, полученных от радара, в наглядную форму.

В конце шестидесятых - начале семидесятых в области компьютерной графики начали работать новые фирмы. Если ранее для выполнения каких-либо работ покупателям приходилось устанавливать уникальное оборудование и разрабатывать новое программное обеспечение, то с появлением разнообразных пакетов программ, облегчающих процесс создания изображений, чертежей и интерфейсов, ситуация существенно изменилась. За десятилетие системы стали настолько совершенны, что почти полностью изолировали пользователя от проблем, связанных с программным обеспечением.

В конце семидесятых в компьютерной графике произошли значительные изменения. Появилась возможность создания растровых дисплеев, имеющих множество преимуществ: вывод больших массивов данных, устойчивое, немерцающее изображение, работа с цветом. Впервые стало возможным получение цветовой гаммы. Растровая технология в конце семидесятых стала явно доминирующей. Наиболее знаменательным событием в области компьютерной графики было создание конце семидесятых персонального компьютера.

В 1977 году компания Apple создала Apple-II. Появление этого устройства вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако персональные компьютеры стимулировали процесс разработки периферийных устройств. Конечно, персональные компьютеры развивались как важная часть машинной графики, особенно с появлением в 1984 году модели Apple Macintosh с их графическим интерфейсом пользователя. Первоначально областью применения персонального компьютера были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области CAD/CAM, так и в более общих областях бизнеса и искусства.

К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательств. В конце восьмидесятых возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразуя его в стандартные форматы.

Однако акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных изображений.

В 90-х стираются отличия между компьютерной графикой и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией.

Кроме того, появляется возможность работы с видео. Прибавьте аудио возможности - и вы имеете компьютерную среду мультимедиа. Все области применения - будь то инженерная или научная, бизнес или искусство - являются сферой применения компьютерной графики. Возрастающий потенциал персональных компьютеров и их громадное число - порядка 100 миллионов - обеспечивает устойчивый рост индустрии в данной отрасли. Графика все шире проникает в бизнес - сегодня фактически нет документов, созданных без использования какого-либо графического элемента.

Художники, архитекторы, дизайнеры, уже не мыслят своей работы без использования компьютерной графики. Трехмерная графика позволяет смоделировать архитектурный объект и позволяет оценить его достоинства более объективно, чем это, возможно, сделать на основе чертежей или макетов. Дизайнер по интерьерам сейчас может предложить заказчику почти фотографическое изображение его будущего жилья, тогда как раньше, возможно было довольствоваться только эскизами.

Особенно часто в повседневной жизни мы сталкиваемся с векторными изображениями. Почти на любом изделии есть логотип компании-изготовителя. Разрабатывается логотип в векторах. Но нельзя и переоценивать возможности компьютера. Ведь это всего лишь инструмент, каким бы совершенным он не был. Компьютер лишь облегчает работу человека с графическими изображениями, но не создает их. Сначала можно было создавать лишь простые векторные объекты - изображения, состоящие из, так называемых, "векторов" - функций, которые позволяют вычислить положение точки на экране или бумаге. Например, функция, графиком которой является круг, прямая линия или другие более сложные кривые.

С развитием компьютерной техники и технологий появилось множество способов выполнения графических изображений. Примерно в 1995 году в России появились свои разработчики мультимедиа программ, зародились электронные издательства. Качественный уровень программных продуктов выполненных российскими художниками и программистами не уступал, а иногда и превосходил качество программ зарубежных авторов. Ещё одним направлением современной компьютерной графики стал "Веб-Дизайн". С 1995 года во всём мире наблюдается развёртывание глобальной мировой компьютерной сети -- Интернет.

Интернет является самым большим в мире хранилищем информации и связывает сегодня почти 80% всех компьютерных систем мира. По нашему мнению, Интернет стал новым направлением для компьютерных художников-дизайнеров. По своему жанру он очень близок к книжной и журнальной графике. Заметим, что художественная графика, предназначенная для Интернета, должна быть лаконична. Это связано, прежде всего, с ограничениями в скорости передачи данных по телефонным и кабельным сетям, через которые осуществляется связь между компьютерами. Однако этого вполне достаточно для того, чтобы осуществлять передачу видеоданных.

2. Основные области применения компьютерной графики

2.1 Научная графика

Это направление появилось первым.

Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге.

Назначение научной графики - наглядное изображение объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов

2.2 Деловая графика

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Назначение деловой графики - создание иллюстраций, часто используемых в работе различных учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы.

2.3 Конструкторская графика

Назначение конструкторской графики - использование в работе инженеров-конструкторов и изобретателей для создания чертежей.

Компьютерные приложения работающие в этой области, получили название САПР (Системы Автоматизированного Проектирования).

Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым может привести изменения в конструкции. Средствами конструкторской графики можно получать плоские изображения (проекции, сечения и пространственные, трехмерные изображения).

2.4 Иллюстративная графика

Программные средства, позволяющие человеку использовать компьютер для произвольного рисования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов, относятся к иллюстративной графике.

2.5 Художественная и рекламная графика

Это сравнительно новая отрасль, ставшая популярной благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и многое другое.

Отличительной особенностью этого вида графики является возможность создания реалистических изображений, а также "движущихся картинок". Для этого используется сложный математический аппарат.

2.6 Компьютерная анимация

Получение движущихся изображений на ЭВМ называется компьютерной анимацией. Слово "анимация" обозначает "оживление". В недавнем прошлом художники мультипликаторы создавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку.

Система компьютерной анимации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояния движущегося объекта, а все промежуточные состояния расчитает и изобразит компьютер. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Приложения компьютерной графики очень разнообразны. Для каждого направления создается специальное программное обеспечение, которое называют графическими программами, или графическими пакетами.

3. Технические средства

компьютерной графики

Картинки компьютер показывает на мониторе, печатает на принтере, считывает со сканера, фото и видео камер. Используются и другие устройства для ввода и вывода графической информации.

Схема системы вывода изображения на экран.

Схема показывает, что монитор (дисплей) и видеоадаптер через информационную магистраль связан с центральным процессором и

оперативной памятью.

Видеоадаптер - устройство, управляющее работой дисплея.

Видеоадаптер состоит из двух частей:

Видеопамять - предназначена для хранения двоичного кода изображения, выводимого на экран;

Дисплейный процессор - читает содержимое видеопамяти и в соответствии с ней управляет работой дисплея.

Видео карта (видеоадаптер)

Видеокарта располагается в системном блоке и представляет собой маленький графический компьютер со своими процессором и памятью.

Видеокарта (другие названия: графическая карта, видеоадаптер) управляет работой монитора, освобождая процессор от построения кадров изображения.

От качества видеокарты зависит скорость обработки видеоинформации, чёткость изображения, число цветов на экране и разрешение, в котором будет работать монитор.

Монитор

В XIX веке во Франции возникла техника живописи, которую назвали пуантилизмом: рисунок составлялся из разноцветных точек, наносимых кистью на холст. Подобный принцип используется и в компьютерах.

Растровый принцип вывода изображений

Точки на экране компьютера выстроены в ровные ряды. Совокупность точечных строк образуют графическую сетку или растр.

Одна точка носит название пиксель (picture element). Чем гуще сетка пикселей на экране, тем лучше качество изображения.

Размер графической сетки (растра)

Размер графической сетки обычно представляется в форме произведения числа точек в горизонтальной строке на число строк.

Размер графической сетки называется разрешением экрана. Разрешение обычно указывают в виде двух величин через знак умножения. Первая величина задает число столбцов пиксельной матрицы, вторая -- число строк.

На современных мониторах используются такие размеры графической сетки:

640 х 480

1024 х 768

1280 х 1024

Размер экрана монитора принято измерять по длине диагонали в дюймах. Один дюйм -- это 2,54 сантиметра. Дюймы обозначают двойным штрихом вверху.

Для работы с компьютерными рисунками подойдёт монитор с диагональю 15", но профессионалы используют мониторы с диагоналями 17", 19", 21" и даже больше.

Виды мониторов

Существуют мониторы, основанные на разных физических принципах. На экране электронно-лучевого монитора изображение выводится по "строчкам", которые рисует электронный луч, пробегая по экрану.

Достоинства электронно-лучевого монитора:

· хорошее качество изображения;

· сравнительно невысокая цена.

Недостатки электронно-лучевого монитора:

· Вредное воздействие на здоровье человека.

Экран жидкокристаллического монитора представляет собой матрицу, каждый элемент которой -- жидкий кристалл (как в электронных часах). Кристаллы освещаются специальными лампами. Под действием электрических сигналов кристаллы меняют свои оптические свойства, моделируя на экране элементы изображения.

Достоинства жидкокристаллического монитора:

· отсутствие вредного излучения;

· занимает мало места;

· потребляет мало электроэнергии.

Недостатки жидкокристаллического монитора:

· высокая стоимость;

· не очень качественная цветопередача.

Мышь - наиболее распространенный тип манипуляторов. Манипуляторы осуществляют непосредственный ввод информации, указывая курсором на экране дисплея команду или место ввода данных.

Компьютерная мышь появилась в 1964 году. Её изобрел Дуглас Карл Энгельбарт из Стэнфордского исследовательского института. Это была небольшая деревянная коробочка с двумя дисками. Один из дисков поворачивался, когда устройство двигали вперед и назад, второй отвечал за движение мыши вправо и влево. Энгельбарт говорит, что назвал устройство мышью из-за его небольшого размера и провода, похожего на хвост.

В корпусе современной механической мыши установлены кнопки для выполнения действий и шарик для ее перемещения по коврику. Качество мыши определяется ее разрешающей способностью, которая измеряется числом точек на дюйм - dpi (dot per inch). Эта характеристика определяет, насколько точно курсор будет передвигаться по экрану. Для мышей среднего класса разрешение составляет 400-800 dpi.

Мыши различаются:

- по способу считывания информации (механические, оптико-механические, оптические);

- количеству кнопок (2- и 3-кнопочные мыши);

- способу соединения (проводные и беспроводные мыши).

Установка колесика между двумя традиционными кнопками мыши обеспечивает перемещение по документу без использования экранных линеек прокрутки.

Первые беспроводные мыши появились в середине 90-х годов. Беспроводные мыши используют для передачи информации инфракрасный луч или радиосигнал.

Первые оптические мыши работали на принципе отражения света, исходящего от одного светодиода, от специальной подложки с координатной сеткой. Технология современных оптических мышей была разработана Agilent Technologies в конце 1999 г. Теперь в качестве приемника отраженного света используется ПЗС-матрица, можно сказать, миниатюрная видеокамера, передающая в цифровой процессор изображение освещаемого источником света участка подстилающей поверхности. Мышь оснащена небольшим красным светодиодом, который подсвечивает поверхность.

Специализированный процессор, находящийся внутри мыши, имеет производительность примерно 18 миллионов операций в секунду. Он выделяет отдельные участки изображения и определяет их перемещение относительно предыдущего снимка. Компьютер передвигает курсор на экране в соответствии с информацией, полученной от мыши. Благодаря большой частоте опроса движения курсора выглядят плавными. Такая мышь незаменима при работе с графическим приложениями. Она не требует специального коврика. Не нужно проводить гигиеническую протирку коврика, шарика мыши и роликов.

Графический планшет, дигитайзер, используется для ввода в компьютер чертежей или рисунков. Изображение преобразуется в цифровые данные. Условия создания изображения приближены к реальным, достаточно специальным пером сделать рисунок на специальной поверхности. Результаты работы воспроизводятся на экране монитора и в случае необходимости могут быть распечатаны на бумаге. Дигитайзерами обычно пользуются архитекторы и дизайнеры.

Перо является источником сигнала, который принимает антенна, находящаяся внутри планшета. Она представляет собой проволочную сетку с шагом 3-6 мм или аналогичную печатную плату. Антенна принимает сигнал и определяет положение манипулятора, а также другие данные. Физический предел разрешения планшета определяется шагом сетки. Погрешность современных графических планшетов не более 0,1 мм.

Сейчас планшеты стали весьма популярны в связи с бурным развитием Интернета и популяризацией электронных подписей для использования их в различных операциях. На новый уровень вышли программы проектирования, где без графических планшетов приходится весьма тяжело.

Принтеры

Принтеры в зависимости от порядка формирования изображения подразделяются на последовательные, строчные и страничные. Принадлежность принтера к той или иной группе зависит от того, формирует ли он на бумаге символ за символом или сразу всю строку, а то и целую страницу.

По физическому принципу действия принтеры делятся на матричные, струйные и лазерные.

Матричный принтер имеет печатающую головку, представляющую собой матрицу из отдельных иголочек. Таким образом, на бумаге образуются символы, состоящие из точек-отпечатков, оставляемых ударами иголочек по красящей ленте. В зависимости от конструкции печатающая головка матричного принтера может иметь 9, 18 иголок или 24 иголки.

Печатающие головки струйных принтеров вместо иголок содержат тоненькие трубочки - сопла, через которые на бумагу выбрасываются капельки чернил. Печатающая головка струйного принтера содержит от 12 до 64 сопел, диаметры которых тоньше человеческого волоса.

Известно несколько принципов действия струйных печатающих головок. В одной из конструкций на входном конце каждого сопла расположен маленький резервуар с чернилами. Позади резервуара располагается нагреватель (тонкопленочный резистор). Когда резистор нагревается проходящим по нему током до температуры 500 градусов, окружающие его чернила вскипают, образуя пузырёк пара. Этот расширяющийся пузырек выталкивает из сопла капли чернил диметром 50...85 мкм со скоростью около 700 км/час.

В другой конструкции печатающей головки источником давления служит мембрана, приводимая в движение пьезоэлектрическим способом.

В матричных и струйных принтерах электромеханические устройства перемещают печатающую головку и бумагу так, чтобы печать происходила в нужном месте.

В отличие от матричных в струйных принтерах пишущее устройство не находится в постоянном соприкосновении с твёрдой поверхностью, а потому изнашивается не скоро и работает практически бесшумно.

Важнейшей особенностью струйной печати является возможность создания высококачественного цветного изображения.

В лазерных принтерах используется электрографический принцип создания изображения. Процесс печати включает в себя создание невидимого рельефа электростатического потенциала в слое полупроводника с последующей его визуализацией. Визуализация осуществляется с помощью частиц сухого порошка - тонера, наносимого на бумагу. Тонер представляет собой частички железа, покрытые пластиком. Наиболее важными частями лазерного принтера являются полупроводниковый барабан, лазер и прецизионная оптико-механическая система, перемещающая луч.

Лазер генерирует тонкий световой луч, который, отражаясь от вращающегося зеркала, формирует электронное изображение на светочувствительном полупроводниковом барабане.

Принтер, как и монитор, является устройством вывода. Только монитор выводит информацию на экран, а принтер -- на бумагу. Принтеры в зависимости от порядка формирования изображения подразделяются на последовательные, строчные и страничные. Принадлежность принтера к той или иной группе зависит от того, формирует ли он на бумаге символ за символом или сразу всю строку, а то и целую страницу.

По физическому принципу действия принтеры делятся на матричные, струйные и лазерные.

Поверхности барабана предварительно сообщается некоторый статический заряд. Для получения изображения на барабане лазер должен включаться и выключаться, что обеспечивается схемой управления. Вращающееся зеркало служит для разворота луча лазера в строку, формируемую на поверхности барабана. Поворот барабана на новую строку осуществляет прецизионный шаговый двигатель. Это смещение определяет разрешающую способность принтера и может составлять, например, 1/300, 1/600 или 1/1200 часть дюйма. Процесс развертки изображения на барабане во многом напоминает построение изображения на экране монитора (создание растра).

Когда луч лазера попадает на предварительно заряженный барабан, заряд "стекает" с освещенной поверхности.

Таким образом, освещаемые и неосвещаемые лазером участки барабана имеют разный заряд.

В результате сканирования всей поверхности полупроводникового барабана на нем создается скрытое (электронное, невидимое для человека) изображение.

На следующем этапе работы принтера происходит проявление изображения, то есть превращение скрытого электронного изображения в видимое изображение. Заряженные частицы тонера притягиваются только к тем местам барабана, которые имеют противоположный заряд по отношению к заряду тонера.

Когда видимое изображение на барабане построено, и он покрыт тонером в соответствии с оригиналом, подаваемый лист бумаги заряжается таким образом, что тонер с барабана притягивается к бумаге. Прилипший порошок закрепляется на бумаге за счет нагрева частиц тонера до температуры плавления.

Кроме лазерных принтеров существуют светодиодные принтеры, которые получили своё название из-за того, что полупроводниковый лазер в них заменен линейкой светодиодов. В этом случае не требуется сложная механическая система вращения зеркала. Изображение одной строки на полупроводниковом барабане формируется одновременно.

характеристики

Тип принтера

матричный

струйный

лазерный

Разрешающая способность, dpi

60…240

300…720

300…1200

Производительность (листов А4 в минуту)

2

1…8

4…16

Сканер позволяет ввести в компьютер изображение: фотографию, страницу журнала, книги, рукопись. То есть, сканер -- это устройство ввода.

Можно отсканировать страницу с текстом (как картинку), а затем при помощи специальной программы преобразовать изображение в настоящий текст, с которым можно работать в текстовом редакторе.

Сканирование выполняется при помощи светового луча. Источник света перемещается вдоль оригинала, считывая изображение.

Изображение в компьютер может вводиться с цифрового фотоаппарата и с цифровой видеокамеры. Фотографии и видеофильмы в этих устройствах сохраняются в виде двоичного кода на магнитных дисках. Затем, используя кабельное соединение, их можно переписать на компьютерный диск.

Сканер распознает изображение, автоматически создает его электронную копию, которая может быть сохранена в памяти компьютера.

Отличительные черты сканеров:

- глубина распознования цвета: черно-белые с градацией серого, цветные;

- оптическое разрешение или точность сканирования, измеряется в точках на дюйм (dpi) и определяет количество точек, которые сканер различает на каждом дюйме; стандартные разрешения - 200, 300, 600, 1200 точек на дюйм;

- программное обеспечение: обучаемые сканеры имеют образцы почерков для распознования рукописного текста, интеллектуальные сами обучаются;

- конструкция: ручные, страничные (листовые) и планшетные.

Сканеры находят широкое применение в издательской деятельности, в системах проектирования, анимации. Сканеры незаменимы при создании иллюстративных материалов для презентаций, докладов, рекламы.

Цифровая фотокамера отличается от обычного фотоаппарата тем, что изображение не фиксируется на фотопленке химическим путем, а воспринимается матрицей ПЗС, после чего записывается в микросхемы памяти фотокамеры. информатика чертеж мультипликация художественный

Матрица ПЗС ("Прибор с Зарядовой Связью") состоит из большого количества ячеек. Падающий на отдельный датчик ПЗС свет создает на нем электрический заряд, величина которого определяется интенсивностью падающего света. Изображение делится на множество ячеек, и каждая ячейка реального изображения соответствует ячейке ПЗС. Ячейки реагируют только на яркость, к цвету они безразличны, поэтому для получения цветного изображения перед матрицей ставят цветные фильтры. Каждый из пикселей регистрирует свет либо в красной, либо в зеленой, либо в синей части оптического спектра. Затем изображение обрабатывается в процессоре, и на основе этих трех цветов восстанавливается вся картина.

Основной характеристикой цифровой фотокамеры является количество пикселей матрицы ПЗС. Для представленной фотокамеры это 2,1 млн. пикселей. Глубина цветопередачи для серого изображения 8 бит, для цветного изображения от 10 бит и выше. Разрешение 1600х1200 (интерполированное 2048х1536).

Файлы изображения хранятся в сжатом виде в формате JPEG. Сжатие уменьшает размер файла от десятых долей процента до ста раз. Процесс сжатия приводит к потерям в качестве изображения. В дорогих профессиональных камерах для хранения изображения используют несжатый формат TIFF или несжатый и необработанный формат RAW.

Для записи и хранения изображений используются либо встроенная память, либо сменные носители информации (Compact Flash (Type I, Type II) card, Ultra Compact Flash card и др. с объемом памяти от 8 Мбайт и выше). Основные требования к таким носителям - малые размеры и низкое энергопотребление. Для данной фотокамеры на входящей в комплект карте SM 8 Мбайт можно хранить до 8 снимков размером 1600х1200 или до 22 снимков размером 640х480.

Изображение с фотокамеры поступает в компьтер, где происходит окончательная доводка картинки (ретушь, монтаж и т. д.), записывается во внешнюю память компьютера и распечатывается на принтере.

Список литературы

http://informatikaiikt.narod.ru/obrabotkagraf1.html

http://www.megabook.ru/Article.asp?AID=606862

http://www.esate.ru/page/istoriya-komputernoi-grafiki

http://ru.wikipedia.org/wiki/%CA%EE%EC%EF%FC%FE%F2%E5%F0%ED%E0%FF_%E3%F0%E0%F4%E8%EA%E0

http://compgraphics.info/

http://www.twirpx.com/files/informatics/cgraph/

http://images.yandex.ru/yandsearch?text=%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%B0%D1%8F%20%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA%D0%B0&stype=image&lr=36&noreask=1&source=wiz

http://www.twirpx.com/library/comp/photoshop/

Учебный справочник школьника "Дрофа"

Информатика и ИКТ Н.Д.Угринович

Информатика Л.Босова

Размещено на Allbest.ru

...

Подобные документы

  • Компьютерная графика как область информатики, занимающаяся проблемами получения различных изображений на компьютере. Области применения компьютерной графики. Двумерная графика: фрактальная, растровая и векторная. Особенности трёхмерной графики.

    реферат [756,4 K], добавлен 05.12.2010

  • Компьютерная графика - область информатики, занимающаяся проблемами получения различных изображений. Виды компьютерной графики: растровая, векторная, фрактальная. Программы для создания компьютерной анимации, область применения, форматы хранения.

    реферат [29,1 K], добавлен 16.03.2010

  • Компьютерная графика как область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств, ее классификация и разновидности. Шаги для получения трехмерного изображения, необходимое программное обеспечение.

    презентация [2,1 M], добавлен 26.06.2013

  • Рассмотрение областей применения компьютерной графики. Изучение основ получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. Ознакомление с особенностями растровой и векторной графики. Обзор программ фрактальной графики.

    реферат [192,9 K], добавлен 15.04.2015

  • Компьютерная графика как одно из популярных направлений использования компьютера, ее виды и особенности применения. Порядок и способы создания цифровых изображений, средства и обработка. Программы САПР и их использование в инженерной деятельности.

    реферат [19,1 K], добавлен 14.09.2009

  • Компьютерная графика как инструмент для синтеза (создания) изображений. Характеристика векторного, растрового и фрактального типов представления изображений, трёхмерная графика. Интерфейс программы "Photoshop", пример работы по коррекции фотографий.

    курсовая работа [4,5 M], добавлен 19.01.2011

  • Компьютерная графика и визуализация данных, методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Понятие виртуальности, примеры применения игровой графики: пространство, спрайты, воксели, полигоны.

    реферат [29,0 K], добавлен 03.06.2010

  • Компьютерная графика как наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ. Области применения графических редакторов: Adobe Photoshop и Illustrator, Corel Draw. Растровая и векторная графика.

    презентация [31,7 M], добавлен 17.01.2012

  • Состав, структура, назначение и описание компонентов электронного учебно-методического комплекса "Компьютерная графика". Формы реализации и требования к оформлению. Анализ рынка педагогических программных средств по обучению компьютерной графике.

    курсовая работа [572,0 K], добавлен 19.03.2015

  • Направления и виды компьютерной графики. Векторные и растровые изображения, их отличия. Фрактальная графика, основанная на математических вычислениях. Компьютерная графика в производстве, архитектуре, науке и медицине, искусстве, анимации и Web-дизайне.

    реферат [428,8 K], добавлен 09.12.2013

  • Компьютерная графика как раздел информационных технологий, в котором изучают вопросы получения графических изображений с помощью компьютера. Ее классификация и типы, сравнительная характеристика, признаки: растровая, векторная, фрактальная и трехмерная.

    презентация [2,0 M], добавлен 04.04.2016

  • Виды графических компьютерных изображений, принципы их формирования и типы форматов. Пиксель как основной элемент экранного изображения. Основные проблемы при работе с растровой графикой. Сравнительная характеристика растровой и векторной графики.

    презентация [521,5 K], добавлен 16.01.2012

  • Анализ и постановка задач дисциплины "Компьютерная графика". Разработка структуры, функциональной схемы и программной документации. Руководство программисту и оператору. Выбор и обоснование языка программирования. Описание процедур, функций, оценок.

    дипломная работа [3,6 M], добавлен 16.11.2011

  • Программы для работы с компьютерной графикой, их основные типы и классификация. Сущность понятий, применяемых для описания функций инструментов, методов создания изображений и их преобразований в программе CorelDraw и пакете Photoshop компании Аdobe.

    методичка [318,6 K], добавлен 28.02.2010

  • Основные понятия и задачи, решаемые компьютерной графикой. Характеристика и разновидности компьютерной графики. Цветовые модели RGB, CMYK, HSB. Графические форматы растровых и векторных изображений. Особенности шелкографии, трёхмерная графика и анимация.

    курсовая работа [350,7 K], добавлен 20.02.2012

  • Основные виды компьютерной графики. Достоинства и недостатки векторной графики. Сущность понятия "коэффициент прямоугольности пикселей". Математическая основа фрактальной графики. Сущность понятий "фрактал", "фрактальная геометрия", "фрактальная графика".

    контрольная работа [20,6 K], добавлен 13.07.2010

  • История развития компьютерной графики. Возникновение компьютерной (машинной) графики: научной, деловой, конструкторской, иллюстративной, художественной и рекламной. Компьютерная анимация. Графика для Интернета. Векторная графика и художественные эффекты.

    курсовая работа [692,0 K], добавлен 12.11.2014

  • Определение компьютерной графики, задачи, виды, области применения. Способы распознавания образов, системы технического зрения. Инструменты для синтеза изображений и обработки визуальной информации. Представление цветов, форматы графических файлов.

    шпаргалка [49,9 K], добавлен 13.09.2011

  • Средства и способы создания и обработки графических изображений при помощи компьютерной техники. Растровая, векторная, трёхмерная и фрактальная графика, отличия принципов формирования изображения при отображении на экране монитора. Програмные средства.

    реферат [436,4 K], добавлен 26.03.2010

  • Процесс выделения некоторой части изображения при помощи компьютерной графики. Применение отсечения для устранения ступенчатости. Алгоритмы удаления невидимых линий и поверхностей. Построение теней и формирование фактуры. Способы двумерного отсечения.

    презентация [145,7 K], добавлен 14.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.