Кратчайшие пути в ориентированных графах
Рассмотрение алгоритмов нахождения кратчайших путей в ориентированных графах. Описание и отличительные черты алгоритма Дейкстры, Флойда-Варшалла и Беллмана-Форда. Разработка и реализация программы для нахождения в заданном орграфе кратчайшего пути.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Программирование |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Д.А. Глыбина |
Дата добавления | 20.10.2016 |
Размер файла | 604,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ алгоритмов нахождения кратчайших маршрутов в графе без отрицательных циклов: Дейкстры, Беллмана-Форда и Флойда-Уоршалла. Разработка интерфейса программы на языке C++. Доказательство "правильности" работы алгоритма с помощью математической индукции.
курсовая работа [1,5 M], добавлен 26.07.2013Блок-схема алгоритма Флойда. Разработка его псевдокода в программе Microsoft Visual Studio. Программа реализации алгоритмов Беллмана-Форда. Анализ трудоемкости роста функции. Протокол тестирования правильности работы программы по алгоритму Флойда.
курсовая работа [653,5 K], добавлен 18.02.2013Корректность определения кратчайших путей в графе и рёбра отрицательной длины. Анализ алгоритмов Дейкстры, Беллмана-Форда, Флойда-Уоршелла. Вычисление кратчайших расстояний между всеми парами вершин графа. Топологическая сортировка ориентированного графа.
презентация [449,3 K], добавлен 19.10.2014Понятие и сущность графы, методы решения задач по поиску кратчайших путей в ней. Особенности составления программного кода на языке программирования Pascal с использованием алгоритма Форда-Беллмана, а также порядок ее тестирования с ручным просчетом.
курсовая работа [1,2 M], добавлен 31.07.2010Изучение основных понятий и определений теории графов. Рассмотрение методов нахождения кратчайших путей между фиксированными вершинами. Представление математического и программного обоснования алгоритма Флойда. Приведение примеров применения программы.
контрольная работа [1,4 M], добавлен 04.07.2011Теоретическое исследование вопроса и практическое применение. Общие сведения о графах. Алгоритм Дейкстры. Особенности работы в среде. Программная реализация. Описание алгоритма и структуры программы. Описание программных средств. Текст программы.
курсовая работа [1,0 M], добавлен 27.11.2007Алгоритм сортировки Шейкер: математическое описание задачи и описание алгоритма. Алгоритм покрытия: построение одного кратчайшего покрытия. Описание схемы и работы алгоритма на графах: нахождение кратчайшего пути. Контрольные примеры работы алгоритмов.
курсовая работа [43,8 K], добавлен 19.10.2010Разработка алгоритма реализации на ЭВМ процесса поиска кратчайшего пути в графе методом Дейкстры. Программная реализация алгоритма поиска кратчайшего пути между двумя любыми вершинами графа. Проверка работоспособности программы на тестовых примерах.
реферат [929,8 K], добавлен 23.09.2013Задача о кратчайшем пути как одна из важнейших классических задач теории графов. Общий обзор трех наиболее популярных алгоритмов для решения задачи о кратчайшем пути. Написание программы, которая реализует алгоритм Дейкстры и алгоритм Форда-Беллмана.
курсовая работа [2,1 M], добавлен 23.06.2014Алгоритмы нахождения кратчайшего пути: анализ при помощи математических объектов - графов. Оптимальный маршрут между двумя вершинами (алгоритм Декстры), всеми парами вершин (алгоритм Флойда), k-оптимальных маршрутов между двумя вершинами (алгоритм Йена).
курсовая работа [569,6 K], добавлен 16.01.2012Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.
реферат [39,6 K], добавлен 06.03.2010Описание систем управления процессами маршрутизации пакетов, передаваемых через компьютерную сеть. Изучение методов теории выбора кратчайших путей. Разработка программы маршрутизации данных и определение кратчайших путей их маршрутов методом Дейкстры.
курсовая работа [495,7 K], добавлен 24.06.2013Графы: определения, примеры, способы изображения. Смежные вершины и рёбра. Путь в ориентированном и взвешенном графе. Матрица смежности и иерархический список. Алгоритм Дейкстры - алгоритм поиска кратчайших путей в графе. Работа в программе "ProGraph".
презентация [383,8 K], добавлен 27.03.2011Теория графов и её применения. Разработка программного продукта для решения задач нахождения минимального пути. Анализ надежности и качества ПП "метода Дейкстры". Математическая модель задачи. Алгоритмы Дейкстры на языке программирования Turbo Pascal.
курсовая работа [1,6 M], добавлен 26.03.2013Способ представления графа в информатике. Алгоритмы поиска элементарных циклов в глубину в неориентированных графах. Описание среды wxDev-C++, последовательность создания проекта. Руководство пользователю программы поиска и вывода на экран простых циклов.
курсовая работа [783,2 K], добавлен 18.02.2013Описание методов нахождения и построения эйлеровых циклов в графах при раскрытии содержания цикломатических чисел и фундаментальных циклов. Изучение алгоритма решения задачи "Китайского почтальона" и разработка программы, решающей задачу на языке Си.
курсовая работа [924,3 K], добавлен 09.01.2011Разработка программы в среде Delphi для нахождения кратчайшего пути между стартом, лежащим в одной из вершин многоугольника, и финишем, находящимся на одной из сторон. Установка опорных точек, контроль целостности вводимых данных, методы решения задачи.
курсовая работа [778,8 K], добавлен 19.10.2010Практическое использование алгоритмов для нахождения минимального пути в лабиринте. Разработка программы на языке С++ и в среде Visual C++. Основные способы поиска пути: метод волны и приоритетов. Описание разработанных функций и инструкция пользователя.
дипломная работа [54,3 K], добавлен 16.03.2012Общие сведения об алгоритмах на графах. Кратчайшие расстояния на графах. Задача "Маневры" (Автор - Перепечко С.Н.). Задача "Пирамида Хеопса" (Автор - Котов В.М.). Задача "Эх, дороги" (Автор - Котов В.М.). Задача "Перекрестки" (Автор - Котов В.М.).
курсовая работа [59,8 K], добавлен 05.01.2010Задача нахождения кратчайшего покрытия булевой матрицы. Алгоритмы поиска кратчайших покрытий методом Патрика и методом Закревского. Метод предварительного редуцирования булевой матрицы. Описание программы "Нахождение кратчайшего покрытия булевых матриц".
курсовая работа [884,1 K], добавлен 12.12.2010