История систем распознавания объектов
Анализ классической схемы математического моделирования. Методы распознавания объектов, сигналов, ситуаций, явлений и процессов. Характеристика задач распознавания образов и их типы. Использование искусственных нейронных сетей для распознавания образов.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Информатика |
Вид | реферат |
Язык | русский |
Прислал(а) | Акбар |
Дата добавления | 03.11.2016 |
Размер файла | 277,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.
курсовая работа [462,2 K], добавлен 15.01.2014Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.
дипломная работа [554,8 K], добавлен 06.04.2014Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.
дипломная работа [332,2 K], добавлен 30.11.2012Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа [887,3 K], добавлен 26.11.2013Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.
курсовая работа [645,2 K], добавлен 05.04.2015Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.
курсовая работа [16,2 M], добавлен 21.06.2014Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.
курсовая работа [2,7 M], добавлен 15.08.2011Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.
презентация [523,7 K], добавлен 14.08.2013Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.
реферат [413,6 K], добавлен 10.04.2010Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.
реферат [100,5 K], добавлен 18.01.2014Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа [3,0 M], добавлен 14.11.2013Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.
презентация [31,6 K], добавлен 06.01.2014Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.
презентация [469,2 K], добавлен 15.03.2015Словесный, графический, табличный, программный способы представления алгоритма. Основные конструкции в любом алгоритмическом языке. Теория обнаружения, различения и оценивания сигналов. Радиолокационные системы обнаружения. Система распознавания образов.
презентация [4,8 M], добавлен 09.06.2015Анализ систем распознавания поведения лабораторных мышей. Классификация движений на основе построенных дескрипторов. Существующие методы обнаружения движения, разработка соответствующего программного обеспечения и оценка его эффективности, функции.
дипломная работа [1,1 M], добавлен 16.09.2017Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.
курсовая работа [2,1 M], добавлен 20.09.2014Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.
курсовая работа [1,4 M], добавлен 11.04.2012