Theory of turbulence and modeling of turbulent transport in the atmosphere
The submission of a fully closed model of the turbulent boundary layer, obtained from the Navier-Stokes equations. Study of numerical solutions of equations system of turbulent migration of impurities in the surface atmospheric layer for a large scale.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | английский |
Дата добавления | 27.04.2017 |
Размер файла | 589,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
The Reynolds number calculated on the dynamic roughness parameters is given by
.
This statistical relationship between the dynamic roughness parameters corresponds to the special type of the Nave-Stocks equation solution transformation (2.4). Let's consider small variation of the second velocity scale around the mean value . In this case in the first equation (2.16) and this parameter can be written as follows
where is the parameter characterising the dynamic roughness structure. If , then . This case corresponds to the special type of the dynamic roughness composed of furrows elongated along the streamlines of the mean flow. If , then . It can be considered as the relationship between the scales of the dynamic roughness elements in the X- and Y-directions. In this case fluctuates around the mean value, , and produces the velocity and pressure fluctuation. The velocity gradient on the wall fluctuates with as follows
For we have . Therefore in this case the velocity gradient on the wall is given by
(2.51)
The pressure gradient on the wall also depends on the second velocity scale as
(2.52)
The velocity components near the smooth wall for can be written as follows (see Kutateladze [62])
,
where are the viscous sublayer functions. Substituting the velocity approximation formulas in the x-component of momentum equation and supposing that one can derive
where is the restricted value for . Using equations (2.51)-(2.52) finally we have the dynamic roughness surface equation in case of the steady turbulent boundary layer over a smooth surface
(2.53)
where .
The steady turbulent flow dynamic roughness is realised for . In this case equation (2.53) can be transformed into the quasi-linear differential equation
(2.54)
where .
The point in which is the singular point of the equation (2.54). In this point . As it has been estimated in the numerical experiments for the mean flow, therefore . For the stationary case, i.e. for , the equation (2.54) can be written in the quasi-elliptical form
, (2.55)
were , .
Using the function one can calculate the dynamic roughness surface parameters as follows
(2.56)
In the special case when , equation (2.55) has the periodical solution
where is the amplitude, is the wave number in the y-direction. Therefore the transversal length scale of coherent structures can be estimated as
The predicted length scale is in a good agreement with the experimental value, , obtained by Kline et al. [70]. This type of coherent structures corresponds to the furrows considered above.
In the special case when , the periodical solution of the equation (2.55) is given by
where . Therefore in this case depends on the amplitude . The periodical solution of the first equation (2.56) can be written as
, (2.57)
.
The transversal phase velocity of the dynamic roughness surface disturbances can be determined as . The dynamic roughness length scale depends on the amplitude as follows
.
For the estimated streamwise length scale of coherent structures agrees with the experimental value obtained by Blackwelder & Eckelmann [74], and discussed by Cantwell [52].
In this paper the problems of non-linear theory of turbulent boundary layer have been studied. The algorithm of numerical solution of the problem has been considered. Equation is deduced, connecting constants of non-linear theory.
A fundamental parameter of the turbulent boundary layer length has been determined, which coincides with the position of velocity peak of turbulence energy generation according to Klebanoff [49] and Laufer's [50] data. It is shown that the profile of an average velocity in the boundary layer can be described satisfactory, using only one constant. The Karman constant can be used for this purpose. The second constant of the logarithmic profile can be estimated within this theory. Velocity profile, calculated according to the model suggested, conforms well to the data of direct numerical modelling, to experimental data and models of other authors. Results of velocity intensity pulsation modelling have been presented, as well as their compliance with the results of direct numerical modelling and experimental data. A model of dynamic roughness in turbulent boundary layer has been suggested. It has also been shown that in a stationary case there are two types of periodic solutions. One solution corresponds to dynamic roughness in a kind of furrows, stretched along the main flow. The viscous flow over the structures is a physical mechanism of formation of logarithmic profile of velocity. The second solution corresponds to the perturbations of limited amplitude which have a limited length in the direction of the mean flow. It is shown that the parameters of dynamic roughness, having been calculated on the base of this model, coincide with the data of experiments.
References
Liepmann, H.W., The Rise and Fall of Ideas in Turbulence, American Scientist, 67, pp. 221-228, 1979.
Amirkhanov, M.M, Lukashina, N.S. & Trunev, A. P., Natural recreation resources, state of environment and economical and legal status of coastal resorts, Publishing House "Economics", Moscow, 207 p., 1997 (in Russian).
Marchuk, G. I., Mathematical Modelling in the Environmental Problem, "Nauka", Moscow, 1982 (in Russian).
Borrell P.M., Borrell P., Cvitas T. & Seiler W., Transport and transformation of pollutants in the troposphere. Proc. EUROTRAC Symp., SPB Academic Publishing, Hague, 1994.
Jaecker-Voirol A., Lipphardt M., Martin B., Quandalle, Ph., Salles, J., Carissimo, B., Dupont, E., Musson-Genon, L., Riboud, P.M., Aumont, B., Bergametti, G., Bey, I., Toupance, G., A 3D regional scale photochemical air quality model - application to a 3 day summertime episode over Paris, Air Pollution IV. Monitoring, Simulation and Control, eds. B. Caussade, H. Power & C.A. Brebbia, Comp. Mech. Pub., Southampton, pp. 175-194, 1996.
Borrego, C., Coutinho, M., Carvalho, A.C.& Lemos, S., A modelling package for air quality management in Lisbon, Air Pollution V. Modelling, Monitoring and Management, eds. H. Power, T. Tirabassi & C.A. Brebbia, CMP, Southampton-Boston, pp. 35-44, 1997.
Bozo, L.& Baranka, G., Air quality modelling over Budapest, Air Pollution IV. Monitoring, Simulation and Control, eds. B. Caussade, H. Power & C.A. Brebbia, Comp. Mech. Pub., Southampton, pp. 31-36, 1996.
Marchuk, G.I. & Aloyan, A.E., Global Admixture Transport in the Atmosphere, Proc. Rus. Acad. Sci., Phys. Atmosphere and Ocean, 31, pp. 597-606, 1995.
Moussiopoulos N., Air pollution models as tools to integrate scientific results in environmental policy, Air Pollution III, Vol.1. Theory and Simulation, eds. H. Power, N. Moussiopoulos & C.A. Brebbia, Comp. Mech. Publ., Southampton, pp.11-18, 1995.
Pekar M., Regional models LPMOD and ASIMD. Algorithms, parametrization and results of application to Pb and Cd in Europe scale for 1990, EMEP/MSC-E Report 9/96, Aug, 78 p., 1996. turbulence layer atmosphere
Carruthers, D.J, Edmunds, H.A., McHugh, C.A., Riches, P.J. & Singles, R.J., ADMS Urban - an integrated air quality modelling system for local government, Air Pollution V. Modelling, Monitoring and Management, eds. H. Power, T. Tirabassi & C.A. Brebbia, CMP, Southampton-Boston, pp. 45-58, 1997.
Ni Riain, C., Fisher, B., Martin, C. J. & Littler J., Flow field and Pollution Dispersion in a Central London Street, Proc. of the 1st Int. Conf. on Urban Air Quality: Monitoring and Modelling, ed. R. S. Sokhi, Kluwer Academic Publishers, pp. 299-314, 1998.
Lukashina, N.S. & Trunev, A. P., Principles of Recreation Ecology and Natural Economics, Russian Academy of Sciences, Sochi, 273 p., 1999 (in Russian).
Lukashina, N.S., Amirkhanov, M.M, Anisimov, V.I. & Trunev, A.P., Tourism and environmental degradation in Sochi, Russia, Annals of Tourism Research, 23, pp. 654-665, 1996.
Lenhart, L. & Friedrich, R. European emission data with high temporal and spatial resolution, Air Pollution III Vol.2: Air Pollution Engineering and management, eds. H. Power, N. Moussiopoulos & C.A. Brebbia. Comp. Mech. Pub., Southampton, pp.285-292, 1995.
Oke, T.R., Street design and urban canopy layer climate, Energy and Buildings, 11, pp. 103-111, 1988.
Zilitinkevich, S. Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows, Air Pollution III, Vol.1. Air Pollution Theory and Simulation, eds. H. Power, N. Moussiopoulos & C.A.Brebbia, Comp. Mech. Publ., Southampton, рр.-53-60, 1995.
Arya, S. P., Introduction to Micrometeorology, Academic Press, San Diego, 307 p., 1988.
Stull, R. B, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 p., 1988.
Kaimal, J. C.& Finnigan, J. J., Atmospheric Boundary Layer Flows: Their Structure and Measurements, Oxford University Press, 289 p., 1994.
Monin, A.S. & Obukhov, A.M., Basic Laws of Turbulent Mixing in the Atmospheric surface layer, Trudy Geofiz. Inst. Akad. Nauk SSSR 24 (151), pp. 163-187, 1954.
Monin, A. S., The Atmospheric Boundary Layer, Ann. Rev. Fluid Mech., 22, 1970.
Businger, J.A., Wyangaard, J.C., Izumi, Y. & Bradley, E.F. Flux Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sciences, 28. pp.181-189, 1971.
Businger, J. A., A Note on the Businger-Dyer Profile, Boundary-Layer Meteorol., 42, pp. 145-151, 1988.
Yaglom, A.M., Data on Turbulence Characteristics in the Atmospheric Surface Layer, Izv. Acad. Sci. USSR, Phys. Atmosphere and Ocean, 10, pp. 566-586, 1974.
Dyer, A. J., A Review of Flux-Profile Relationships, Boundary-Layer Meteorol., 7, pp. 363-372, 1974.
Van Ulden, A. & Holtslag, A. A. M., Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications, J. Clim. Appl. Meteorol,. 24, pp. 1196-1207, 1985.
Hanjalic, K.& Launder, B. E., A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows, J. Fluid Mech, 52, pp. 609-638, 1972.
Rodi, W. Calculation of Stably Stratified Shear-layer Flows with a Buoyancy-extended Turbulence Model, Turbulence and Diffusion in Stable Environments, ed. J. C. R. Hunt, Clarendon Press, Oxford, pp. 111-143, 1985.
Mellor, G. L. & Yamada, T. A, Hierarchy of Turbulence Closure Models for Planetary Boundary Layers, J. Atmos. Sci., 31, pp. 1792-1806, 1974.
Mellor, G. L. & Yamada, T., Development of a Turbulence Closure Model for Geophysical Fluid Problems, Rev. Geophys. Space Phys., 20, pp.851-875, 1982.
Wyngaard, J. C. & Cote, O. R., The Evolution of a Convective Planetary Boundary Layer -a Higher-order-closure Model Study, Boundary-Layer Meteorol., 7, pp. 289-308, 1974.
Zeman, O. & Lumley, J. L., Modelling Buoyancy Driven Mixed Layers, J. Atmos. Sci., 33, pp.1974-1988, 1976.
Deardorff, J. W. & Willis, G. E., Further Results from a Laboratory Model of the Convective Boundary Layer, Boundary-Layer Meteorol, 32, pp. 205-236, 1985.
Enger, L., A Higher Order Closure Model Applied to Dispersion in a Convective PBL, Atmos. Environ., 20, pp. 879-894, 1986.
Holt, T. & Raman, S., A Review and Comparative Evaluation of Multilevel Boundary Layer Parameterisations for First Order and Turbulent Kinetic Energy Closure Schemes, Rev. Geophys. Space Phys., 26, pp. 761-780, 1988.
Danilov, S.D., Koprov, B. M. & Sazonov, L. A., Atmospheric Boundary Layer and the Problem of Its Description (Review), Proc. Rus. Acad. Sci., Phys. Atmosphere and Ocean, 31, pp. 187-204, 1995.
Hurley, P. J., An Evaluation of Several Turbulence Schemes for the Prediction of Mean and Turbulent Fields in Complex Terrain, Boundary-Layer Meteorol., 83, pp. 43-73, 1997.
Reynolds, O., On the dynamically theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. R. Soc. London, A 186, 123, 1895.
Boussinesq, J., Theorie de l'ecoulement tourbillat, Mem. Pres. Acad. Sci., 23, p. 46, 1877.
Prandtl, L., Bericht uber untersuchungen zur ausgebildeten turbulenz, Z. Angew. Math. Mech., 5, pp.136-139, 1925.
Prandtl, L., Neuere Ergebnisse der Turbulenzforschung, VDI -Ztschr., 77, 5, p.105, 1933.
Kolmogorov, A.N., The Equations of Turbulent Motion in an Incompressible Fluid, Izv. Acad. Sci. USSR, Phys., 6, pp. 56-58, 1942.
Apsley, D. D. & Castro, I. P., A Limited-Length-Scale-Model for the Neutral and Stable-Stratified Atmospheric Boundary Layer, Boundary Layer Meteorol., 83, pp. 75-98, 1997.
Trunev, A. P., Diffuse processed in turbulent boundary layer over rough surface, Air Pollution III, Vol.1. Theory and Simulation, eds. H. Power, N. Moussiopoulos & C.A. Brebbia, Comp. Mech. Publ., Southampton, pp. 69-76, 1995.
Trunev, A. P., Similarity theory and model of turbulent dusty gas flow over large-scale roughness, Abstr. of Int. Conf. On Urban Air Quality: Monitoring and Modelling, University of Hertfordshire, Institute of Physics, London, p. 3.8, 1996.
Trunev, A. P., Similarity theory for turbulent flow over natural rough surface in pressure and temperature gradients, Air Pollution IV. Monitoring, Simulation and Control, eds. B. Caussade, H. Power & C.A. Brebbia, Comp. Mech. Pub., Southampton, pp. 275-286, 1996.
Trunev, A. P., Similarity theory and model of diffusion in turbulent atmosphere at large scales, Air Pollution V. Modelling, Monitoring and Management, eds. H. Power, T. Tirabassi & C.A. Brebbia, CMP, Southampton-Boston, pp. 109-118, 1997.
Klebanoff, P. S., Characteristics of turbulence in a boundary layer with zero pressure gradient, NACA Tech. Note, 3178, 1954.
Laufer, J., The structure of turbulence in fully developed pipe flow, NACA Tech. Note, 2954, 1954.
Cebeci, T. & Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, Springer-Verlag, NY, 1984.
Cantwell, Brian J., Organized motion in turbulent flow, Ann. Rev. Fluid Mech., 13, pp. 457-515, 1981.
Kuroda, A., Direct Numerical Simulation of Couette-Poiseuille Flows, Dr. Eng. Thesis, the University of Tokyo, Tokyo, 1990.
Coleman, G.N., Ferziger, J. R. & Spalart, P. R., A numerical study of the turbulent Ekman layer, J. Fluid Mech., 213. pp.313-348, 1990.
Trunev, A. P. & Fomin, V. M., Continual model of impingement erosion, J. Applied Mech. Tech. Phys., 6, pp. 113-120, 1985.
Trunev, A. P., Research of bodies erosion distraction in gas flows with admixture particles, Ph.D. Thesis, Inst. Theoretical and Appl. Mech., Novosibirsk, 1986.
Nikolaevskii, V.N., The space averaging in the turbulence theory, Vortexes and Waves, ed. V.N. Nikolaevskii, Mir, Moscow, pp. 266-335, 1984 (in Russian).
Landau, L.D. & Lifshitz, E. M., Hydrodynamics, 3rd ed., Nauka, Moscow, 1986 (in Russian).
Pulliam, T. H. & Steger, J. L., Implicit Finite-Difference Simulations of three-dimensional Compressible Flow, AIAA Journal, 18, p. 159, 1980.
Hirschel, E.H. & Kordulla, W., Shear Flow in Surface-Oriented Coordinates, Friedr. Vieweg & Sohn, Wiesbaden, 1986.
Schlichting, H., Boundary Layer Theory, McGraw-Hill, NY, 1960.
Kutateladze, S.S., The Wall Turbulence, Nauka, Novosibirsk, 1973 (in Russian).
Hairer, E., Norsett, S.P. & Wanner, G., Solving Ordinary Differential Equations 1. Nonstiff Problems, Springer-Verlag, Berlin, 1987.
Cantwell, B. J., Coles, D. E. & Dimotakis, P. E., Structure and entrainment in the plane of symmetry of a turbulent spot, J. Fluid Mech., 87, pp. 641-672, 1978.
Van Driest, E.R., On turbulent flow near a wall, J. Aero. Sci., 23. p.1007, 1956.
Kuroda, A., Kasagi, N. & Hirata, M., A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow, Proc. Int. Symp. on Computational Fluid Dynamics, Nagoya, pp. 1174-1179, 1989.
Nagano, Y., Tagawa, M. & Tsuji, T., Effects of Adverse Pressure Gradients on Mean Flows and Turbulence Statistics in a Boundary Layer, Proc. 8th Symposium on Turbulent Shear Flows, 1992.
Nagano, Y., Kasagi, N., Ota, T., Fujita, H., Yoshida, H. & Kumada, M., Data-Base on Turbulent Heat Transfer, Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, DATA No. FW BL004, 1992.
Smith, R.W., Effect of Reynolds Number on the Structure of Turbulent Boundary Layers, Ph.D. Thesis, Princeton University, Princeton, NJ, 1994.
Kline, S.J , Reynolds, W.C., Schraub, F.A. & Runstadler P.W., The structure of turbulent boundary layers, J. Fluid Mech., 30, pp. 741-773, 1967.
Kriklivy, V.V., Trunev, A.P. & Fomin, V.M., Investigation of two-phase flow in channel with damaging wall, J. Applied Mech. Tech. Phys., 1, pp. 82-87, 1985.
Trunev, A. P. & Fomin, V.M., Surface instability during erosion in the gas-particles stream, J. Applied Mech. Tech. Phys., 3. pp. 78-84, 1986.
Trunev, A. P., Evolution of the surface relief at sputtering by ionic bombardment, Interaction of nuclear particles with a rigid body, Moscow, Vol.1, Part 1, pp. 83-85, 1989.
Blackwelder, R. F. & Eckelmann, H., Streamwise vortices associated with the bursting phenomena, J. Fluid Mech., 94, pp. 577-594, 1979.
Размещено на Allbest.ru
...Подобные документы
Високовольтний імпульсний драйвер MOSFET з синхронним випрямлянням від фірми Intersil. Ключові властивості драйверів SCALE. Концепція захисту драйверів SCALE. Технологія та характеристики драйверів SCALE для IGBT-модулів. Режими роботи драйверів SCALE.
реферат [180,3 K], добавлен 08.11.2010Понятие о протоколе Secure Sockets Layer. "Безопасный канал", основные свойства. Использование протокола, его недостатки. Интерфейс программы EtherSnoop. Фазы протокола диалога. Публичные ключи, особенности распространения. Обмен данными в Интернете.
реферат [1,4 M], добавлен 31.10.2013Основи роботи з пакетом FlexPDE: select, coordinates, variables, definitions, initial values, equations, constraints, extrusion. Оператори і функції програмного пакету. Рівняння руху рідини в циліндричній системі координат. Математичні функції, константи.
дипломная работа [1,4 M], добавлен 08.05.2013Использование CASE-средств для моделирования деловых процессов; совершенствование проектирования информационных систем с помощью программного пакета CA ERwin Modeling Suite: характеристики, возможности визуализации структуры данных и среды развертывания.
реферат [970,5 K], добавлен 20.03.2012Методы физического моделирования. Основные положения теории подобия. Характеристика особенностей метода эквивалентных материалов. Обзор программных продуктов, используемых для геологического моделирования. Современный комплекс Reservoir Modeling System.
контрольная работа [312,0 K], добавлен 30.05.2013Процессоры Duron на ядре Spitfire (Model 3), Morgan (Model 7), Applebred (Model 8), Mobile Duron Camaro. Схема материнской платы EP-8KHAL+. Микросхема "Северный мост". Звуковой чип ALC201A. Конфигурация системной памяти. Регулятор заглушки шины RT9173.
курсовая работа [3,6 M], добавлен 26.03.2013IS management standards development. The national peculiarities of the IS management standards. The most integrated existent IS management solution. General description of the ISS model. Application of semi-Markov processes in ISS state description.
дипломная работа [2,2 M], добавлен 28.10.2011История Network File System. Общие опции экспорта иерархий каталогов. Описание протокола NFS при монтировании удаленного каталога. Монтирование файловой системы Network Files System командой mount. Конфигурации, обмен данными между клиентом и сервером.
курсовая работа [1,3 M], добавлен 16.06.2014Концептуальна модель бази даних, визначення зв’язків між ними, атрибутів сутностей їх доменів. Створення ORM source model та Database model diagram для бази даних "Автотранспортне підприємство". Генерування ddl-скрипта для роботи в СУБД SQL-Server.
курсовая работа [47,3 K], добавлен 17.10.2013Обзор рынка программных продуктов по управлению аудиторией. Анализ системы Sanako Study 500. Ее тестирование на примере дисциплины "Системное программное обеспечение и язык программирования Ассемблер". Расчёт экономической эффективности от его внедрения.
дипломная работа [2,0 M], добавлен 04.06.2012Overview history of company and structure of organization. Characterization of complex tasks and necessity of automation. Database specifications and system security. The calculation of economic efficiency of the project. Safety measures during work.
дипломная работа [1009,6 K], добавлен 09.03.2015Развитие Internet и новых способов общения между людьми. Система управления сайтом Content Manager System. Процесс создания, редактирования и оформления сайтов. Возможность создания различных по правам доступа частей сайта. Критерии выбора CMS.
реферат [35,5 K], добавлен 03.04.2011Основы термического анализа. Предположения для оболочечных и линейных тел. Свойства материалов, зависимость теплопроводности от температуры. Типы контактов, которые используются при теплопередаче. Тепловые граничные условия Thermal Boundary Conditions.
лекция [2,3 M], добавлен 07.03.2013Разработка информационной системы Dentist control system для работы стоматологической клиники - ведения записей о клиентах и врачах. Использование средства автоматизированной разработки приложений Borland C++ Builder 6.0 для работы с базой данных.
курсовая работа [2,3 M], добавлен 29.12.2012Модель релейной системы регулирования и идентификации структуры отдельного характерного элемента ЭКС зубца Р в системе MatLab. Анализ линейных звеньев с применением Control System Toolbox и Simulink. Методы построения переходных и частотных характеристик.
дипломная работа [1,1 M], добавлен 28.01.2015Изменение пользовательского интерфейса приложения Microsoft Office system 2007. Увеличение функциональности приложений для поддержки совместной работы (Office Word 2007, Office Excel 2007, Office PowerPoint 2007, Office Access 2007 и Office Outlook 2007).
контрольная работа [1,5 M], добавлен 13.12.2009Program game "Tic-tac-toe" with multiplayer system on visual basic. Text of source code for program functions. View of main interface. There are functions for entering a Players name and Game Name, keep local copy of player, graiting message in chat.
лабораторная работа [592,2 K], добавлен 05.07.2009UML (Unified Modeling Language) как унифицированный графический язык моделирования. Диаграмма программного обеспечения, диаграмма деятельности, последовательности и реализации UML. IDEF0 как нотация описания бизнес-процессов, основана на методологии SADT.
курсовая работа [460,0 K], добавлен 21.06.2014Описание процесса 3D моделирования как этапа разработки сложных технологических или архитектурных форм. Принцип стереолитографической печати, лазерного спекания, ламинирования. Основы "струйной" объемной печати: Fused Deposition Modeling и Polyjet.
реферат [20,8 K], добавлен 27.03.2012Общая характеристика приложения Microsoft Office system 2007. Особенности форматов Microsoft Office Open XML. Технологии управления миграцией на новую версию. Возможности приложений Office Word, Excel, Access и Office PowerPoint 2007, их интеграция.
реферат [1,0 M], добавлен 13.09.2011