Аспекты практического применения цветового различия для распознавания и выделения границ изображений
Выделение границ на изображениях при помощи цветового различия. Обоснованное применение современных подходов, касающихся распознавания графической информации. Улучшение методов анализа изображений и выделение весовых для распознавания признаков.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Программирование |
Вид | статья |
Язык | русский |
Прислал(а) | Аля |
Дата добавления | 29.04.2017 |
Размер файла | 603,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа [887,3 K], добавлен 26.11.2013Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.
курсовая работа [2,1 M], добавлен 20.09.2014Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.
презентация [469,2 K], добавлен 15.03.2015Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.
курсовая работа [16,2 M], добавлен 21.06.2014Распознавание слов в слитной речи, изолированных слов. Проблема автоматического распознавания речи. Структурная схема устройства выделения признаков речевых сигналов. Моделирование работы блока выделения начала и окончания слова количества звуков на ЭВМ.
дипломная работа [649,5 K], добавлен 13.11.2008Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.
курсовая работа [462,2 K], добавлен 15.01.2014Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Оптическое распознавание символов как механический или электронный перевод изображений рукописного, машинописного или печатного текста в последовательность кодов. Компьютерные программы для оптического распознавания символов и их характеристика.
презентация [855,2 K], добавлен 20.12.2011Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.
курсовая работа [2,7 M], добавлен 15.08.2011Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.
курсовая работа [215,2 K], добавлен 19.10.2010Обзор существующего программного обеспечения для автоматизации выделения границ на изображении. Разработка математической модели обработки изображений и выделения контуров в оттенках серого и программного обеспечения для алгоритмов обработки изображений.
дипломная работа [1,7 M], добавлен 27.03.2013Литературный обзор методов распознавания кромок для схожих задач. Объекты в приложении и их отображение. Генерация выходных данных. Алгоритм распознавания линии (графика), отличный от градиентных подходов и использующий алгоритм предварительной обработки.
дипломная работа [711,8 K], добавлен 27.04.2014Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа [3,0 M], добавлен 14.11.2013Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.
курсовая работа [890,9 K], добавлен 07.12.2013Определение компьютерной графики, задачи, виды, области применения. Способы распознавания образов, системы технического зрения. Инструменты для синтеза изображений и обработки визуальной информации. Представление цветов, форматы графических файлов.
шпаргалка [49,9 K], добавлен 13.09.2011Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.
презентация [31,6 K], добавлен 06.01.2014Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.
презентация [523,7 K], добавлен 14.08.2013Условия применения и технические требования для работы программно-аппаратной платформы. Система распознавания лиц VOCORD Face Control. Система распознавания текста ABBYY FineReader. Алгоритмы и методы, применяемые в программе. Алгоритм хеширования MD5.
дипломная работа [1,8 M], добавлен 19.01.2017Строение артикуляционного аппарата человека с точки зрения возможности распознавания речи по артикуляции. Комплекс параметров артикуляции на основе контура внутренней области губ. Реализация модуля распознавания фонем русской речи по изображениям губ.
дипломная работа [3,1 M], добавлен 19.08.2012