Применение методов интеллектуального анализа данных для решения задач классификации в программной среде RapidMainer

Изучение технологии решения задач интеллектуального анализа данных. Определение типа вина, обнаружение кишечной палочки методами "нейронная сеть", "байесовский классификатор", "линейная регрессия", "деревья принятия решений"," k-ближайших соседей".

Рубрика Программирование, компьютеры и кибернетика
Предмет Интеллектуальная обработка данных
Вид практическая работа
Язык русский
Прислал(а) Hope
Дата добавления 08.05.2017
Размер файла 31,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.

    контрольная работа [2,0 M], добавлен 13.06.2014

  • Интеллектуальный анализ данных как метод поддержки принятия решений, основанный на анализе зависимостей между данными, его роль, цели и условия применения. Сущность основных задач интеллектуального анализа: классификации, регрессии, прогнозирования.

    контрольная работа [25,8 K], добавлен 08.08.2013

  • Основы теории классификаторов. Идентификация, четкая и нечеткая классификация. Обучающие и тестовые последовательности наборов данных. Популярные метрики (меры) оценки расстояния между образами. Дискриминантный анализ. Деревья решений. Логический вывод.

    лекция [596,5 K], добавлен 28.12.2013

  • Разработка комплекса интеллектуального анализа данных, получаемых в процессе работы коммерческого предприятия розничной торговли. Исследование стационарности ассоциаций, выявление частоты появления ассоциаций. Скрипты для создания баз данных и таблиц.

    курсовая работа [706,3 K], добавлен 07.08.2013

  • Особенности решения задач нелинейного программирования различными методами для проведения анализа поведения этих методов на выбранных математических моделях нелинейного программирования. Общая характеристика классических и числовых методов решения.

    дипломная работа [2,4 M], добавлен 20.01.2013

  • Классификация методов анализа по группам. Сбор и хранение необходимой для принятия решений информации. Подготовка результатов оперативного и интеллектуального анализа для эффективного их восприятия потребителями и принятия на её основе адекватных решений.

    контрольная работа [93,2 K], добавлен 15.02.2010

  • Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".

    курсовая работа [2,2 M], добавлен 29.05.2015

  • Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.

    курсовая работа [436,9 K], добавлен 14.12.2022

  • Применение методов многомерного анализа для визуализации взаимосвязей web и социальных сетей в социологических исследованиях. Системы интеллектуального поиска данных Nigma.ru, Wolfram Alpha и Quintura. Социологическая информация и эмпирические данные.

    презентация [2,6 M], добавлен 09.10.2013

  • Краткие сведения о системах принятия решения в режиме показа формул и в режиме пользователя. Принципы решения задач оптимизации. Построение математической модели. Диаграмма "Оптимизация плана перевозок". Создание таблицы БД в Access: база данных, запросы.

    курсовая работа [482,3 K], добавлен 12.08.2012

  • Пример дерева решений. Анализ древовидной структуры данных. Предикторные (зависимые) переменные как признаки, описывающие свойства анализируемых объектов. Решение задач классификации и численного прогнозирования с помощью деревьев классификации.

    презентация [391,1 K], добавлен 09.10.2013

  • Алгоритмы кластеризации данных, отбора факторов, построения множественной линейной регрессии, оценки параметров процесса на скользящем постоянном интервале. Решение задач анализа данных на нейронных сетях и результаты моделирования нелинейных функций.

    контрольная работа [1,5 M], добавлен 11.01.2016

  • Обзор моделей анализа и синтеза модульных систем обработки данных. Модели и методы решения задач дискретного программирования при проектировании. Декомпозиция прикладных задач и документов систем обработки данных на этапе технического проектирования.

    диссертация [423,1 K], добавлен 07.12.2010

  • Исследование производительности труда методом компонентного и кластерного анализов. Выбор значащих главных компонент. Формирование кластеров. Построение дендрограммы и диаграммы рассеивания. Правила кластеризации в пространстве исходных признаков.

    лабораторная работа [998,9 K], добавлен 25.11.2014

  • Использование информационных технологий для решения транспортных задач. Составление программ и решение задачи средствами Pascal10; алгоритм решения. Работа со средствами пакета Microsoft Excel18 и MathCad. Таблица исходных данных, построение диаграммы.

    курсовая работа [749,1 K], добавлен 13.08.2012

  • Принципы решения задач линейного программирования в среде электронных таблиц Excel, в среде пакета Mathcad. Порядок решения задачи о назначении в среде электронных таблиц Excel. Анализ экономических данных с помощью диаграмм Парето, оценка результатов.

    лабораторная работа [2,0 M], добавлен 26.10.2013

  • Разработка технологии обработки информации, структуры и формы представления данных. Проектирование программных модулей. Блок-схема алгоритма и исходный код программы анализа арифметического выражения, синтаксического анализа простой программы на языке С.

    курсовая работа [2,4 M], добавлен 12.12.2011

  • Проблема гидроакустической классификации целей как актуальная проблема современной гидроакустики. Применение нейросетевых алгоритмов и отдельных парадигм для решения научно-технических задач. Выбор структуры нейронной сети для распознавания изображений.

    реферат [284,2 K], добавлен 04.05.2012

  • Изучение возможностей среды статистических вычислений R для классификации многомерных неоднородных ассиметричных данных с помощью Expectation-Maximization (EM) алгоритмов. Использование R для анализа модели смеси вероятностных распределений (FMM).

    реферат [1,8 M], добавлен 09.12.2014

  • Подготовка проектных решений по технологии обработки данных в диалоговом режиме для решения экономических задач по учету труда и заработной платы. Разработка информационного обеспечения, технологии и алгоритмов решения задачи, диалогового приложения.

    лабораторная работа [576,4 K], добавлен 09.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.