Алгоритм и методы обнаружения и распознавания жестов руки на видео в режиме реального времени

Разработка алгоритма анализа потокового видео и распознавания жестов. Создание методов на основе 2D и 3D модели объекта. Характеристика способа Виолы-Джонса с использованием признаков Хаара. Обнаружение объектов на изображениях в реальном времени.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 14.05.2017
Размер файла 116,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АЛГОРИТМ И МЕТОДЫ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ЖЕСТОВ РУКИ НА ВИДЕО В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

Современный уровень развитие информационных технологий, алгоритмов и методов способствует появлению новых интерфейсов взаимодействия пользователей и устройств. Одним из перспективных вариантов из таковых являются разработка и исследование человеко-машинных интерфейсов, основанных на распознавании объектов. Перед разработчиками подобных интерфейсов ставится задача использования естественных для человека способов общения с компьютерами с помощью жестов, голоса, мимики и других модальностей.

Одной из основных задач расширения взаимодействия человека с компьютером является разработка общей методологии обнаружения и распознавания динамических жестов человека, совершаемых руками. Для решения этой задачи необходимо на основе анализа существующих методов обнаружения и распознавания жестов человека, разработать алгоритм анализа потокового видео и распознавания жестов.

В настоящее время существует множество различных методов обнаружения объекта на изображении. Эти методы можно разделить на три основные группы:

- скелетные методы;

- методы на основе 3D модели объекта;

- методы на основе 2D модели объекта.

В скелетных методах исследуется контур силуэта: обычно отыскиваются углы, выступы, впадины и другие точки с высокими значениями кривизны. Для получения информации о форме контура применяются различные представления границы объекта.

В методах на основе 3D модели руки представляют в виде сложных трехмерных поверхностей и классифицируются с помощью нейронных сетей

Метод 2D распознавания схож с предыдущим, но использует двумерное изображение вместо объемных моделей.

Каждый из методов имеет преимущества и недостатки. Поскольку при разработке алгоритма объектом обнаружения на изображении является рука, то первый метод можно исключить из-за неудобства использования контура для определения конкретного жеста. Недостатком метода на основе 3D модели является его ресурсоемкость. Построение 3D модели, обучение нейронной сети и ее использование могут потребовать значительных ресурсов, так же не стоит забывать, что для использования данного метода требует камеры с возможностью определения глубины изображения. Поэтому чаще всего используются 2D методы, так как в них снижается вычислительная сложность и отпадает необходимость в специальном оборудовании, поскольку для получения изображения может быть использована обычная веб-камера. Поскольку 2D методы являются менее точными, возникает необходимость в их усовершенствовании для получения не ресурсоемкого и эффективного алгоритма распознавания объектов.

Одним из перспективных методов распознавания образов считается метод Виолы-Джонса -- алгоритм, позволяющий обнаруживать объекты на изображениях в реальном времени. Этот метод предложен в 2001 году Полом Виолой и Майклом Джонсом. Данный метод является основополагающим для поиска объектов на изображении в реальном времени в большинстве существующих алгоритмов распознавания и идентификации. Так же он является одним из лучших по соотношению эффективности распознавания и скорости работы. Алгоритм показывает отличные результаты и распознает объекты под небольшим углом, примерно до 30 градусов, и при различных условиях освещенности.

Основные принципы, на которых основан метод:

1. Возможность представления изображения в интегральном виде, что позволяет вычислять быстро необходимые объекты;

2. Использование признаков Хаара, т.е. признаков цифрового изображения, используемых в распознавании образов, с помощью которых происходит поиск нужного объекта;

3. Применение алгоритма бустинга (от англ. boost- улучшение, усиление) для выбора наиболее подходящих признаков для искомого объекта на данной части изображения, процедуры последовательного построения композиции алгоритмов машинного обучения, когда каждый следующий алгоритм стремится компенсировать недостатки композиции всех предыдущих алгоритмов;

4. Использование каскадов признаков для быстрого отбрасывания окон, где не найден объект.

Метод Виолы-Джонса с использованием признаков Хаара является одним из лучших алгоритмов для решения задач обнаружения объектов на изображениях в реальном времени, используя двухмерные изображения. Особенностью признаков Хаара, является наибольшая, по сравнению с остальными признаками, скорость, поэтому, для решения задачи построения алгоритма обнаружения руки в реальном времени, возьмём за основу метод Джонса - Виолы.

Первостепенной задачей во многих методах распознавания объектов в реальном времени является интегральное представление изображения. Оно используется, и в вейвлет-преобразованиях - интегральных преобразованиях, которые представляет собой свертку функции с сигналом, и в фильтрах Хаара - позволяющих анализировать различные частотные компоненты данных, в SURF - методе поиска особых точек изображения и создания их дескрипторов, инвариантных к масштабу и вращению, а также многих других алгоритмах. Интегральное представление позволяет быстро рассчитывать суммарную яркость произвольного прямоугольника, причем время расчета не зависит от площади прямоугольника.

Интегральное представление изображения представляет собой матрицу, размерность которой совпадает с размерностью исходного изображения. Элементы матрицы рассчитываются по следующей формуле:

где I(i,j) -- яркость пиксела исходного изображения.

Каждый элемент матрицы II[x,y] представляет собой сумму пикселов в прямоугольнике от (0,0) до (x,y). Расчёт матрицы занимает линейное время, пропорциональное числу пикселов в изображении.

Расчет матрицы можно производить по рекуррентной формуле:

По такой интегральной матрице можно очень быстро вычислить сумму пикселей произвольного прямоугольника, произвольной площади. Пусть в прямоугольнике ABCD есть интересующий нас объект D.

Из рисунка 1 понятно, что сумму внутри прямоугольника можно выразить через суммы и разности смежных прямоугольников по следующей формуле: потоковый видео распознавание жест

Для сравнения изображений используем каскад Хаара. Каскад Хаара -- это набор признаков, для которых считается их свёртка с изображением. Признак Хаара -- отображение f: X => Df, где Df -- множество допустимых значений признака. Если заданы признаки f1,…,fn, то вектор признаков x = (f1(x),…,fn(x)) называется признаковым описанием объекта x Ѓё X. Признаковые описания допустимо отождествлять с самими объектами. При этом множество X = Df1* …* Dfn называют признаковым пространством.

Чаще всего используются прямоугольные признаки, изображенные на рисунке 2 и называемые примитивами Хаара:

Рисунок 2 - Примитивы Хаара

В более расширенных методах используются дополнительные признаки рис. 3.

Рисунок 3 - Дополнительные признаки

Использования каскада Хаара имеет следующие плюсы:

1. Описывают те знания о классе объектов, которые трудно выделить на конкретном числе обучаемых данных.

2. Устойчивость к смене освещения, даже если это локальная смена освещения, устойчивость к шумам (примитивы представляют собой простейший полосовой фильтр).

3. Если примитивы были не очень маленькие, то сильно устойчивее корреляции при изменении масштаба (размер примитивов при этом не будет влиять на точность, если обход с маленьким шагом).

4. Если признаки на большом изображении рассчитать заранее и при сдвиге окна поиска брать уже посчитанные и актуальные для него -- поиск будет значительно быстрее корреляции (нужно сравнить меньшее количество элементов).

5. Такие системы работают гораздо быстрее, чем системы работающие напрямую с пикселями.

Для выбора наиболее подходящих признаков для искомого объекта на части изображения используют алгоритм бустинга. Данный метод позволяет усилить простые классификаторы путём комбинирования примитивных «слабых» классификаторов в один «сильный». Под «силой» классификатора в данном случае подразумевается эффективность (качество) решения задачи классификации.

Развитием данного подхода явилась разработка более совершенного семейства алгоритмов бустинга - AdaBoost (adaptive boosting - адаптированное улучшение), предложенная Йоавом Фройндом (Freund) и Робертом Шапиром (Schapire) в 1999 году, который может использовать произвольное число классификаторов и производить обучение на одном наборе примеров, поочередно применяя их на различных шагах.

Видеопоток, получаемый с помощью видеокамеры, представляет собой последовательность кадров. Для каждого кадра вычисляется его интегральное изображение. Затем кадр сканируется окном малого размера (субокном), содержащим признаки Хаара.

Для каждого i-го признака соответствующий классификатор определяется формулой:

где z - субокно; иi - пороговое значение; pi - направление знака неравенства; fj - признак Хаара.

Таким образом, на основе проведённого анализа выбора оптимальных алгоритмов и методов обнаружения и распознавания жестов руки на видео в режиме реального времени разработан усовершенствованный алгоритм, который позволяет уменьшить вероятность ложных обнаружении? и повысить быстродействие работы системы. Данный алгоритм основан на методе Виолы-Джонса с использованием признаков Хаара и состоит из следующих этапов:

1. Предварительная подготовка изображения:

а) Изменение размера изображения;

б) Перевод изображения в полутоновое;

в) Бинаризация изображения;

г) Пороговое преобразование;

д) Операции морфологической обработки изображения.

2. Обнаружение руки и параметров жеста:

а) Интегральное представление изображения;

б) Использование метода Виолы-Джонса;

в) Если на изображении найдена рука, то определить параметры жеста (количество не зажатых пальцев, положение руки и др.).

3. Распознавание жеста:

а) Для каждого типа жестов определены свои каскады классификаторов Хаара;

б) Если определенные классификаторы Хаара сработали и найдены параметры к какому-либо типу, то определен жест.

Схематически алгоритм представлен на рисунке 4.

В результате разработанный алгоритм позволяет уменьшить вероятность ложных обнаружении? и повысить быстродействие работы системы, помогает избавиться от ограничении? в виде помех на изображении и неразличимого объекта на фоне с помощью предварительной обработки изображения, так как данный метод работает гораздо лучше с полутоновыми более четкими изображениями, также избавиться от проблем, связанных с углом наклона руки путем тренировки новых каскадов.

Рисунок 4 - Алгоритм распознания жестов

Данный подход является универсальным, расширяемым и если использовать достаточное количество каскадов классификаторов, то метод нахождения работает очень быстро и практически безошибочно.

Список литературы

1. Гонсалес P., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.

2. Зайцева Г.Л. Жестовая речь. Дактилология: Учеб. для студ. Высш. Учеб. Заведений.- М.: Гуманит. Изд. центр ВЛАДОС, 2004.-192 с.

3. Форсайт Д., Понс Ж. Компьютерное зрение. Современный подход / Пер. с англ. А.В. Назаренко и И.Ю. Дорошенко.- М.: Издат. дом "Вильяме", 2004.- 928 с.

4. Хуанг Т.С. и др. Быстрые алгоритмы в цифровой обработке изображений. - М.: Радио и связь, 1984. - 224 с.

5. Шапиро Л., Стокман Д. Компьютерное зрение / Пер. с англ.-М.:БИНОМ. Лаборатория знаний, 2006.-752 с.

Аннотация

АЛГОРИТМ И МЕТОДЫ ОБНАРУЖЕНИЯ И РАСПОЗНАВАНИЯ ЖЕСТОВ РУКИ НА ВИДЕО В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

Мурлин Алексей Георгиевич к.т.н., доцент

Кубанский государственный аграрный университет, Кубанский государственный технологический университет, г. Краснодар, Россия

Пиотровский Дмитрий Леонидович д.т.н., профессор

Кубанский государственный технологический университет, г. Краснодар, Россия

Руденко Елизавета Алексеевна студент

Кубанский государственный технологический университет, г. Краснодар, Россия

Янаева Марина Викторовна к.т.н., доцент

Кубанский государственный аграрный университет, Кубанский государственный технологический университет, г. Краснодар, Россия

Статья посвящена исследованию методов обнаружения и распознавания жестов руки в режиме реального времени и написанию модифицированного алгоритма на их основе

Ключевые слова: МЕТОДЫ ОБНАРУЖЕНИЯ ОБЪЕКТА, МЕТОДЫ РАСПОЗНАВАНИЯ, АЛГОРИТМ

ALGORITHMS AND METHODS FOR DETECTION AND RECOGNITION OF HAND GESTURES ON VIDEO IN REAL TIME

Murlin Aleksey Georgievich

Cand.Tech.Sci, associate professor

Kuban State Technological University, Krasnodar, Russia

Piotrovskiy Dmitriy Leonidovich professor

Kuban State Technological University, Krasnodar, Russia

Rudenko Elizaveta Alekseevna student

Kuban State Technological University, Krasnodar, Russia

Yanaeva Marina Victorovna

Cand.Tech.Sci, associate professor

Kuban State Agrarian University, Kuban State Technological University, Krasnodar, Russia

The article deals with methods for detection and recognition of hand gestures on video in real time and writing a modified algorithm on their basis

Keywords: METHODS OF OBJECT DETECTION, RECOGNITION METHODS, ALGORITHM

Размещено на Allbest.ru

...

Подобные документы

  • Этапы разработки системы реального времени для распознавания лиц на статическом изображении в условиях сложных сцен. Основные понятия алгоритма AdaBoost. Использование примитивов Хаара для описания свойств изображений. Среда разработки "Borland Delphi".

    курсовая работа [6,8 M], добавлен 06.01.2011

  • Словесный, графический, табличный, программный способы представления алгоритма. Основные конструкции в любом алгоритмическом языке. Теория обнаружения, различения и оценивания сигналов. Радиолокационные системы обнаружения. Система распознавания образов.

    презентация [4,8 M], добавлен 09.06.2015

  • Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа [462,2 K], добавлен 15.01.2014

  • Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.

    дипломная работа [332,2 K], добавлен 30.11.2012

  • Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа [2,7 M], добавлен 15.08.2011

  • Обзор существующих алгоритмов для обнаружения лиц. Выравнивание лица с помощью разнообразных фильтров. Использование каскадного классификатора Хаара для поиска лиц на изображении. Распознавание лиц людей с использованием локальных бинарных шаблонов.

    дипломная работа [332,4 K], добавлен 30.09.2016

  • Анализ систем распознавания поведения лабораторных мышей. Классификация движений на основе построенных дескрипторов. Существующие методы обнаружения движения, разработка соответствующего программного обеспечения и оценка его эффективности, функции.

    дипломная работа [1,1 M], добавлен 16.09.2017

  • Рассмотрение основных принципов и методов проектирования систем реального времени. Описание конструктивных и функциональных особенностей объекта управления, построение диаграммы задач. Выбор аппаратной архитектуры, модели процессов-потоков, интерфейса.

    курсовая работа [1,2 M], добавлен 19.01.2015

  • Анализ основных аспектов технологии компьютерного зрения, необходимых для выполнения работы. Изучение характеристик библиотеки OpenCV, оценка актуальности работы по распознаванию жестов рук. Поэтапный отчет о работе над программным обеспечением.

    курсовая работа [669,9 K], добавлен 20.05.2017

  • Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.

    курсовая работа [1,0 M], добавлен 05.01.2013

  • Разработка программной базы для исследований в области распознавания речи и поиска ключевых слов в ней. Расчет mel-фильтров. Скрытые марковские модели. Применение в алгоритме сверточного декодирования Витерби. Методы визуализации и обработки аудиоданных.

    курсовая работа [1,1 M], добавлен 01.06.2015

  • Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа [16,2 M], добавлен 21.06.2014

  • Распространение DVD-дисков в современном мире. Физика работы привода и носители DVD. Характеристики и требования к существующим приводам. Запись и воспроизведение высококачественного видео и аудио в реальном времени. Безопасные приемы работы на ПК.

    дипломная работа [1,4 M], добавлен 26.06.2010

  • Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.

    дипломная работа [887,3 K], добавлен 26.11.2013

  • Анализ физических предпосылок селекции движущихся малоразмерных наземных целей по спектральным параметрам. Разработка алгоритмов обнаружения МНЦ и повышения эффективности их распознавания в интересах радиолокационных станций разведки и целеуказания.

    дипломная работа [830,3 K], добавлен 28.04.2009

  • Создание титров с использованием видео-редактора Sony Vegas Pro 10.0 и графического редактора. Придание способности двигаться и видимости жизни объектам. Анимация в среде 3D Studio Max 2010. Воспроизведение визуализированной последовательности кадров.

    курсовая работа [2,0 M], добавлен 17.01.2013

  • Литературный обзор методов распознавания кромок для схожих задач. Объекты в приложении и их отображение. Генерация выходных данных. Алгоритм распознавания линии (графика), отличный от градиентных подходов и использующий алгоритм предварительной обработки.

    дипломная работа [711,8 K], добавлен 27.04.2014

  • Условия применения и технические требования для работы программно-аппаратной платформы. Система распознавания лиц VOCORD Face Control. Система распознавания текста ABBYY FineReader. Алгоритмы и методы, применяемые в программе. Алгоритм хеширования MD5.

    дипломная работа [1,8 M], добавлен 19.01.2017

  • Обзор алгоритмов распознания объектов на двумерных изображениях. Выбор языка программирования. Обнаружение устойчивых признаков изображения. Исследование алгоритмов поиска объектов на плоскости. Модификация алгоритма поиска максимума дискретной функции.

    дипломная работа [1,0 M], добавлен 16.06.2013

  • Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.

    курсовая работа [2,1 M], добавлен 20.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.