Сравнительный анализ алгоритмов обучения искусственной нейронной сети
Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 176,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Сравнительный анализ алгоритмов обучения искусственной нейронной сети
Е.В. Пучков
Методы обучения искусственных нейронных сетей (ИНС) разделяют на четыре категории: нулевого порядка, первого порядка, второго порядка и нелокальные модификации одноточечных методов. Поскольку целевая функция в задачах обучения многоэкстремальная, для нахождения глобального экстремума используют генетические алгоритмы, методы облака, рестартов, поколений, модифицированный метод многогранника. Более подробно с ними можно ознакомиться в [1 - 4].
В основе многих алгоритмов обучения ИНС типа многослойный персептрон лежит итерационный процесс корректировки весовых коэффициентов , для которого необходимо выбрать направление движения и шаг [1]:
,
где вектор - направление движения; - размер шага; - порядковый номер текущей итерации. Благодаря известному методу обратного распространения ошибки можно произвести декомпозицию сложной задачи обучения.
В статье проводится сравнение алгоритмов обучения ИНС таких, как генетический [5], адаптивный [6] и гибридный [7]. Использованы данные для задачи классификации «Ирисы Фишера» [8], в качестве экспериментальной среды выбрана веб-версия нейроэмулятора NeuroNADS [9, 10]. Построены комитеты размером 10 полносвязных двухслойных нейронных сетей с применением каждого алгоритма. Количество нейронов в скрытом слое - 9 (согласно теореме Колмогорова-Арнольда-Хехт-Нильсена). Критерий остановки обучения ИНС - среднеквадратическая ошибка со значением 0,01, размер шага - 0,1. Примеры из обучающей выборки подавались случайно. В качестве функции активации нейронов использовались простые сигмоиды.
В последнее время часто решают задачи поиска глобального экстремума с помощью генетических алгоритмов. Обучение ИНС с помощью генетического алгоритма происходит в два этапа. На первом - формируются новые хромосомы, на втором - отбираются наилучшие хромосомы в популяцию. В качестве хромосомы выступают веса нейронов ИНС.
,
где - хромосома; - индекс представителя популяции; - вес нейрона.
Новые хромосомы образуются в результате скрещивания и различных видов мутаций, которые можно проводить в произвольном порядке в пределах одной эпохи. Хромосома, соответствующая заданному критерию качества (в случае с ИНС - это ошибка обучения), будет отобрана в качестве наилучшей. нейронный сеть гибридный адаптивный
Результаты применения генетического алгоритма представлены на рис.1.
Рис. 1. - График зависимости ошибки обучения от количества эпох для генетического алгоритма (1-лучший, 2-худший результаты)
Генетический алгоритм справился с поставленной задачей, но интенсивность изменения ошибки обучения резко снижалась после 15 эпох. Среднее время обучения ИНС составило 109 эпох.
В методе сопряженных градиентов, который относится к методам обучения первого порядка, формулу поиска минимума на основе предыдущих направлений можно обобщить [5]:
,
где вектор - направление движения; - направление антиградиента на текущей итерации ; -коэффициент, определяющий вес -го градиента; - количество запоминаемых градиентов. При получим простой градиентный спуск, а при , суммируя все предыдущие направления - методы сопряженных градиентов. Настройка параметра и последовательностей , из формул (1) и (2), соответственно, позволит использовать более гибкое решение - адаптивный алгоритм обучения ИНС [5].
На рис. 2 представлены графики зависимости ошибки обучения от количества эпох для адаптивного алгоритма.
Рис. 2. - График зависимости ошибки обучения от количества эпох для адаптивного алгоритма (1-лучший, 2-худший результаты)
Среднее время обучения ИНС с применением адаптивного алгоритма составило 22 эпохи, что в 5 раз меньше, чем среднее время обучения генетическим алгоритмом. Сходимость алгоритма к локальному минимуму наступала за 5-7 эпох.
Последний метод, который мы будем использовать для обучения ИНС, основан на последовательном применении адаптивного и генетического алгоритмов [6]. Отметим, что при переходе к генетическому алгоритму добавляется к популяции хромосома - ИНС, обученная адаптивным алгоритмом. В качестве критерия перехода используется значение ошибки обучения равное 0,015. На рис. 3 изображены графики зависимости ошибки обучения от количества эпох для гибридного метода.
Рис. 3. - График зависимости ошибки обучения от количества эпох для гибридного метода (1-лучший, 2-худший результаты)
По результатам сравнения адаптивный алгоритм сходится быстрее, чем генетический и гибридный (таблица №1). Окончательный выбор алгоритма будет зависеть от конкретный задачи, потому что в задаче со сложной целевой многоэкстремальной функцией, в которой с помощью гибридного алгоритма можно быстрее вычислить решение в окрестности глобального минимума, адаптивный алгоритм может показать результаты хуже [7].
Отметим, что данные результаты не могут в полной мере определять точность классификации и точность метода, поскольку не проводилась оценка количества распознанных экземпляров ириса и не исследовалась обобщающая способность построенных ИНС.
Таблица №1. Время обучения ИНС (эпохи)
Номер ИНС |
Алгоритм |
Гибридный метод |
||
генетический |
адаптивный |
|||
1 |
32 |
20 |
38 |
|
2 |
54 |
21 |
86 |
|
3 |
70 |
16 |
71 |
|
4 |
130 |
13 |
35 |
|
5 |
101 |
35 |
96 |
|
6 |
156 |
20 |
131 |
|
7 |
80 |
12 |
52 |
|
8 |
168 |
41 |
148 |
|
9 |
136 |
38 |
37 |
|
10 |
164 |
6 |
103 |
|
Среднее |
109 |
22 |
80 |
Литература
1. Хайкин С. Нейронные сети: полный курс, 2-е изд.; - пер. с англ/ С. Хайкин. - М.: Издательский дом «Вильямс», 2006. - 1104 с.
2. Тархов Д.А. Нейронные сети. Модели и алгоритмы. Кн.18: справочное издание. (Серия "Нейрокомпьютеры и их применение"). - М. : Радиотехника, 2005. - 256 с.
3. Бодянский Е.В., Руденко О.Г. Искусственные нейронные сети: архитектуры, обучение, применения. - Харьков: ТЕЛЕТЕХ, 2004. - 369 с.
4. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. - М.: Финансы и статистика, 2002. - 344 с.
5. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы; пер. с польск. И. Д. Рудинского. - М.: Горячая линия -Телеком, 2006. - 452 c.
Размещено на Allbest.ru
...Подобные документы
Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа [2,3 M], добавлен 25.03.2014Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация [98,6 K], добавлен 16.10.2013Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат [654,2 K], добавлен 09.06.2014Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат [347,6 K], добавлен 17.12.2011Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа [2,2 M], добавлен 12.11.2010Разработка программы, моделирующей процессы обучения, работы и прогнозирования ИНС с использованием постоянного, а также адаптивного шага обучения. Исследование поведения системы в зависимости от количества входов при постоянном шаге самообучения.
контрольная работа [92,5 K], добавлен 16.10.2011Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа [1,0 M], добавлен 28.12.2015Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа [4,1 M], добавлен 25.02.2015Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа [2,2 M], добавлен 07.06.2012Задача анализа деловой активности, факторы, влияющие на принятие решений. Современные информационные технологии и нейронные сети: принципы их работы. Исследование применения нейронных сетей в задачах прогнозирования финансовых ситуаций и принятия решений.
дипломная работа [955,3 K], добавлен 06.11.2011Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.
презентация [1,4 M], добавлен 14.10.2013Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике [797,8 K], добавлен 13.04.2015