Компьютерная модель "хищник-жертва"
Экологическое моделирование и его роль в исследовании окружающей среды. Использование математических моделей для установки закономерностей и тенденций развития популяций. Закон периодического цикла Вито Вольтерра – процесс уничтожения жертвы хищником.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 03.06.2017 |
Размер файла | 172,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Компьютерная модель "хищник-жертва"
Казачков Игорь Алексеевич
Гусева Елена Николаевна
Аннотация
Данная статья посвящена обзору компьютерной модели "хищник-жертва". Проведенное исследование позволяет утверждать, что экологическое моделирование играет огромную роль в исследовании окружающей среды. Данная проблематика имеет многогранный характер.
Ключевые слова: геометрическая прогрессия роста, математическое моделирование, экологическое моделирование
Для исследования окружающей нас среды используют экологическое моделирование. Математические модели используют в тех случаях, когда нет естественной среды и нет естественных объектов, она помогает сделать прогноз влияния разных факторов на исследуемый объект. Данный метод берет на себя функции проверки, построения и интерпретацию полученных результатов. На основе таких форм экологическое моделирование занимается оценкой изменений, окружающей нас среды.
В настоящий момент подобные формы используется для изучения окружающей нас среды, а когда требуется изучить какую-либо из ее областей, то применяют математическое моделирование. [5, с. 19] Данная модель дает возможность спрогнозировать влияние тех или иных факторов на объект изучения. В свое время был предложен тип "хищник - жертва" такими учеными как: Т. Мальтусом (Malthus 1798, Мальтус 1905), Ферхюльстом (Verhulst 1838), Пирлом (Pearl 1927, 1930), а также А. Лотки (Lotka 1925, 1927) и В. Вольтерры (Volterra 1926).Эти модели воспроизводят периодический колебательный режим, возникающий в результате межвидовых взаимодействий в природе.[1, с. 9]
Одним из основных методов познания является моделировка. Помимо того, что в нем можно спрогнозировать изменения, происходящие в окружающей среде, к тому же помогает найти оптимальный способ решения проблемы. Уже давно в экологии используют математические модели, для того чтобы установить закономерности, тенденции развития популяций, помогают выделить суть наблюдений. Макет может служить образцом поведения, объекта.
При воссоздании объектов в математической биологии используются прогнозирования различных систем, предусматриваются специальные индивидуальности биосистем: внутренне строение особи, условия жизнеобеспечения, постоянство экологических систем, благодаря которым сберегается жизнедеятельность систем. [2, с. 34]
Появление компьютерного моделирования значительно раздвинуло рубеж способностей исследования. Возникло вероятность многосторонней реализации трудных форм, не допускающих аналитического изучения, появились новейшие направления, а еще имитационное моделирование.
Рассмотрим, что же такое объект моделирования. "Объектом является замкнутая среда обитания, где происходит взаимодействие двух биологических популяций: хищников и жертв. Процесс роста, вымирания и размножения происходит непосредственно на поверхности среды обитания. Питание жертв происходит за счет тех ресурсов, которые присутствуют в данной среде, а питание хищников происходит за счет жертв. [14, с. 32] При этом питательные ресурсы могут быть как возобновляемые, так и не возобновляемые. моделирование хищник жертва
В 1931 году Вито Вольтеррой были выведены следующие законы отношения хищник-жертва. [12, с. 14]
Закон периодического цикла - процесс уничтожения жертвы хищником нередко приводит к периодическим колебаниям численности популяций обоих видов, зависящим только от скорости роста плотоядных и растительноядных, и от исходного соотношения их численности.
Закон сохранения средних величин - средняя численность каждого вида постоянна, независимо от начального уровня, при условии, что специфические скорости увеличения численности популяций, а также эффективность хищничества постоянны.
Закон нарушения средних величин - при сокращении обоих видов пропорционально их числу, средняя численность популяции жертвы растет, а хищников - падает.
Модель хищник-жертва - это особая взаимосвязь хищника с жертвой, в результате которой выигрывают оба. Выживают наиболее здоровые и приспособленные особи к условиям среды обитания, т.е. все это происходит благодаря естественному отбору. В той среде где нет возможности для размножения, хищник рано или поздно уничтожит популяцию жертвы, в последствии чего вымрет и сам" [3, с. 14].
На земле существует множество живых организмов, которые при благоприятных условиях увеличивают численность сородичей до огромных масштабов. Такая способность называется: биотический потенциал вида, т.е. увеличение численности вида за определенный промежуток времени. Каждый вид имеет свой биотический потенциал, к примеру крупные виды организмов за год могут возрасти всего в 1,1 раза, в свою очередь организмы более мелких видов, таких как рачки и т.д. могут увеличить свой вид до 1030 раз, ну а бактерии еще в большем количестве. В любом из этих случаев популяция будет расти в геометрической прогрессии. [4, с. 44]
Экспоненциальным ростом численности называется геометрическая прогрессия роста численности популяции. Такую способность можно наблюдать в лаборатории у бактерий, дрожжей. В не лабораторных условиях экспоненциальный рост возможно увидеть на примере саранчи или же на примере других видов насекомых. Такой рост численности вида можно наблюдать в тех местах, где у него практически нет врагов, а продуктов питания более чем достаточно. В конце концов увеличение вида, после того как численность возросла в течении непродолжительного времени, рост популяции начинал снижаться.
Рассмотрим компьютерную модель размножения млекопитающих на примере модели Лотки-Вольтерры. Пусть на некоторой территории обитают два вида животных: олени и волки. Математическая модель изменения численности популяций в модели Лотки-Вольтерры:
Начальное число жертв - xn, число хищников - yn.
Параметры модели:
P1- вероятность встречи с хищником,
P2- коэффициент роста хищников за счет жертв,
d - коэффициент смертности хищников,
a - коэффициент прироста численности жертв. [8, с. 23]
В учебной задаче были заданы такие значения: численность оленей равнялось 500, численности волков равна 10, коэффициент прироста оленей равен 0,02, коэффициент прироста численности волков равен 0,1, вероятность встречи с хищником 0,0026, коэффициент роста хищников за счет жертв 0,000056. Данные рассчитаны на 203 года.
Исследуем влияние коэффициент прироста жертв на развитие двух популяций, остальные параметры оставим без изменений. На схеме 1 наблюдается увеличение численности жертвы и затем, с некоторым опозданием наблюдается прирост хищников. Затем хищники выбивают жертв, число жертв резко падает и вслед за ним уменьшается число хищников (рис. 1).
Рисунок 1. Численность популяций при низкой рождаемости у жертв
Проанализируем изменение модели, увеличив коэффициент рождаемости жертвы а=0,06. На схеме 2 мы видим циклический колебательный процесс, приводящий к увеличению численности обоих популяций со временем (рис. 2).
Рисунок 2.Численность популяций при средней рождаемости у жертв
Рассмотрим как изменится динамика популяций при высоком значении коэффициента рождаемости жертвы а=1,13. На рис. 3 наблюдается резкое увеличение численности обеих популяций с последующим вымиранием, как жертвы, так и хищника. Это происходит за счет того, что численность популяции жертв увеличилось до такого количества, что стали заканчиваться ресурсы, вследствие чего происходит вымирание жертвы. Вымирание хищников происходит из-за того, что сократилось количество жертв и у хищников закончились ресурсы для существования.
Рисунок 3.Численность популяций при высокой рождаемости у жертв
Исходя из анализа данных компьютерного эксперимента, можно сделать выводы о том, что компьютерное моделирование позволяет нам прогнозировать численность популяций, изучать влияние различных факторов на популяционную динамику. В приведенном примере мы исследовали модель "хищник-жертва", влияние коэффициента рождаемости жертв на численность оленей и волков. Небольшой прирост популяции жертв приводит к небольшому увеличению жертв, которую через некоторый период уничтожают хищники. Умеренный прирост популяции жертв приводит к увеличению численности обеих популяций. Высокий прирост популяции жертв приводит сначала к быстрому росту популяции жертв, это влияет на увеличение роста хищников, но затем расплодившиеся хищники быстро уничтожают популяцию оленей. В итоге оба вида вымирают.
Библиографический список
1. Марчук Т.И. Математическое моделирование в проблеме окружающей среды. - М.: Наука, 2008
2. Криксунов Е.А., Пасечник В.В., Сидорин А.П. Экология. - М.: Издательский дом "Дрофа", 2010 г.
3. Гусева Е.Н. Математика и информатика учеб. пособие/ Е.Н. Гусева, И.Ю. Ефимова, И.Н. Мовчан, Л.А. Савельева. - 3-е изд., стереотип.-М.:Флинта, 2015-400с.
4. Горелов А.А. Экология - наука - моделирование. - М., 2007 г.
5. Основы Турбо-Паскаля. - М.: Учебно-инженерный центр "МВТУ - Фестон-дидактик", 2012 г.
6. Гусева Е.Н. Экономико-математическое моделирование: учеб. пособ.: / Е.Н. Гусева. - Москва: МПСИ, 2011.-216 с.
7. Ризниченко Г.Ю. Экология математическая. М., 2009 г.
8. Гусева Е.Н. Теория вероятностей и математическая статистика: учеб. пособие - 5-е изд., дополнено и переработано: [электронный ресурс]/ Е.Н. Гусева. -М.: Флинта, 2011.- 220 с.
9. Ризниченко Г.Ю. Экология математическая. М., 2009 г.
10. рубецков Д.И. Феномен математической модели Лотки-Вольтерры и сходных с ней // Известия Вузов. Прикладная нелинейная динамика. - 2011. - № 2. - С. 69-87.
11. Ризниченко Г.Ю. Экология математическая. М., 2009 г.
12. Вольтерра В. Математическая теория борьбы за существование. Москва-Ижевск:, Институт компьютерных технологий, 2004. - 288 с.
13. Природа мыслей и модели природы. / Под ред. Д.М. Гвишиани, И.Б. Новика, С.А. Пегова. М.: Мысль, 2006 г.
14. Королев А. Компьютерное моделирование/А. Королев: Бином, 2010.
Размещено на Allbest.ru
...Подобные документы
Построение математической модели динамики популяций при помощи электронной таблицы MS Excel. Применение уравнения Лотка-Вольтерра как модели динамики системы "хищник-жертва". Контроль над численностью популяций живых организмов в экологических системах.
контрольная работа [659,9 K], добавлен 02.04.2017Построение и использование математических и алгоритмических моделей для решения линейных оптимизационных задач. Освоение основных приемов работы с инструментом "Поиск решения" среды Microsoft Excel. Ввод системы ограничений и условий оптимизации.
лабораторная работа [354,7 K], добавлен 21.07.2012Основные подходы при построении математических моделей процессов функционирования систем. Применение непрерывно-стохастического подхода для формализации процессов обслуживания. Функции моделирующего алгоритма. Использование языков программирования.
контрольная работа [262,7 K], добавлен 04.06.2011Формальная процедура классификации возможных взаимодействий численности популяций в экосистемах. Моделирование логистической структуры в Matlab. Составление дифференциальных уравнений и программы изменения количества популяций биологических сообществ.
курсовая работа [2,5 M], добавлен 02.03.2011Использование принципов работы с эластичной сетью для оценки поведения структуры молекулярной машины во время динамического цикла. Основные топологические характеристики для эластичной сети, построенной на основе исследуемой молекулярной машины.
курсовая работа [1,6 M], добавлен 25.06.2017Особенности моделирования биологических систем с использованием программы "AnyLogic". Влияние различных факторов на популяции жертв и хищников. Принципы имитационного моделирования и его общий алгоритм с помощью ЭВМ. Анализ результатов моделирования.
курсовая работа [922,2 K], добавлен 30.01.2016Математическое моделирование технических объектов. Понятие математических моделей, классификация и свойства. Численные методы, система MathCAD и её основные функции. Алгоритмический анализ задачи, анализ реализации базовой модели электрической цепи.
дипломная работа [755,4 K], добавлен 25.07.2012Процессы функционирования различных систем и сетей связи как стохастических, динамических, дискретно-непрерывных математических моделей. Блоки языка GPSS, использованные в программе. Общая информация о результатах работы модели, о группах транзактов.
курсовая работа [27,3 K], добавлен 18.01.2010Основные понятия: модель, моделирование, виды моделей. Пути и способы изучения темы "Моделирование и формализация" в курсе информатики в 8 классе. Создание табличной информационной модели. Понятие информационной модели, системы и структуры системы.
методичка [1,8 M], добавлен 30.05.2013Построение математической модели, описывающей процесс распространения пассивных загрязняющих веществ от сосредоточенных источников. Использование аппарата сопряженных задач для определения безопасных зон размещения объектов, загрязняющих атмосферу.
дипломная работа [711,0 K], добавлен 18.07.2014Сущность, принципы и описание методов и этапов имитационного моделирования. Процессы и применение дискретного и непрерывного алгоритма. Характеристика методов построения математических моделей для решения управленческих задач банковской системы.
курсовая работа [80,5 K], добавлен 29.05.2014Роль гидродинамических процессов в современной технике и технологиях. Необходимость использования компьютерных методов при моделировании. Обзор дискретных моделей решетчатых газов. Соответствие реальных величин параметрам модели. Программное обеспечение.
дипломная работа [1,6 M], добавлен 22.04.2012Изучение деформации систем твердых тел. Линейные и нелинейные деформационные процессы. Построение математических моделей систем деформируемых твердых тел. Метод энергетической линеаризации. Компьютерное моделирование осадки плитных коробчатых фундаментов.
курсовая работа [1,2 M], добавлен 11.01.2017Основные понятия моделирования, виды моделей. Программа моделирования электрических и электронных цепей PSpice. Язык описания заданий на моделирование. Программа Probe и ее основные характеристики. Моделирование электромеханических преобразователей.
статья [522,6 K], добавлен 20.07.2012Разработка системы расчета характеристик разомкнутых экспоненциальных сетевых моделей, выполняющая имитационное моделирование заданной сетевой модели. Построение модели на языке GPSS, анализ эффективности аналитической модели, выполняющей роль эталона.
курсовая работа [483,6 K], добавлен 01.12.2010Типы математических моделей. Mathcad как программа для выполнения и документирования инженерных и научных расчётов, основные возможности. Математическая модель складского хозяйства без очереди на Mathcad. График общей стоимости от величины партии.
контрольная работа [44,2 K], добавлен 19.01.2012Анализ робототехнических систем. Принципы компьютерного моделирования. Классификация компьютерных моделей по типу математической схемы. Моделирование пространства и объектов рабочей области с помощью визуальной среды Visual Simulation Environment.
дипломная работа [2,0 M], добавлен 08.06.2014Принципы разработки в системе программного обеспечения САПР. Выбор среды для формирования моделей и функций. Процесс создания моделей деталей. Разработка API-приложения для среды разработки. Тестирование разработанного функционала портала-хранилища.
курсовая работа [704,0 K], добавлен 18.01.2017Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.
реферат [29,6 K], добавлен 23.03.2010Обзор методов составления математических моделей систем автоматического управления. Математические модели системы в векторно-матричной форме записи. Моделирование в пакете программы Simulink. Оценка устойчивости системы, рекомендации по ее применению.
курсовая работа [514,5 K], добавлен 10.11.2011