Решение классической транспортной задачи методом потенциалов

Построение начального опорного плана перевозок и проверка его на оптимальность. Методы отыскания начального ОП: северо-западного угла и минимального элемента. Определение потенциалов пунктов перевозки. Переход к плану с меньшим значением целевой функции.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 18.08.2017
Размер файла 58,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Лекция

Решение КТЗ методом потенциалов

Метод потенциалов является модификацией метода последовательного улучшения плана в ЗЛП. Решение задачи включает в себя следующие этапы:

1. Построение начального опорного плана.

2. Проверка опорного плана на оптимальность.

3. Переход в случае необходимости к лучшему опорному плану.

Сначала исходные данные записываются в распределительную таблицу, которая имеет следующий вид:

Таблица 1

v1

vj

vn

Аi Bj

B1

Bj

Bn

ai

u1

A1

C11

C1j

C1n

a1

ui

Ai

Ci1

Cij

Cin

ai

um

Am

Cm1

Cmj

Cmn

am

bj

b1

bj

bn

опорный план перевозка потенциал

Затем необходимо построить начальный опорный план.

1. Построение начального опорного плана.

Всего существует три метода отыскания начального ОП:

1) Метод северо-западного угла,

2) Метод минимального элемента,

3) Метод Фогеля.

Рассмотрим 2 первых метода.

Метод северо-западного угла.

Построение нач. ОП начинается с левой верхней клетки, которая заполняется элементом . Для этого между пунктами А1 и В1 назначается максимально возможный объем перевозки, определяемый как . При этом возможны три случая:

а) . При этом , а все остальные перевозки из пункта производства А1 . Это означает, что из пункта А1 вывозится вся произведенная продукция в пункт потребления В1, поэтому объем перевозок из А1 другие пункты потребления равен 0 (нули в таблицу не записываются). Т.К. Из А1 больше вывозить нечего, то первая строка таблицы вычеркивается, а потребность пункта В1 уменьшается на величину , т.е. .

б) . При этом , а . Ресурс в А1 уменьшается на величину , т.е. , а столбец В1 вычеркивается, т.к. потребность пункта В1 полностью удовлетворена.

в) . Тогда . В этом случае вычеркивается либо строка, либо столбец (но не оба сразу!). В этом случае опорный план будет являться вырожденным, и чтобы найти нулевые базисные переменные либо строка, либо столбец в таблице остаются. Если вычеркивается строка, то считаем, что в пункте потребления В1 остается потребность, равная 0, которая в дальнейшем д.б. удовлетворена. Если же вычеркиваем столбец, то считаем, что в пункте производства А1 остался запас, равный 0, который в дальнейшем д.б. вывезен.

В таблицу заносятся нулевые базисные переменные, но небазисные нули не заносятся, чтобы не спутать их с нулевыми базисными переменными.

Пусть теперь назначен, и один ряд таблицы (строка или столбец) вычеркнуты (закрыты). В оставшейся части таблицы вновь берем левую верхнюю клетку и в ней назначаем максимально возможный объем перевозки с учетом ранее назначенных. В результате закрывается еще один ряд. После назначения в (n+m-1) клетках объемов перевозок получится некоторый опорный план перевозок. В заполненных клетках будут записаны базисные переменные, а переменные в незаполненных клетках будут соответствовать небазисным, которые равны 0 и не записываются, чтобы не спутать с базисными нулями вырожденного опорного плана.

Метод минимального элемента.

В отличие от метода северо-западного угла, этот метод позволяет построить начальный опорный план, более близкий к оптимальному. Суть метода заключается в том, что в распределительной таблице находится клетка () с наименьшей стоимостью перевозки . В эту клетку назначается максимально возможный объем перевозок и эта величина записывается в клетку (). При этом возможны три случая, описанные в методе сев-зап угла. В результате закрывается один ряд . В ставшейся части таблицы вновь находится клетка с минимальной стоимостью перевозок, назначаем максимально возможный объем перевозки и т.д. Через (n+m-1) шагов получается опорный план. Базисные переменные (включая нулевые) будут записаны в клетках, а небазисные равны 0 и не записаны.

2. Проверка опорного плана на оптимальность.

Запишем исходную модель КТЗ в векторной форме:

(1)

(2)

(3)

Здесь - вектор условия,

G= - вектор ресурсов.

Известно, что каждой ЗЛП соответствует двойственная задача. В двойственной задаче столько же переменных, сколько ограничений в исходной, и столько же ограничений, сколько в исходной задаче переменных.

Пусть - двойственная переменная, соответствующая i-тым ограничениям (2) (потенциал пункта Аi), - двойственная переменная, соответствующая j-тому ограничению (3) (потенциал пункта Вj). Тогда вектор двойственных переменных будет иметь вид: , а сама двойственная задача запишется в виде:

(4)

(5)

В скалярной форме эта задача запишется:

(6)

(7)

Существует теорема (без доказательства):

Для оптимальности опорного плана КТЗ необходимо и достаточно существование вектора двойственных переменных, компоненты которого удовлетворяют условию:

(8)

Причем , если - базисная переменная, и , если - небазисная переменная.

Т.о. из теоремы следует, что если хотя бы для одной небазисной переменной , то опорный план неоптимален и его требуется улучшить.

Т.о., для проверки опорного плана на оптимальность необходимо определить потенциалы , всех пунктов Аi и Вj. Для этого используют условие (8) для базисных переменных:

(9)

Для отыскания потенциалов , необходимо решить данную систему линейных уравнений. Уравнений в системе (9) будет (m+n-1), а кол-во неизвестных (m+n). Поэтому любой одной переменной можно придать любое значение, в том числе и нулевое. На распределительной таблице построение потенциалов производится следующим образом: полагаем для какой-либо строки i1, содержащей базисные переменные, потенциал =0. Просматривается эта строка, и находятся базисные клетки . Для всех таких клеток из (9) можно определить потенциалы столбцов Вj :. Далее по известным потенциалам столбцов можно определить потенциалы некоторых строк. Пусть потенциал известен. Тогда просматривается столбец с номером и находятся клетки (), содержащие базисные переменные. Для всех этих клеток из (9) можно найти потенциалы строк Аi: . Продолжая этот процесс, найдутся потенциалы строк всех пунктов производства и потенциалы столбцов всех пунктов потребления.

Далее для всех клеток (i,j) содержащих небазисные переменные, вычисляются оценки . Если все , то рассматриваемый план КТЗ является оптимальным. Если хотя бы для одной клетки (k,l) справедливо , то опорный план неоптимален и необходимо перейти к лучшему опорному плану.

3. Переход к лучшему опорному плану.

Пусть рассматриваемый опорный план не оптимален. Для перехода к плану с меньшим значением целевой функции необходимо увеличить на максимально возможную величину объем перевозки в любой небазисной клетке (i,j) с . Обычно решение отыскивается быстрее, если выбрана клетка с наибольшим значением .

Пусть выбрана клетка с . Соответствующая небазисная переменная =0. Объем перевозки увеличиваем пока на неизвестную величину Q.Тогда для того, чтобы не нарушить баланс строки , необходимо в строке уменьшить объем перевозки некоторой базисной переменной на эту же величину Q. Но, уменьшив ее, мы нарушаем баланс столбца , который может быть восстановлен добавлением Q к некоторой базисной переменной столбца . Нарушенный баланс строки восстанавливается уменьшением на Q некоторой другой базисной переменной строки , и т.д.

Если таким образом удается прийти к уменьшению некоторой базисной переменной столбца , то действительно можно увеличить объем перевозки в клетке . Тем самым будут найдены объемы перевозок, увеличиваемые или уменьшаемые на величину Q. Если полученные клетки соединить прямыми линиями, то получается замкнутая линия, называемая циклом. Цикл обладает следующим свойством: линия начинается и кончается в небазисной клетке , остальные вершины ломаной принадлежат строкам и столбцам таблицы, на пересечении которых находятся базисные клетки, угол между двумя соседними сторонами равен 900. Такой цикл всегда существует для любой небазисной клетки и он единственный.

Пусть цикл, соответствующий клетке , построен. В клетке ставится знак «+», а далее поочередно в вершинах цикла ставятся «-», «+»… Объемы перевозок, отмеченные «+», увеличиваются, а «-» - уменьшаются на величину Q=min{}. Таким образом, величина Q прибавляется ко всем объемам перевозок, отмеченных знаком «+», и вычитается от всех объемов перевозок, отмеченных знаком «-».

В результате получаем новый опорный план, в котором переменная становится новой базисной переменной, а одна из базисных переменных , значение которой стало =0, становится небазисной переменой (выводится из базиса). При этом значение целевой функции уменьшается на . Полученный новый опорный план записывается в новой распределительной таблице, и вновь проверяется на оптимальность и т.д. пока не получат оптимальный опорный план.

Рис. 1

Примечание. Если в процессе построения начального опорного плана или в ходе решения получается вырожденный опорный план, то чтобы избежать зацикливаний, необходимо нулевым базисным переменным придать сколь угодно малое значение >0 и решить задачу как невырожденную. В оптимальном плане такой задачи необходимо считать =0.

Размещено на Allbest.ru

...

Подобные документы

  • Допустимый план методом северо-западного угла. Два алгоритмических шага: предварительный и общеповторяющийся. Нахождение допустимого ациклического плана. Анализ системы на потенциальность. Изменение значения целевой функции. Перемещение по циклу.

    контрольная работа [27,1 K], добавлен 16.02.2009

  • Преимущества применения математических методов в планировании перевозок. Постановка транспортной задачи, отыскание начального решения методом минимального элемента. Проверка опорного плана на невырожденность. Написание программы для автоматизации решения.

    курсовая работа [1,5 M], добавлен 19.01.2016

  • Решение задачи линейного программирования симплекс-методом: постановка задачи, построение экономико-математической модели. Решение транспортной задачи методом потенциалов: построение исходного опорного плана, определение его оптимального значения.

    контрольная работа [118,5 K], добавлен 11.04.2012

  • Основные этапы решения транспортной задачи, использование метода потенциалов. Алгоритм решения методом аппроксимации Фогеля. Процедура построения цикла. Планирование перевозок из конечного числа пунктов отправления в конечное число пунктов назначения.

    контрольная работа [32,6 K], добавлен 26.04.2011

  • Программа для решения транспортной задачи. Метод потенциалов, его математический смысл и порядок действий по его применению. Математические методы решения транспортных задач. Вычисление стоимости перевозок, расхода топлива, общей прибыли и окупаемости.

    курсовая работа [33,7 K], добавлен 20.11.2008

  • Составление программы для расчета начального базиса сбалансированной транспортной задачи, где суммарные запасы поставщиков равны суммарным запросам потребителей. Алгоритм метода потенциалов. Пример решения транспортной задачи методом наименьшей стоимости.

    отчет по практике [991,3 K], добавлен 06.12.2013

  • Математическая постановка транспортной задачи открытой модели методом потенциалов при известных показателях запаса груза поставщика и потребности потребителя; ее решение ручным способом и с помощью компьютерной программы, написанной в среде Delphi.

    курсовая работа [167,2 K], добавлен 16.01.2011

  • Этапы компьютерного моделирования, принципы и закономерности. Последовательность решения задачи по минимизации затрат на перевозку минеральных удобрений со складов на поля севооборотов методом северо-западного угла, наименьших затрат и потенциалов.

    контрольная работа [32,0 K], добавлен 15.02.2012

  • Математическая модель задачи. Целевая функция. Симплекс метод, таблица. Оптимальное решение симплекс-метода. Метод северо-западного угла, потенциалов. Определение стационарной точки. Проверка стационарной точки на относительный минимум и максимум.

    контрольная работа [1000,1 K], добавлен 29.09.2008

  • Определение плана смешивания компонентов бензина, при котором достигается максимальная стоимость продукции методом двойного предпочтения и оптимального плана минимизации затрат на перевозку товаров с 4-х складов на пять предприятий методом потенциалов.

    курсовая работа [1,3 M], добавлен 19.04.2012

  • Условия математической транспортной задачи для ее решения методом потенциалов. Опорный план и проверка целевой функции. Окончательный вариант плана поставок товара предоставленный программой "АОС транспортная задача". Стоимость доставки единицы груза.

    лабораторная работа [1,4 M], добавлен 15.10.2015

  • Определение стационарной точки. Проверка стационарной точки на относительный максимум или минимум. Составление функции Лагранжа. Применение к функции Лагранжа теорему Куна-Таккера. Метод потенциалов, северо-западного угла. Свободные переменные.

    курсовая работа [466,4 K], добавлен 29.09.2008

  • Решение общей задачи линейного программирования симплексным методом, графическое построение целевой функции. Его проверка с помощью встроенной функции "Поиск решения" MS Excel. Определение плана перевозок при наименьших суммарных транспортных затрат.

    контрольная работа [362,3 K], добавлен 03.11.2011

  • Определение оптимального плана перевозок однородного груза из k-пунктов отправления в m-пункты назначения. Описание алгоритма нахождения потока минимальной стоимости. Решение транспортной задачи вручную и в среде MathCad, сравнение полученных результатов.

    курсовая работа [773,6 K], добавлен 09.12.2010

  • Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.

    курсовая работа [511,9 K], добавлен 20.07.2012

  • Критерий эффективности и функции в системе ограничений. Общая постановка задачи линейного программирования. Составление математической модели задачи. Алгоритмы решения задачи симплексным методом. Построение начального опорного решения методом Гаусса.

    курсовая работа [232,4 K], добавлен 01.06.2009

  • Математическая модель задачи. Система ограничений. Составление симплекс-таблиц. Разрешающий элемент. Линейное программирование. Коэффициенты при свободных членах. Целевая функция. Метод потенциалов, северо-западного угла. Выпуклость, вогнутость функции.

    контрольная работа [47,2 K], добавлен 29.09.2008

  • Применение методов линейного программирования для решения оптимизационных задач. Основные понятия линейного программирования, свойства транспортной задачи и теоремы, применяемые для ее решения. Построение первичного опорного плана и системы потенциалов.

    курсовая работа [280,8 K], добавлен 17.11.2011

  • Создание математической модели, приведение ее к виду задачи линейного программирования. Геометрическая трактовка решения. Определение области допустимых значений. Составление симплекс-таблиц. Разработка опорного плана задачи методом минимального элемента.

    контрольная работа [260,2 K], добавлен 22.12.2013

  • Математическая модель задачи. Симплекс-таблица. Решение задачи линейного программирования. коэффициенты при переменных в целевой функции. Метод северо-западного угла. Система неравенств в соответствии с теоремой Куна-Таккера. Функция Лагранжа.

    контрольная работа [59,5 K], добавлен 29.09.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.