Связные графы

Вершинная и реберная связность в математике. Оценка компонентов связности графа. Схематичное изображение графа, его блоков и точек сочленения. Логические операции определения ребер и вершин графов. Метод нахождения блока графа. Определение блоков графа.

Рубрика Программирование, компьютеры и кибернетика
Вид презентация
Язык русский
Дата добавления 25.09.2017
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.

    курсовая работа [1,1 M], добавлен 26.06.2012

  • Математические графы, области их применения. Способы раскраски вершин и ребер графов, задачи на их применение. Разработка алгоритма, работающего на основе операций с матрицей смежности. Описание логической структуры программы. Пример зарисовки графа.

    курсовая работа [145,5 K], добавлен 27.01.2013

  • Теоретическое обоснование теории графов. Методы нахождения медиан графа. Задача оптимального размещения насосной станции для полива полей. Алгоритм Флойда, поиск суммарного расстояния до вершин. Функция нахождения индекса минимального значения в массиве.

    курсовая работа [336,8 K], добавлен 28.05.2016

  • Основные понятия и определения теории графов: теоремы и способы задания графа, сильная связность графов. Построение блок-схем алгоритма, тестирование разработанного программного обеспечения, подбор тестовых данных, анализ и исправление ошибок программы.

    курсовая работа [525,6 K], добавлен 14.07.2012

  • История и термины теории графов. Описание алгоритма Дейкстры. Математическое решение проблемы определения кратчайшего расстояния от одной из вершин графа до всех остальных. Разработка программы на объектно-ориентированном языке программирования Delphi 7.

    контрольная работа [646,9 K], добавлен 19.01.2016

  • Области применения теории графов. Алгоритм решения задачи поиска инвариантного и полного графа. Реализация программы с графическим интерфейсом пользователя на основе алгоритма. Реализация редактора графа и вывод полученных результатов в понятной форме.

    курсовая работа [493,3 K], добавлен 27.12.2008

  • Корректность определения кратчайших путей в графе и рёбра отрицательной длины. Анализ алгоритмов Дейкстры, Беллмана-Форда, Флойда-Уоршелла. Вычисление кратчайших расстояний между всеми парами вершин графа. Топологическая сортировка ориентированного графа.

    презентация [449,3 K], добавлен 19.10.2014

  • Применение теории графов и алгоритмов на графах среди дисциплин и методов дискретной математики. Граф как совокупность двух множеств. Основные способы численного представления графа. Элементы и изоморфизмы графов. Требования к представлению графов в ЭВМ.

    курсовая работа [162,2 K], добавлен 04.02.2011

  • Разработка проекта приложения, при помощи которого можно задать граф с любым количеством вершин и ребер, построить его графическое изображение, автоматически рассчитать ребра полного графа. Выбор состава программных средств. Руководство пользователя.

    курсовая работа [466,5 K], добавлен 21.11.2015

  • Создание программного обеспечения для реализации алгоритма, позволяющего находить кратчайшее расстояние от одной из вершин графа до всех остальных, при условии, что ребра графа не имеют отрицательного веса. Примеры выполнения алгоритма Дейкстра.

    курсовая работа [1,1 M], добавлен 11.01.2015

  • Способ представления графа в информатике. Алгоритмы поиска элементарных циклов в глубину в неориентированных графах. Описание среды wxDev-C++, последовательность создания проекта. Руководство пользователю программы поиска и вывода на экран простых циклов.

    курсовая работа [783,2 K], добавлен 18.02.2013

  • Программа формирования матрицы смежности по заданному списку окрестностей вершин ориентированного графа. Формирование динамического списка дуг ориентированного графа по заданному списку окрестностей. Анализ временной и емкостной сложности алгоритма.

    курсовая работа [8,1 M], добавлен 07.09.2012

  • Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.

    реферат [39,6 K], добавлен 06.03.2010

  • Определение понятия графа как набора вершин и связей между ними. Способы решения задач по программированию согласно теории графов на примерах заданий "Дороги", "Перекрестки", "Скрудж Мак-Дак", используя рекурсивные функции и рекуррентные соотношения.

    курсовая работа [36,2 K], добавлен 10.03.2010

  • Засвоєння засобів аналізу трудомісткості обчислювальних алгоритмів. Побудова графа алгоритму з отриманої блок-схеми. Мінімізація графа, його подання у вигляді стохастичної матриці. Знаходження кількості звернень до файлів за допомогою Microsoft Excel.

    лабораторная работа [681,5 K], добавлен 02.06.2011

  • Использование NP-трудных в сильном смысле задачи. Обслуживание требований без задержек. Алгоритм построения бесконтурного графа. Псевдополиномиальные сведения задач. Последовательный анализ вариантов допустимого расписания ориентированного графа.

    курсовая работа [783,7 K], добавлен 15.06.2009

  • Разработка программного продукта для поиска максимально удалённых вершин в графе. Характеристика ориентированного, смешанного и изоморфного графов. Обзор способов представления графа в информатике. Алгоритм поиска пути. Графический интерфейс программы.

    курсовая работа [384,0 K], добавлен 10.01.2015

  • Представление задач в виде графов AND/OR, примеры. Задача с ханойской башней. Формулировка процесса игры в виде графа. Основные процедуры поиска по заданному критерию. Эвристические оценки и алгоритм поиска. Пример отношений с определением задачи.

    лекция [154,6 K], добавлен 17.10.2013

  • Понятие матрицы, определение ее составных частей и границ, обосновывающие теории. Арифметические операции над матрицами, способы их представления в Mathcad. Формирование уравнений цепи на основе теории графов. Характеристика топологических матриц графа.

    учебное пособие [982,4 K], добавлен 03.05.2010

  • Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.

    презентация [22,8 K], добавлен 16.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.