Оборудование для информационных систем

Аппаратные средства информационных систем. Архитектура персональных компьютеров. Устройства хранения информации. Организация доступа к сети Интернет. Устройства отображения информации, их характеристика принцип работы. Вычислительные сети и их типы.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 27.09.2017
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кабели на основе витой пары медные неэкранированные делятся по своим электромеханическим свойствам на 5 категорий.

Кабель категории 1 применяется в случаях, где требования к скорости передачи данных минимальны. Обычно он применяется для аналоговой и цифровой передачи голоса и низкоскоростной передачи данных.

Кабель категории 2 впервые был использован фирмой IBM для построения собственной кабельной системы. Основное требование к этому виду кабеля - передача сигналов со спектром 1 МГц.

Кабель категории 3 стандартизирован в 1991 году. Тогда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий (EIA-568), впоследствии на его основе создан стандарт EIA-568A. Этот стандарт определил электрические характеристики кабелей категории 3 для частоты 16 МГц, что обеспечивает работу данного кабеля с высокоскоростными сетевыми приложениями. Кабель категории 3 предназначен как для передачи данных, так и для передачи голоса. Шаг скрутки проводов равен три витка на 30,5 см. На основе этого кабеля построено большинство кабельных систем офисных зданий, по которым осуществляется передача голоса и данных.

Кабель категории 4 - это улучшенный вариант предыдущей категории. Этот кабель должен выдерживать тесты на частоте передачи сигнала 20 МГц, при этом обеспечивать хорошую помехоустойчивость и низкие потери сигнала. Эта категория хорошо подходит для систем с увеличенным до 135 метров расстоянием, а также в сетях Token Ring с пропускной способностью 16 Мбит/с. Однако на практике почти не используется.

Кабель категории 5 специально разработан для поддержки высокоскоростных протоколов. Их характеристики определяются в диапазоне до 100 МГц. На кабель категории 5 ориентированно большинство высокоскоростных стандартов. С ним работают протоколы со скоростью передачи данных 100 Мбит/с FDDI с физическим стандартом TP-PMD, Fast Ethernet, 100VG- AnyLAN и более скоростные протоколы АТМ со скоростью 155 Мбит/с , а также вариант Gigabit Ethernet со скоростью 1000 Мбит/с. Вариант Gigabit Ethernet на основе витой пары с использованием 4-жильного кабеля UTP стал стандартом в 1999 году. Кабель категории 5 пришел на смену третьей категории, и в настоящее время кабельные системы крупных зданий строятся на этом типе кабеля в сочетании с волоконно-оптическим.

Кабели UTP выпускаются в 2- и 4-парном исполнении. Каждая пара такого кабеля имеет свой шаг скрутки и определенный цвет. В 4-парном исполнении две пары предназначены для передачи данных и еще две для передачи голоса.

Для соединения кабелей используются розетки и вилки RJ-45, которые представляют собой восьмиконтактные разъемы и внешне похожи на телефонные разъемы.

Отдельно в категории кабелей на основе витой пары стоят кабели категории 6 и 7. Для кабеля категории 6 характеристики определяются до частоты 200 МГц, а для категории 7 - 600 МГц.

Кабели категории 7 обязательно экранируются, причем как каждая пара в отдельности, так и весь кабель в целом. Кабель категории 6 может быть как экранируемым, так и нет.

Основное назначение этого кабеля - поддержка высокоскоростных протоколов на отрезках кабеля большей длины, чем UTP-кабель категории 5, максимальная длина сегмента которого не должна превышать 100 метров. Кабель категории 7 вряд ли целесообразен к применению: стоимость сети на его основе близка к стоимости сети на оптоволокне, а характеристики оптоволоконных кабелей выше. Поэтому, вероятно, в ближайшем будущем он постепенно уйдет, оставшись только в истории развития кабелей.

Кабели на основе экранированной витой пары STP хорошо защищают от внешних помех передаваемые сигналы. Заземляемый экран, использующийся в этом типе кабеля, усложняет прокладку, так как требует качественного заземления и удорожает сам кабель. Экранированный кабель применяется только для передачи данных.

Основной стандарт, определяющий параметры экранированной витой пары, это фирменный стандарт IBM. В этом стандарте кабели делятся не на категории, а на типы (Type 1-type 9). Из них основной - это кабель Type 1. Он состоит из двух пар проводов и экранирующей проводящей оплетки, которая заземляется. Кабель STP Type 1 включен в международные стандарты.

Экранированные пары используются также в кабеле Type 2 . Этот кабель аналогичен Type1, c добавленными в него двумя парами неэкранированных проводов для передачи голоса. К оборудованию эти кабели подключаются с помощью разъемов конструкции IBM.

Не все кабели стандарта IBM экранированные. Например, Type 3 определяет характеристики неэкранированного телефонного кабеля, а Type 5 - оптоволоконного.

Категории кабеля. Существует несколько категорий кабеля витая пара, которые нумеруются от CAT1 до CAT7 и определяют эффективный пропускаемый частотный диапазон. Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины. Категории неэкранированной витой пары описываются в стандарте EIA/TIA 568 (Американский стандарт проводки в коммерческих зданиях).

* CAT1 -- (полоса частот 0.1 МГц) телефонный кабель, всего одна пара, известный в России, как «лапша». В США использовался ранее, и проводники были скручены между собой. Используется только для передачи голоса или данных при помощи модема.

* CAT2 -- (полоса частот 1 МГц) старый тип кабеля, 2-е пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях token ring и ARCNet. Сейчас иногда встречается в телефонных сетях.

* CAT3 -- (полоса частот 16 МГц) 2-х парный кабель, использовался при построении локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных только до 10 Мбит/с. В отличие от предыдущих двух, отвечает требованиям стандарта IEEE 802.3. Также до сих пор встречается в телефонных сетях.

* CAT4 -- (полоса частот 20 МГц) кабель состоит из 4-х скрученных пар, использовался в сетях token ring, 10BASE-T, 10BASE-T4, скорость передачи данных не превышает 16 Мбит/с, сейчас не используется.

* САТ5 -- (полоса частот 100 МГц) 4-х парный кабель, это и есть, то, что обычно называют кабель «витая пара», благодаря высокой скорости передачи, до 100 Мбит/с при использовании 2-х пар и до 1000Мбит/с, при использовании 4-х пар, является самым распространённым сетевым носителем, использующимся в компьютерных сетях до сих пор. При прокладке новых сетей пользуются несколько усовершенствованным кабелем CAT5e (полоса частот 125 МГц), который лучше пропускает высокочастотные сигналы.

* CAT6 -- (полоса частот 250 МГц) применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4-х пар проводников и способен передавать данные на скорости до 10000Мбит/с. Добавлен в стандарт в июне 2002 года. Существует категория CAT6е, в которой увеличена частота пропускаемого сигнала до 500МГц. По данным IEEE 70 % установленных сетей в 2004 году, использовали кабель категории CAT6, однако возможно это просто дань моде, поскольку кабель CAT5 и CAT5e вполне справляется в сетях 10GBASE-T

* CAT7 -- Спецификация на данный тип кабеля пока не утверждена, скорость передачи данных до 10000Мбит/с, частота пропускаемого сигнала до 600--700 МГц. Кабель этой категории экранирован.

Схемы обжимки. Данные схемы обжимки витой пары приведены для кабеля категории 5 (4 пары проводников). Существует 2 схемы обжимки кабеля: прямой кабель и перекрёстный (кросс-овер) кабель. Первая схема используется для соединения компьютера со свитчем\хабом, вторая для соединения 2-х компьютеров напрямую и для соединения некоторых старых моделей хабов\свитчей (uplink порт).

Нумерация в разъеме

Перекрёстный кабель (Crossover)

№ контакта - цвет жилы - № контакта на другом конце кабеля

1 -- бело-оранжевый -- 3

2 -- оранжевый -- 6

3 -- бело-зелёный -- 1

4 -- синий -- 7

5 -- бело-синий -- 8

6 -- зелёный -- 2

7 -- бело-коричневый -- 4

8 -- коричневый -- 5

Бело-оранжевая жила меняется с бело-зелёной, оранжевая с зелёной (для 100-мегабитного соединения); бело-синяя жила меняется с бело-коричневой, синяя с коричневой (для гигабитного соединения, для 100 мегабит их можно обжать в любом порядке или вообще не обжимать).

Прямой кабель

Вариант по стандарту EIA/TIA-568A:

1 -- бело-зелёный -- 1

2 -- зелёный -- 2

3 -- бело-оранжевый -- 3

4 -- синий -- 4

5 -- бело-синий -- 5

6 -- оранжевый -- 6

7 -- бело-коричневый -- 7

8 -- коричневый -- 8

и по стандарту EIA/TIA-568B:

1 -- бело-оранжевый -- 1

2 -- оранжевый -- 2

3 -- бело-зелёный -- 3

4 -- синий -- 4

5 -- бело-синий -- 5

6 -- зелёный -- 6

7 -- бело-коричневый -- 7

8 -- коричневый -- 8

Прямой кабель можно обжать с любой последовательностью проводников, нужно только, чтобы она была одинакова на обоих концах. Хотя для предотвращения путаницы лучше пользоваться стандартами.

Данные схемы обжимки подходят как для 100-мегабитного соединения, так и для гигабитного. При использовании 100 мегабитного соединения используются только 2 из 4-х пар, а именно оранжевая и зелёная. Синяя и коричневая пары тогда могут быть использованы для подключения второго компьютера по тому же кабелю. Каждый конец кабеля раздваивают на два по две пары, и получают как бы два кабеля, но под одной изоляцией. При использовании гигабитного соединения используются все 4 пары проводников.

Применение. Как уже упоминалось, витая пара широко применяется в сетевых технологиях и коммуникациях, сейчас кабелем категории 6, во многих местах заменяют коаксиальный кабель. Несмотря на большую защищённость экранированной витой пары, она не получила широкого распространения из-за сложности в установке -- требуется заземление (проводки для которого в большинстве российских зданий нет), а кабель по сравнению с неэкранированной витой парой более жёсткий.

Прокладка. При прокладке витой пары должна выдерживаться заданная кривизна в местах изгиба. Превышение может привести к уменьшению сопротивляемости наводкам или к разрушению кабеля. При прокладке экранированной витой пары необходимо следить за целостностью экрана по всей длине кабеля. Растяжение или изгиб приводит к разрушению экрана, что влечет уменьшение сопротивляемости наводкам. Дренажный провод должен быть соединен с экраном разъема.

2. Коаксиальные кабели

Коаксиальные кабели существуют в большом количестве типов, используемых в телевизионных, телефонных и компьютерных сетях. Это так называемый "толстый" коаксиальный кабель и различные варианты "тонкого" коаксиального кабеля, который обладает худшими механическими и электрическими характеристиками, чем "толстый".

Зато "тонкий" коаксиальный кабель более удобен для монтажа, что и объясняет его более широкое использование. Стандарт EIA/TIA -568A не описывает коаксиальные кабели с волновым сопротивлением 50 Ом как морально устаревшие.

3. Волоконно-оптический кабель

Простейший оптический кабель состоит из некоторого количества оптических волокон, как правило, кратного двум, окружённых общей защитной оболочкой.

Волоконно-оптический кабель

Оптическое волокно состоит из:

* сердцевины,

* оптической оболочки,

* защитного покрытия,

* буферного покрытия (опционально).

Волоконно-оптические кабели состоят из центрального проводника света - сердечника - прозрачного волокна, и оболочки, которая окружает сердечник. Оболочка также состоит из стекла, но имеет меньший показатель преломления света, чем сердечник.

Лучи света распространяются по сердечнику, не выходя за его пределы, поскольку отражаются от покрывающего слоя оболочки. В зависимости от распределения показателя преломления и от величины диаметра сердечника различают 3 типа волокна.

1) Многомодовое волокно со ступенчатым показателем преломления.

2) Многомодовое волокно с плавным изменением показателя преломления.

3) Одномодовое волокно.

"Мода" - это описание режима распространения световых лучей по сердечнику кабеля. В одномодовом кабеле (SMF-Single Mode Fiber) сердечник очень мал по диаметру, всего 5-10 мкм, что соизмеримо с длиной световой волны. Световые лучи распространяются по сердечнику, почти не отражаясь от внешнего проводника, вдоль оптической оси световода. У этого типа кабеля очень широкая полоса пропускания - сотни гигагерц на километр. Для одномодового кабеля требуется изготовление тонких качественных волокон, и поскольку это сложный технологический процесс, соответственно, это делает достаточно дорогим и сам кабель. Еще один недостаток этого вида кабеля - значительные энергозатраты, которые возникают при направлении пучка света в волокно такого маленького диаметра. В связи с этим в одномодовых кабелях в качестве источника света используются полупроводниковые лазеры. Они работают на длине волн 1300 и 1550 нм и модулируют световой поток с частотами 10 ГГц и выше. Также при использовании лазеров в одномодовых кабелях потери энергии меньше, чем в многомодовых при использовании в них светодиодов как источников света.

В многомодовых кабелях MMF Multi Mode Fiber сердечник более широк, нежели в одномодовом. Его легче изготовить технологически, а это значит, что многомодовый кабель дешевле. Основные общеупотребительные кабели этого типа, утвержденные стандартом, - 62,5/125 мкм и 50/125 мкм. Первое число перед дробью - диаметр сердечника, число же справа от дроби указывает размер внешнего проводника.

В многомодовых кабелях во внутреннем проводнике одновременно находится несколько световых лучей. Эти лучи отражаются от внешнего проводника под различными углами.

Угол отражения луча и называется модой. У многомодовых кабелей полоса пропускания составляет 500-800 МГц/км. Полоса пропускания сужается из-за потерь световой энергии при отражении лучей и при интерференции лучей разных мод. Источниками света в многомодовых кабелях служат светодиоды. Они излучают свет с длиной волны 850 нм и 1300 нм. Светодиоды с длиной волны 850 нм существенно дешевле, чем с 1300 нм, но полоса пропускания для кабеля с длиной волн 850 нм, например 200 МГц/м вместо 500 МГц/м.

Передача электромагнитной энергии по световоду основана на эффекте полного внутреннего отражения. Лучи света, входя в сердцевину двухслойного световода, с торца удерживаются внутри сердечника за счет полного внутреннего отражения на границе двух сред с различными показателями преломления. Для реализации этого эффекта формируются два слоя из кварцевого стекла с различными показателями преломления.

Различают одномодовое и многомодовое волокно. Одномодовое (SM) волокно самых часто встречающихся размеров бывает: 8/125 и 9/125 мкм. Многомодовое (MM) волокно самых часто встречающихся размеров бывает: 50/125 и 62/125 мкм. Одномодовое волокно дешевле многомодового, позволяет передавать оптический импульс на большие расстояния, с меньшим размазыванием сигнала на выходе, но в то же время приемопередающее оборудование для него значительно дороже. Существует также многомодовое волокно с градиентным профилем, у которого уменьшены эти недостатки.

В зависимости от того, как происходит изменение показателя преломления, различают 2 типа волокон: со ступенчатым и градиентным (плавным) изменением показателя преломления.

Волоконно-оптические кабели подключаются к оборудованию с помощью разъемов MICST и SC. Они имеют отличные электромагнитные и физические характеристики (отлично гнутся и механически прочны при наличии изоляции), однако это омрачается одним серьезным недостатком. Этот недостаток - сложное соединение волокон с разъемами и между собой в том случае, если требуется нарастить кабель.

Стоимость самого волоконно-оптического кабеля примерно равна стоимости кабеля на витой паре, но стоимость монтажных работ обходится намного дороже из-за дорогого монтажного оборудования и трудоемкости соединения кабеля с разъемом. При некачественном соединении резко уменьшается полоса пропускания оптоволоконного кабеля и линии на его основе.

Использование кабеля. Превалирующее большинство компаний, предоставляющих услуги доступа в Интернет, используют в своей работе оптоволокно и витую пару. Основные трассы между зданиями строятся на основе оптоволоконного кабеля, что обеспечивает высокую скорость на этих участках, а непосредственно к квартире пользователя подводится неэкранированная витая пара пятой категории, характеристики которой вполне отвечают требованиям на этом участке сети. Такой вариант позволяет обеспечить сочетание невысокой стоимости подключения, так как монтажные работы, связанные с подключением по витой паре, не требуют больших усилий и приемлемой скорости работы в Интернете. Именно этот способ подключения через локальные сети можно считать наиболее современным, подключение же по коаксиальному кабелю постепенно уходит в прошлое в силу своей высокой стоимости, при том, что качество связи не выше, чем при работе через сочетание "оптоволокно - витая пара".

Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю необходимую информацию, в которой нуждается вся планета (около 100 терабит в секунду в одном оптоволокне).

Оптоволокно -- это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Волоконная оптика -- раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:

* Одномодовые оптоволокна

* Мультимодовые оптоволокна

* Оптоволокна с градиентным показателем преломления

* Оптоволокна со ступенчатым профилем распределения показателей преломления.

Из-за физических свойств оптоволокна необходимы специальные методы для их склеивания и соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться.

Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории (1837--1901 гг.), но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон действия и скорость оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.

Применение: оптоволоконная связь

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети, вследствие своей гибкости и возможности завязываться в узел как кабель. Несмотря на то, что волокна могут быть сделаны из прозрачного пластичного оптоволокна или силикагелевого волокна, волокна, использующиеся для передачи информации на большие расстояния, всегда сделаны из стекла, из-за низкого оптического ослабления электромагнитного излучения. В связи используются многомодовые и одномодовые оптоволокна; мультимодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно -- на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение мультимодовых компонетов.

Оптоволоконный датчик

Оптоволокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии, дает оптоволоконным датчикам преимущество перед традиционными электрическими в определенных областях.

Оптоволокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микроскоп, работающий с лазером и оптоволокном.

Оптоволоконные датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Оптоволоконные датчики хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков (см. "оптоволоконное измерение температуры").

Другое применение оптоволокна -- в качестве датчика в лазерном гироскопе, который используется в Boeing 767 и в некоторых моделях машин (для навигации).

Оптоволокно применяется в охранной сигнализации на особо важных объектах (например, ядерное оружие). Когда злоумышленик пытается переместить боеголовку, условия прохождения света через световод изменяются, и срабатывает сигнализация.

Другие применения оптоволокна

Диск фрисби, освещенный оптоволокном

Оптоволокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптоволокна используются для обозначения маршрута с крыши в какую-нибудь часть здания. Оптоволоконное освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные ёлки.

Оптоволокно также используется для формирования изображения. Когерентный пучок, создаваемый оптоволокном, иногда используется совместно с линзами - например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.

4. Устройства отображения информации

4.1 Терминалы

Определение 4.1. Терминал (Консоль) - это интерфейсное устройство ввода/вывода, обеспечивающее взаимодействие между пользователем и вычислительным устройством. Он состоит из клавиатуры и экрана. Клавиатуры содержат различные шрифты.

Определение 4.2. Алфавитно-цифровые терминалы (консоли)- это простейшие устройства ввода и вывода алфавитно- цифровой информации.

Определение 4.3. Графические терминалы - это приборы с собственным интеллектом, способные аппаратно поддерживать взаимодействие с вычислительной системой на основе протокола графического ввода вывода. В качестве стандартного графического протокола ввода - вывода обычно используют протокол X11. И графические терминалы в этом случае аппаратно реализуют X- Server.

Есть также множество программного обеспечения для реализации функций графических терминалов на персональных компьютерах.

Современный графический терминал, может отображать графику используя 16 млн. цветов и иметь размер экрана 21' и выше.

4.2 Видеоадаптеры

Определение 4.4. Видеоадаптером (видеокартой) называют устройство интегрированное в материнскую плату или подключаемое отдельно, главной функцией, которого является преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране.

Рисунок 4.1 Плата видеоадаптера

Прежде чем стать изображением на мониторе, двоичные цифровые данные обрабатываются центральным процессором, затем через шину данных направляются в видеоадаптер, где они обрабатываются и преобразуются в аналоговые данные и уже после этого направляются в монитор и формируют изображение. Сначала данные в цифровом виде из шины попадают в видеопроцессор, где они начинают обрабатываться. После этого обработанные цифровые данные направляются в видеопамять, где создается образ изображения, которое должно быть выведено на дисплее. Затем, все еще в цифровом формате, данные, образующие образ, передаются в RAMDAC, где они конвертируются в аналоговый вид, для аналоговых мониторов или в специальный цифровой вид для жидкокристаллических мониторов, после чего передаются на монитор, на котором выводится требуемое изображение

Определение 4.5. RAMDAC (Random Access Memory Digital Analog Converter) - устройство, производящее преобразование значений цветов пикселей, хранящихся в специальной оперативной видеопамяти (RAM), представляющей собой видимый образ экрана в аналоговый или цифровой сигнал, поступающий на монитор.

Современные графические видеоадаптеры поддерживают предобработку и рендеринг трехмерных моделей.

Определение 4.6. Рендеринг - процесс создания реалистичных 2d проекций трехмерных сцен

Процесс создания проекций разбивается на стадии, часть из которых реализуется аппаратно. Современные ускорители имеют графический сопроцессор и аппаратно поддерживают большинство основных стадий трехмерной визуализации (см. рис. 4.6 ).

На первой стадии конвейера из всего пространства трехмерной сцены вырезается только видимая в этот момент наблюдателем часть (см. рис. 7.2).

Рисунок 4.2 Отсечение видимым объемом

Следующая стадия включает преобразование координатных систем объектов, которые обычно задаются в мировых координатах в координаты устройства. Этот процесс называется трансформация.

Далее производится расчет освещения для каждой модели, при этом производится разбиение на примитивы - тесселяция (обычно это треугольники в трехмерном пространстве) и для каждого примитива рассчитывается освещенность.

Таким образом, для исходной проволочной модели рассчитывается освещенность, а затем на основании Z- буфера производится удаление невидимых объектов. Z-буфер хранит расстояния от глаза наблюдателя до элемента трехмерного объекта. Поэтому если элемент некоторого объекта имеет наименьшее по сравнению с другими объектами расстояние до глаза пользователя (наименьшую Z-координату), то он считается видимым, и если он не прозрачен, то остальные за ним объекты отбрасываются.

Рисунок 4.3 От проволочной модели к плоскостной и к расчету освещенности.

Следующим этапом является перспективное преобразование и текстурирование.

Перспективное преобразование изменяет размеры проекции объекта в зависимости от расстояния до точки зрения.

Определение 4.7. Текстурированием или наложение текстур (texture mapping) в трехмерном моделировании называют процесс наложения двухмерной текстуры на трехмерный объект (текстура как бы натягивается на объект) для придания ему соответствующего внешнего вида.

Рисунок 4.4 Перспективное преобразование и текстурирование с учетом освещения

Дальнейший процесс расчета цвета каждого пикселя на итоговой картинке учитывает кроме текстуры ближайшего не прозрачного объекта все встречающиеся на пути прозрачные объекты, а также моделируемые атмосферные эффекты типа тумана.

Кроме этого на заключительной стадии изображение улучшают методами различного типа сглаживания (Анти-алиасинга), которые позволяют избавиться от лестничного эффекта, присущего многим схемам преобразования векторной графики в растровое изображение.

Определение 4.8 Анти-алиасин - способ обработки (интерполяции) пикселов для получения более четких краев (границ) изображения (объекта). Наиболее часто используемая техника для создания плавного перехода от цвета линии или края к цвету фона. В некоторых случаях результатом является смазывание (blurring) краев.

Рисунок 4.5 Изображение линии на компьютере без и с анти-алиасингом

Рисунок 4.6 Стадий формирования 2-D изображения из исходной трехмерной модели (условно схематично)

Размещено на Allbest.ru

...

Подобные документы

  • Устройства и этапы преобразования графической информации в цифровую: СУБД, MapInfo. Сканеры и их типы. Устройства отображения информации, принцип их работы. Преимущества и недостатки жидкокристаллических дисплеев. Системы управления базами данных.

    контрольная работа [25,8 K], добавлен 28.02.2011

  • Принцип построения компьютерных сетей: локальные вычислительные сети и глобальные компьютерные сети Internet, FidoNet, FREEnet и другие в деле ускорения передачи информационных сообщений. LAN и WAN сети, права доступа к данным и коммутация компьютеров.

    курсовая работа [316,0 K], добавлен 18.12.2009

  • Принципы построения ЭВМ, устройства ввода-вывода. Структура и принципы работы сети Интернет. Поиск информации, виды моделей. Классификация языков программирования. Типы СУБД, операционные системы. Средства защиты от вирусов и несанкционированного доступа.

    реферат [156,0 K], добавлен 19.01.2011

  • Методы и инструментарий хранения данных во Всемирной сети. Понятие и разновидности гипертекстовых документов и графических файлов. Принципы работы поисковых систем и правила поиска нужной информации. Характеристика некоторых поисковых систем Сети.

    курсовая работа [30,9 K], добавлен 18.04.2010

  • Классификация информации по уровню доступа к ней: открытая и ограниченного доступа. Понятие о защите информационных систем, использование шифровальных средств. Компетенция уполномоченных федеральных органов власти в области защиты персональных данных.

    реферат [83,2 K], добавлен 13.10.2014

  • Структура и принципы построения сети Интернет, поиск и сохранение информации в ней. История появления и классификация информационно-поисковых систем. Принцип работы и характеристики поисковых систем Google, Yandex, Rambler, Yahoo. Поиск по адресам URL.

    курсовая работа [3,6 M], добавлен 29.03.2013

  • Сущность и принцип работы глобальной сети Интернет. Поиск информации по параметрам в системе Google. Специализированные системы поиска информации: "КтоТам", "Tagoo", "Truveo", "Kinopoisk", "Улов-Умов". Целесообразное использование поисковых систем.

    презентация [572,6 K], добавлен 16.02.2015

  • Функциональная схема локальной вычислительной сети, анализ информационных потребностей и потоков предприятия. Планирование структуры сети, сетевая архитектура и топология. Структура корпоративной компьютерной сети, устройства и средства коммуникаций.

    курсовая работа [315,5 K], добавлен 26.08.2010

  • Факторы угроз сохранности информации в информационных системах. Требования к защите информационных систем. Классификация схем защиты информационных систем. Анализ сохранности информационных систем. Комплексная защита информации в ЭВМ.

    курсовая работа [30,8 K], добавлен 04.12.2003

  • Причины появления информационных систем. Назначение электронных вычислительных машин: числовые расчеты, обработка, хранение и передача информации. Созданиеи первого жесткого магнитного диска - винчестера. Разработка локальной сети для передачи информации.

    презентация [339,2 K], добавлен 06.01.2014

  • Рост количества информации в мире, его увеличение в сети Интернет в геометрической прогрессии. Количество сайтов, зарегистрированных в поисковой системе Яндекс. Особенности эффективного поиска информации в сети Интернет. Схема информационных потоков.

    презентация [52,6 K], добавлен 27.08.2013

  • Проблемы и угрозы информационной безопасности. Защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных посторонних воздействий. Средства защиты информационных систем. Метод SSL-шифрования информации, типы сертификатов.

    презентация [280,0 K], добавлен 10.11.2013

  • Задачи, решаемые малым предприятием с использованием Интернет-ресурсов. Способы и схемы подключения к сети Интернет. Организация доступа к информации и требования к технологии управления сетью. Расчет суммарных затрат на разработку программного продукта.

    дипломная работа [2,0 M], добавлен 17.10.2013

  • Вычислительные системы, сети и телекоммуникации: цели и задачи обработки информации, аппаратные средства её реализации. Функции управления ЭВМ, их программные составляющие (память, интерфейс, средства обработки). Многопроцессорные вычислительные системы.

    курсовая работа [2,1 M], добавлен 17.12.2009

  • Информационный ресурс - совокупность накопленной информации, зафиксированной на материальных носителях. Типы мировых информационных сетей. Классификация информационных ресурсов, браузеры-программы, язык разметки, система адресации в сети Интернет.

    курс лекций [427,8 K], добавлен 18.12.2010

  • Понятие, развитие, формы организации Интернет. Сеть Интернет как информационный канал. Особенности средств массовой информации в глобальной сети, ее функции и возможности. Исследование электронных версий газет и информационных агентств в сети Интернет.

    курсовая работа [2,6 M], добавлен 09.04.2011

  • Классификация угроз информационной безопасности. Ошибки при разработке компьютерных систем, программного, аппаратного обеспечения. Основные способы получения несанкционированного доступа (НСД) к информации. Способы защиты от НСД. Виртуальные частные сети.

    курсовая работа [955,3 K], добавлен 26.11.2013

  • Общая характеристика и принципы деятельности интернет-магазина "World memory", реализующего устройства чтения и хранения информации для персональных компьютеров. Составление отчет по реализации товаром в МS Excel. Построение базы данных в среде МS Access.

    контрольная работа [2,4 M], добавлен 22.12.2013

  • Общество и информация, определение информации и ее свойства, базовые информационные процессы. Виды и особенности экономической информации. Понятие, виды и этапы развития информационных компьютерных систем. Обзор информационных ресурсов Интернет.

    шпаргалка [645,8 K], добавлен 22.02.2011

  • Признаки корпоративности продукта. Особенности и специфика корпоративных сетей. Слой компьютеров (центры хранения и обработки информации) и транспортная подсистема для передачи информационных пакетов между компьютерами в основе корпоративной сети.

    контрольная работа [30,9 K], добавлен 14.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.