Современное состояние информационной безопасности

Общие характеристики объекта внедрения системы защиты. Основные преднамеренные искусственные угрозы. Средства аппаратной защиты сети от почтовой бомбардировки, вирусов и атаки с подбором пароля. Конструкция маршрутизатора. Методы аутентификации.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 01.10.2017
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Глава 1. Специальная часть. Разработка комплексной системы защиты информации в ЛВС ООО «Гарант-центр»

1.1 Введение

1.2 Современное состояние информационной безопасности

1.3 Общие характеристики объекта внедрения системы

1.3.1 Подсистема физической безопасности

1.3.2 Подсистема сигнализации

1.3.3 Охранное освещение

1.3.4 Подсистема контроля

1.4 Анализ и оценка угроз безопасности информации

1.4.1 Классификация угроз безопасности

1.4.2 Основные непреднамеренные искусственные угрозы

1.4.3 Основные преднамеренные искусственные угрозы

1.5 Атаки сети, виды и защита

1.5.1 Почтовая бомбардировка

1.5.2 Атаки с подбором пароля

1.5.3 Вирусы, почтовые черви и «троянские кони»

1.5.4 Сетевая разведка

1.5.5 Сниффинг пакетов

1.5.6 IP-Спуфинг

1.5.7 Атака на отказ в обслуживании (DoS)

1.5.8 Атаки типа Man-in-the-middle

1.5.9 Использование «дыр» и «багов» в ПО

1.6 Средства аппаратной защиты сети

1.6.1 Конструкция маршрутизатора

1.6.2 Брандмауэр (firewall)

1.6.3 Пакетные фильтры

1.6.4 Шлюзы сеансового уровня

1.6.5 Шлюзы прикладного уровня

1.6.6 SPI-брандмауэры

1.6.7 Протокол NAT

1.6.8 Перенаправление портов

1.6.9 DMZ-зона

1.6.10 Методы аутентификации

1.6.11 Виртуальные сети VPN

1.7 Структурная схема защиты от НСД

1.8 Характеристики выбранного оборудования

1.8.1 Межсетевой экран D-Link DFL-1100

1.8.2 Настраиваемый коммутатор D-Link DES-1226G

1.8.3 Характеристики ПО Kerio Winroute Firewall

1.9 Выводы

Глава 2. Технологическая часть. Разработка технологического процесса монтажа кабельной системы ЛВС.

2.1 Введение

2.2 Проблемы монтажа кабельных систем

2.3 Схема размещения оборудования

2.4 Оборудование, применяемое для монтажа кабельной системы

2.4.1 Кабель

2.4.2 Короба

2.4.3 Вставки для розеток

2.4.4 Настенные двухсекционные шкафы AESP

2.4.5 Патч-корды

2.5 Правила монтажа

2.6 Алгоритм технологического процесса монтажа кабельной системы

2.7 Выводы

Глава 3. Организационно-экономическая часть. Технико-экономическое обоснование внедрения комплексной системы защиты информации в ЛВС ООО «Гарант-Центр».

3.1 Введение

3.2 Обоснование экономической эффективности от внедрения системы

3.3 Расчёт рисков компании

3.4 Расчет стоимости внедрения комплексной системы ЗИ

3.5 Расчёт периода окупаемости внедряемой системы

3.6 Выводы

Глава 4. Производственно-экологическая безопасность. Организация рабочего места оператора ПК. Расчет освещенности.

4.1 Введение

4.2 Рабочее место оператора ПК. Факторы производственной среды

4.3 Вредные факторы, присутствующие на рабочем месте

4.4 Общие требования к помещению рабочего зала

4.5 Основные требования к освещению

4.6 Расчет общего освещения

4.7 Меры защиты от поражения электрическим током

4.8 Меры по снижению шума

4.9 Защита от излучений

4.10 Нормирование метеорологических условий в машинном зале

4.11 Требования по пожарной безопасности

4.12 Психофизиологические опасные и вредные производственные факторы

4.13 Планировка рабочего места оператора ПК

4.14 Выводы

Список литературы

Глава 1. Специальная часть. Разработка комплексной системы защиты информации в ЛВС ООО «Гарант-центр»

1.1 Введение

На современном этапе развития нашего общества многие традиционные ресурсы человеческого прогресса постепенно утрачивают свое первоначальное значение. На смену им приходит новый ресурс, единственный продукт не убывающий, а растущий со временем, называемый информацией. Информация становится сегодня главным ресурсом научно-технического и социально-экономического развития мирового сообщества.

Любая предпринимательская деятельность тесно связана с получением, накоплением, хранением, обработкой и использованием разнообразных информационных потоков. Целостность современного мира как сообщества обеспечивается, в основном, за счет интенсивного информационного обмена. Приостановка глобальных информационных потоков даже на короткое время способно привести к не меньшему кризису, чем разрыв межгосударственных экономических отношений. Поэтому в современных условиях возникает масса проблем, связанных с обеспечением сохранности коммерческой (предпринимательской) информации как вида интеллектуальной собственности.

Учитывая известный афоризм «цель оправдывает средства», информация представляет определенную цену. И поэтому сам факт получения информации злоумышленником приносит ему определенный доход, ослабляя тем самым возможности конкурента. Отсюда главная цель злоумышленника -- получение информации о составе, состоянии и деятельности объекта конфиденциальных интересов (фирмы, изделия, проекта, рецепта, технологии и т. д.) в целях удовлетворения своих информационных потребностей. Возможно в корыстных целях и внесение определенных изменений в состав информации, циркулирующей на объекте конфиденциальных интересов. Такое действие может привести к дезинформации по определенным сферам деятельности, учетным данным, результатам решения некоторых задач. Более опасной целью является уничтожение накопленных информационных массивов в документальной или магнитной форме и программных продуктов. Полный объем сведений о деятельности конкурента не может быть получен только каким-нибудь одним из возможных способов доступа к информации. Чем большими информационными возможностями обладает злоумышленник, тем больших успехов он может добиться в конкурентной борьбе. На успех может рассчитывать тот, кто быстрее и полнее соберет необходимую информацию, переработает ее и примет правильное решение. От целей зависит как выбор способов действий, так и количественный и качественный состав привлекаемых сил и средств посягательства.

Одним из самых распространенных на сегодня источником получения информации являются компьютерные сети. Они постепенно превратились в такую же повседневность, как и телевидение или телефон. Множество компаний имеют свои собственные официальные страницы в Internet, подразделения компаний используют компьютерные сети для оперативного обмена коммерческой информацией, тысячи рядовых граждан используют сеть для получения важных для них данных (лент новостей, курсов валют и т.д.). Короче говоря, в Internet стала храниться и передаваться действительно важная информация (причем не только на Западе, но и у нас), стало обычной практикой подключение корпоративной компьютерной сети к Internet, стало все больше пользователей, чей компьютер, обладая важной информацией, также используется и для работы в Internet.

По словам бывшего директора Центрального разведывательного управления США Роберта Гейтса, возглавлявшего это учреждение с 1991 по 1993 год, в настоящее время безопасность конфиденциальной информации все чаще оказывается под угрозой, причем источников опасности становится все больше. Неприятностей можно ждать как со стороны организованных преступных синдикатов и террористов, так и от разведывательных центров, финансируемых правительством. Крупные компании, работающие в области высоких технологий, не должны строить никаких иллюзий, а руководители компаний должны помнить о существовании угрозы и предпринимать необходимые меры для обеспечения безопасности внутриведомственной информации.

Любое компьютерное преступление представляет собой факт нарушения того или иного закона. Оно может быть случайным, а может быть специально спланированным; может быть обособленным, а может быть составной частью обширного плана атаки. Нанесение ударов по жизненно важным элементам, таким как телекоммуникации или транспортные системы предпринимаются экономическими противниками или террористическими группами.

В США для расследования случаев компьютерного вымогательства ФБР образовало три самостоятельных подразделения, которые расследуют деятельность компьютерных вымогателей. В качестве примера этого вида «деятельности» злоумышленников-кибергангстеров приведем следующие события, произошедшие в Лондоне за достаточно короткий промежуток времени:

6 января 1993 года деятельность одной из брокерских контор была полностью парализована после угрозы вымогателей и созданной ими аварийной ситуации в компьютерной системе. Выкуп в размере 10 миллионов фунтов был переведен на счет в Цюрихе;

14 января 1993 года один из первоклассных банков выплатил вымогателям 12,5 миллионов фунтов;

29 января 1993 года одной из брокерских контор пришлось заплатить 10 миллионов фунтов отступного после аналогичных угроз;

17 марта 1995 года одна оборонная фирма была вынуждена откупиться 10 миллионами фунтов стерлингов.

Во всех четырех случаях компьютерные террористы угрожали высшим руководителям и демонстрировали имеющиеся у них возможности разрушить компьютерную систему. Все жертвы уступали требованиям вымогателей через несколько часов и переводили деньги на счета банков, располагающихся в офшорных зонах, откуда злоумышленники снимали их в считанные минуты.

Обычно когда речь заходит о безопасности компании, ее руководство недооценивает важность информационной безопасности. Основной упор делается, как правило, на физической защите. Крепкие входные двери, защищенные окна, разнообразные датчики и видеокамеры, надежная служба охраны -- эти компоненты помогут предупредить угрозу взлома рабочего помещения. Но как предотвратить компьютерный «взлом»? Для того чтобы проникнуть в тайны компании, нет необходимости перелезать через заборы и обходить периметровые датчики, вторгаться в защищенные толстыми стенами помещения, вскрывать сейфы и т. п. Достаточно проникнуть в информационную систему и перевести сотни тысяч долларов на чужие счета или вывести из строя какой-либо узел корпоративной сети. Все это приведет к огромному ущербу. Причем не только к прямым потерям, которые могут выражаться цифрами со многими нулями, но и к косвенным. Например, выведение из строя того или иного узла приводит к затратам на обновление или замену программного обеспечения. А атака на публичный Web-сервер компании и замена его содержимого на любое другое может привести к снижению доверия к фирме и, как следствие, потере части клиентуры и снижению доходов. Системы физической защиты имеют аналоги в мире информационной безопасности локальных вычислительных сетей, функцию стальной двери выполняет межсетевой экран. Традиционно он ограждает внутреннюю сеть от внешних несанкционированных вмешательств. Существует несколько систем сетевой защиты, например, такие как Firewall или Broundmouer. Они контролируют все входящие и исходящие соединения между защищаемым сегментом локальной сети и сети Internet. Одним из элементов защиты является криптографирование, т. е. шифрование информации, которая передается по открытым каналам связи.

1.2 Современное состояние информационной безопасности.

Безопасность -- аспект нашей жизни, с которым нам приходится сталкиваться ежедневно: двери закрываем на ключ, ценные вещи убираем от посторонних глаз и не оставляем бумажники где попало. Это должно распространяться и на «цифровой мир», потому что компьютер каждого пользователя может оказаться объектом пиратского нападения.

Коммерческие организации всегда считали затраты на обеспечение безопасности неизбежным злом, а не своим первоочередным делом. До известной степени это «мудро»: в конце концов, и без того достаточно препятствий для выполнения работы, чтобы еще создавать новые. Однако много ли вы видели «капитанов индустрии», находящихся в здравом уме, которые бы отважились разрешить круглосуточный свободный доступ во все корпоративные помещения своей фирмы? Конечно же, нет! У входа в помещение даже небольшой компании вас встретит охранник или система ограничения и контроля доступа. А вот с защитой информации дела обстоят еще не так хорошо. Не все понимают, как можно потерять информацию и во что это выльется.

Крупные игроки уже получили хороший урок: хакеры нанесли большой ущерб таким компаниям, как Yahoo!, Amazon corn, и даже Агентству космических исследований NASA. Монстр RSA Security (один из крупнейших поставщиков на рынке услуг безопасности) подвергся атаке через несколько дней после необдуманного заявления о наличии противоядия против любых угроз.

Урон, наносимый компьютерными преступлениями, сопоставим с доходами от незаконного оборота наркотиков и оружия. Только в США ежегодный ущерб, наносимый «электронными преступниками», составляет около 100 млрд долларов. Высока вероятность того, что в недалеком будущем этот вид преступной деятельности по рентабельности, обороту денежных средств и количеству задействованных в нем людей превысит три вида незаконного бизнеса, которые до недавнего времени занимали первые места по доходности среди незаконной деятельности: торговлю наркотиками, оружием и редкими дикими животными.

Данные социологических исследований деятельности государственных и частных компаний свидетельствуют о том, что уже с первых лет XXI века преступления в экономической сфере будут ориентированы на возможность корыстных экономических действий в информационно-вычислительных комплексах банковских и иных систем.

Количество компьютерных преступлений в кредитно-финансовой сфере постоянно возрастает. Например, онлайновые магазины фиксируют до 25% мошеннических платежных операций. Тем не менее, в Западных странах наблюдается активное развитие электронной коммерции -- этого сверхрентабельного современного бизнеса. Понятно, что параллельно развитию этой сферы увеличиваются и доходы «виртуальных» мошенников. Последние уже не действуют в одиночку, а работают тщательно подготовленными, хорошо технически и программно вооруженными преступными группами при непосредственном участии самих банковских служащих.

Специалисты в области безопасности отмечают, что доля таких преступлений составляет около 70%.

«Виртуальный» грабитель зарабатывает в несколько раз больше, чем его коллега -- обычный налетчик. Кроме этого, исключается перестрелка с охраной и полицией, захват заложников и множество других деяний, не только рискованных для жизни преступника, но и способных значительно увеличить срок его пребывания в тюрьме, конечно, если преступника поймают. Ведь «виртуальные» преступники действуют, не выходя из дома.

Усредненные показатели убытков от хищений с использованием электронных средств доступа только в США превышают 600 тыс. долларов. Это, по меньшей мере, в 6-7 раз больше среднестатистического ущерба от вооруженного ограбления банка.

О том, что сфера электронной коммерции вызывает повышенный интерес в криминальной среде, говорят данные одного из опросов, проведенного в 50 странах мира среди 1600 специалистов в области защиты информации. По итогам опроса выяснилось следующее:

серверы, связанные с продажей продуктов или услуг через сеть Internet, подвергались нападениям приблизительно на 10% чаще, чем серверы, не используемые для проведения финансовых сделок;

22% фирм, занимающихся продажами через Web-серверы, имели потери информации, и только 13% компаний, не продающих продукты через Internet, столкнулись с этой же проблемой;

12% респондентов, имеющих электронные магазины, сообщили о краже данных и торговых секретов, и только 3 таких случая зафиксировано у компаний, не продающих продукты через систему Web.

Эти показатели продолжают расти, но на самом деле цифры не точные. Реально они могут превышать приведенные данные на порядок. Ведь многие потери не обнаруживаются или о них не сообщают. Поэтому, например, в нашей стране, начиная с 1997 года, ежегодно раскрывается всего лишь 10% компьютерных преступлений.

По данным Национального отделения ФБР по компьютерным преступлениям, от-85% до 97% нападений на корпоративные сети не то что не блокируются, но и не обнаруживаются. Так, например, профинансированные Министерством обороны США испытания показали удивительные результаты. Специальные группы экспертов («tiger team») провели анализ защищенности 8932 военных информационных систем. В 7860 (т. е. 88%) случаях проникновение в «святая святых» было успешным. Администраторы только 390 из этих систем обнаружили атаки и только 19 сообщили о них. Другими словами, в 5% систем были зафиксированы атаки и только в 0,24% случаях от общего числа успешно атакованных систем (или 4,9% от числа зафиксировавших атаки) было заявлено об этом в соответствующие инстанции.

Наряду с распространением вирусов, всеми специалистами отмечается резкий рост числа внешних атак. Как мы видим, сумма ущерба от компьютерных преступлений неумолимо повышается и было бы не совсем корректно говорить о том, что чаще компьютерные преступления совершаются «виртуальными» мошенниками. Сегодня угроза взлома компьютерных сетей исходит от трех категории лиц (хакеров, кракеров и компьютерных пиратов), каждой из которых присущи свои методы.

Хакеры, в отличие от других компьютерных пиратов, иногда заранее, как бы бравируя, оповещают владельцев компьютеров о намерениях проникнуть в их системы. О своих успехах они сообщают на сайтах Internet. При этом хакеры, руководствующиеся соревновательными побуждениями, как правило, не наносят ущерба компьютерам, в которые им удалось проникнуть.

Кракеры (cracker) -- электронные «взломщики», которые специализируются на взломе программ в корыстных личных целях. Для этого они применяют готовые программы взлома, распространяемые по сети Internet. Вместе с тем, по данным американских экспертов, в последнее время они стали также пытаться проникнуть через Internet в военные и разведывательные компьютерные системы.

Наиболее серьезную угрозу информационной безопасности представляет третий тип: пираты. Компьютерные пираты -- это высококлассные специалисты фирм и компаний, занимающиеся хищением информации по заказам конкурирующих фирм и даже иностранных спецслужб. Кроме того, ими практикуется изъятие денежных средств с чужих банковских счетов.

Исходя из этой, далеко не радужной статистики, я разработал комплекс мер по защите информации в компании «Гарант-Центр».

1.3 Общие характеристики объекта внедрения системы защиты

Офис компании «Гарант-Центр» располагается в здании ЦНИИМЭ - Центрального научно-исследовательского и проектно-конструкторского института механизации и энергетики лесной промышленности.

Рисунок 1

Компания занимается продажей, установкой и дальнейшим техническим обслуживанием следующего ряда программного обеспечения:

ь Справочно-информационная система «Гарант»;

ь Пакет ПО «1С-Бухгалтерия и Предприятие»;

ь Пакет антивирусного ПО Лаборатории Касперского;

ь ПО Microsoft;

Т.о. необходимо разработать адекватную проблемам систему обеспечения безопасности информации. Начнём с того, что система безопасности должна быть комплексной. Т.е. должны присутствовать все элементы защиты. Рассмотрим основные элементы системы безопасности, которые должны присутствовать на защищаемом объекте.

Рисунок 2

Рассмотрим подробнее каждую из подсистем.

1.3.1 Подсистема физической безопасности

Данная подсистема должна обеспечивать защиту от НСД в следующих компонентах инфраструктуры здания:

ь Ограждение по периметру (забор);

ь Подходы к охраняемому объекту;

ь Погрузочно-разгрузочные люки;

ь Вентиляционные люки;

ь Шахты лифта;

ь Въездные ворота;

ь Оконные проемы;

ь Внешние и внутренние стены здания;

ь Пожарные лестницы;

ь Подходы подземных коммуникаций;

ь Территория;

ь Двери центрального и запасного выходов;

ь Чердачные помещения;

ь Замки, запоры, задвижки дверей и окон;

Теперь оценим степень защиты вышеперечисленных компонентов. Для большей наглядности воспользуемся следующими обозначениями:

o Высокая степень

o Средняя степень

o Низкая степень

Рисунок 3

1.3.2 Подсистема сигнализации

Эта подсистема должна включать в себя следующие компоненты:

v Охранная сигнализация:

ь Сигнализация периметра территории;

ь Сигнализация периметра здания;

ь Сигнализация внутренних объёмов помещений;

ь Сигнализация отдельно охраняемых объектов;

ь Световая сигнализация в месте нарушения;

ь Звуковая сигнализация в месте нарушения;

ь Сигнализация и оповещения дежурной части УВД;

v Пожарная сигнализация:

ь Сигнализация оповещения о месте возгорания;

ь Сигнал оповещения в дежурную пожарную часть;

ь Автоматическое включение установок пожаротушения;

ь Сигнализация оповещения сотрудников и посетителей;

v Тревожная сигнализация:

ь Оповещение охранника о противоправных действиях посетителя;

ь Оповещение дежурной части УВД о разбойном нападении и других противоправных действиях;

v Система теленаблюдения;

В здании, где распложен офис компании, все компоненты системы сигнализации присутствуют. Для наглядности изобразим компоненты в виде схемы.

1.3.3 Охранное освещение

Изобразим схематично состав данной подсистемы. Опять же оговорюсь, что инфраструктура здания имеет все нижеперечисленные компоненты.

Рисунок 4

Рисунок 5

1.3.4 Подсистема контроля

В здании действует вахтовая пропускная система. Пропуска на территорию здания разделяются на два вида:

1. Разовые пропуска (разрешение прохода на территорию на один день);

2. Постоянные пропуска (разрешение прохода на территорию на 6 месяцев);

Проход на территорию здания разрешен с 8:00 до 21:00. Для прохода на территорию в другое время необходимо заявление с обоснованием причины посещения, с печатью и подписью директора компании. Заявление необходимо подать на рассмотрение директору службы безопасности за день до посещения.

Рисунок 6

1.4 Анализ и оценка угроз безопасности информации

Система безопасности здания ЦНИИМЭ, в котором располагается офис компании «Гарант-Центр», включает в себя достаточное количество подсистем, и как говорилось выше, эти подсистемы работают достаточно хорошо. Таким образом, нам необходимо спроектировать именно подсистему защиты информации от НСД в компьютерной системе компании. Начнем проектирование с анализа возможных угроз безопасности информации в такой системе.

Определение 1. Под угрозой обычно понимают потенциально возможное событие, действие (воздействие), процесс или явление, которое может привести к нанесению ущерба чьим-либо интересам.

Основные виды угроз информационной безопасности:

стихийные бедствия и аварии (наводнение, ураган, землетрясение, пожар и т.п.);

сбои и отказы оборудования (технических средств) автоматизированных систем;

последствия ошибок проектирования и разработки компонентов автоматизированных систем (аппаратных средств, технологии обработки информации, программ, структур данных и т.п.);

ошибки эксплуатации (пользователей, операторов и другого персонала);

преднамеренные действия нарушителей и злоумышленников (обиженных лиц из числа персонала, преступников, шпионов и т.п.).

1.4.1 Классификация угроз безопасности

Все множество потенциальных угроз по природе их возникновения разделяется на два класса: естественные (объективные) и искусственные (субъективные)

Рисунок 7

Естественные угрозы - это угрозы, вызванные воздействиями объективных физических процессов или стихийных природных явлений, независящих от человека.

Искусственные угрозы - это угрозы АС, вызванные деятельностью человека. Среди них, исходя из мотивации действий, можно выделить:

непреднамеренные (неумышленные, случайные) угрозы, вызванные ошибками в проектировании АС и ее элементов, ошибками в программном обеспечении, ошибками в действиях персонала и т.п.;

преднамеренные (умышленные) угрозы, связанные с корыстными устремлениями людей (злоумышленников).

Источники угроз по отношению к АС могут быть внешними или внутренними (компоненты самой АС - ее аппаратура, программы, персонал).

Примеры естественных угроз

Наиболее типичной естественной угрозой АС, не связанной с деятельностью человека, является, например, пожар. Поэтому при проектировании АС целесообразно рассмотреть вопросы противопожарной безопасности.

Для зданий, где размещаются технические средства АС, расположенных в долинах рек или на побережье, весьма вероятной угрозой является затопление. В этих случаях аппаратные средства АС целесообразно устанавливать на верхних этажах зданий и должны приниматься другие меры предосторожности.

Нанесение ущерба ресурсам АС может также произойти в следствии стихийного бедствия. Ущерб может быть нанесен при технических авариях, например, при внезапном отключении электропитания и т.д.

1.4.2 Основные непреднамеренные искусственные угрозы

Основные непреднамеренные искусственные угрозы АС (действия, совершаемые людьми случайно, по незнанию, невнимательности или халатности, из любопытства, но без злого умысла):

1) неумышленные действия, приводящие к частичному или полному отказу системы или разрушению аппаратных, программных, информационных ресурсов системы (неумышленная порча оборудования, удаление, искажение файлов с важной информацией или программ, в том числе системных и т.п.);

2) неправомерное отключение оборудования или изменение режимов работы устройств и программ;

3) неумышленная порча носителей информации;

4) запуск технологических программ, способных при некомпетентном использовании вызывать потерю работоспособности системы (зависания или зацикливания) или осуществляющих необратимые изменения в системе (форматирование или реструктуризацию носителей информации, удаление данных и т.п.);

5) нелегальное внедрение и использование неучтенных программ (игровых, обучающих, технологических и др., не являющихся необходимыми для выполнения нарушителем своих служебных обязанностей) с последующим необоснованным расходованием ресурсов (загрузка процессора, захват оперативной памяти и памяти на внешних носителях);

6) заражение компьютера вирусами;

7) неосторожные действия, приводящие к разглашению конфиденциальной информации, или делающие ее общедоступной;

8) разглашение, передача или утрата атрибутов разграничения доступа (паролей, ключей шифрования, идентификационных карточек, пропусков и т.п.);

9) проектирование архитектуры системы, технологии обработки данных, разработка прикладных программ, с возможностями, представляющими опасность для работоспособности системы и безопасности информации;

10) игнорирование организационных ограничений (установленных правил) при работе в системе;

11) вход в систему в обход средств защиты (загрузка посторонней операционной системы со сменных магнитных носителей и т.п.);

12) некомпетентное использование, настройка или неправомерное отключение средств защиты персоналом службы безопасности;

13) неумышленное повреждение каналов связи.

1.4.3 Основные преднамеренные искусственные угрозы

Основные возможные пути умышленной дезорганизации работы, вывода системы из строя, проникновения в систему и несанкционированного доступа к информации:

1) физическое разрушение системы (путем взрыва, поджога и т.п.) или вывод из строя всех или отдельных наиболее важных компонентов компьютерной системы (устройств, носителей важной системной информации, лиц из числа персонала и т.п.);

2) отключение или вывод из строя подсистем обеспечения функционирования вычислительных систем (электропитания, охлаждения и вентиляции, линий связи и т.п.);

3) действия по дезорганизации функционирования системы (изменение режимов работы устройств или программ, забастовка, саботаж персонала, постановка мощных активных радиопомех на частотах работы устройств системы и т.п.);

4) внедрение агентов в число персонала системы (в том числе, возможно, и в административную группу, отвечающую за безопасность);

5) вербовка (путем подкупа, шантажа и т.п.) персонала или отдельных пользователей, имеющих определенные полномочия;

6) применение подслушивающих устройств, дистанционная фото- и видеосъемка и т.п.;

7) перехват побочных электромагнитных, акустических и других излучений устройств и линий связи, а также наводок активных излучений на вспомогательные технические средства, непосредственно не участвующие в обработке информации (телефонные линии, сети питания, отопления и т.п.);

8) перехват данных, передаваемых по каналам связи, и их анализ с целью выяснения протоколов обмена, правил вхождения в связь и авторизации пользователя и последующих попыток их имитации для проникновения в систему;

9) хищение носителей информации (магнитных дисков, лент, микросхем памяти, запоминающих устройств и целых ПЭВМ);

10) несанкционированное копирование носителей информации;

11) хищение производственных отходов (распечаток, записей, списанных носителей информации и т.п.);

12) чтение остаточной информации из оперативной памяти и с внешних запоминающих устройств;

13) чтение информации из областей оперативной памяти, используемых операционной системой (в том числе подсистемой защиты) или другими пользователями, в асинхронном режиме используя недостатки мультизадачных операционных систем и систем программирования;

14) незаконное получение паролей и других реквизитов разграничения доступа (агентурным путем, используя халатность пользователей, путем подбора, путем имитации интерфейса системы и т.д.) с последующей маскировкой под зарегистрированного пользователя ("маскарад");

15) несанкционированное использование терминалов пользователей, имеющих уникальные физические характеристики, такие как номер рабочей станции в сети, физический адрес, адрес в системе связи, аппаратный блок кодирования и т.п.;

16) вскрытие шифров криптозащиты информации;

17) внедрение аппаратных спецвложений, программных "закладок" и "вирусов" ("троянских коней" и "жучков"), то есть таких участков программ, которые не нужны для осуществления заявленных функций, но позволяющих преодолевать систему защиты, скрытно и незаконно осуществлять доступ к системным ресурсам с целью регистрации и передачи критической информации или дезорганизации функционирования системы;

18) незаконное подключение к линиям связи с целью работы "между строк", с использованием пауз в действиях законного пользователя от его имени с последующим вводом ложных сообщений или модификацией передаваемых сообщений;

19) незаконное подключение к линиям связи с целью прямой подмены законного пользователя путем его физического отключения после входа в систему и успешной аутентификации с последующим вводом дезинформации и навязыванием ложных сообщений.

Следует заметить, что чаще всего для достижения поставленной цели злоумышленник использует не один, а некоторую совокупность из перечисленных выше путей.

1.5 Атаки сети, виды и защита

Разумеется, целенаправленное применение таких традиционных средств управления безопасностью, как антивирусное ПО, межсетевые экраны, средства криптографии и так далее, способствует предотвращению несанкционированного доступа к информации. Однако в данном случае на сцену выходит человеческий фактор. Человек, конечный пользователь, оказывается самым слабым звеном системы информационной безопасности, и хакеры, зная это, умело применяют методы социальной инженерии. Какие бы ни были многоуровневые системы идентификации, от них нет никакого эффекта, если пользователи, к примеру, используют простые для взлома пароли. При профессиональном подходе к вопросам безопасности подобные проблемы в компаниях решают путем централизованной выдачи уникальных и сложных паролей или установкой жестких корпоративных правил для сотрудников и адекватных мер наказания за их несоблюдение.

Классификация.

Сетевые атаки столь же разнообразны, сколь разнообразны системы, против которых они направлены. Чисто технологически большинство сетевых атак использует ряд ограничений, изначально присущих протоколу TCP/IP. В спецификациях ранних версий интернет-протокола (IP) отсутствовали требования безопасности, а потому многие реализации IP изначально являются уязвимыми. Только спустя много лет, когда началось бурное развитие электронной коммерции, и произошел ряд серьезных инцидентов с хакерами, наконец, начали широко внедряться средства обеспечения безопасности интернет-протокола. Однако, поскольку изначально средства защиты для IP не разрабатывались, его реализации начали дополнять различными сетевыми процедурами, услугами и продуктами, призванными снижать риски, "от рождения" присущие этому протоколу.

1.5.1 Почтовая бомбардировка

Бомбардировка электронной почтой (т.н. mailbombing) - один из самых старых и примитивных видов интернет-атак. Правильнее даже будет назвать это компьютерным вандализмом (или просто хулиганством - в зависимости от тяжести последствий). Суть мэйлбомбинга - в засорении почтового ящика "мусорной" корреспонденцией или даже выведении из строя почтового сервера интернет-провайдера. Для этого применяются специальные программы - мэйлбомберы. Они попросту засыпают указанный в качестве мишени почтовый ящик огромным количеством писем, указывая при этом фальшивые данные отправителя - вплоть до IP-адреса. Все, что нужно агрессору, использующему такую программу, - указать e-mail объекта атаки, число сообщений, написать текст письма (обычно пишется что-нибудь оскорбительное), указать фальшивые данные отправителя, если программа этого не делает сама и нажать кнопку "пуск". Впрочем, большинство интернет-провайдеров имеют собственные системы защиты клиентов от мэйлбомбинга. Когда число одинаковых писем из одного и того же источника начинает превышать некие разумные пределы, вся поступающая корреспонденция такого рода просто уничтожается. Так что сегодня почтовых бомбардировок можно всерьез уже не опасаться.

1.5.2 Атаки с подбором пароля

Атакующий систему хакер часто начинает свои действия с попыток раздобыть пароль администратора или одного из пользователей. Для того чтобы узнать пароль, существует великое множество различных методов. Вот основные из них: IP-спуфинг и сниффинг пакетов - их мы рассмотрим ниже. Внедрение в систему "троянского коня" - один из наиболее распространенных в хакерской практике приемов, про него мы также расскажем подробнее в дальнейшем. Перебор "в лоб" (brute force attack - "атака грубой силой"). Существует множество программ, которые осуществляют простой перебор вариантов паролей через Интернет или напрямую на атакуемом компьютере. Одни программы перебирают пароли по определенному словарю, другие просто генерируют случайным образом различные последовательности символов. Логический перебор вариантов пароля. Использующий этот метод злоумышленник просто перебирает вероятные комбинации символов, которые могут быть использованы пользователем в качестве пароля. Такой подход обычно оказывается на удивление эффективным. Специалисты по компьютерной безопасности не перестают удивляться, до чего часто пользователи используют в качестве пароля такие "загадочные" комбинации как, 1234, qwerty или собственное имя, написанное задом наперед. Серьезные хакеры, подбирая заветный пароль, могут досконально изучить человека, чтобы получить этот пароль. Имена членов семьи и прочих родственников, любимой собаки/кошки; за какие команды и в каких видах спорта "объект" болеет; какие книги и кинофильмы любит; какую газету читает по утрам - все эти данные и их комбинации идут в дело. Спастись от подобных атак можно, только используя в качестве пароля случайную комбинацию букв и цифр, желательно сгенерированную специальной программой. И, разумеется, необходимо регулярно менять пароль - следить за этим обязан системный администратор. Социальная инженерия. Это использование хакером психологических приемов "работы" с пользователем. Типичный (и самый простой) пример - телефонный звонок от якобы "системного администратора" с заявлением вроде "У нас тут произошел сбой в системе, и информация о пользователях была утеряна. Не могли бы вы сообщить еще раз свой логин и пароль?". Так жертва сама отдает пароль в руки хакеру. Защититься от таких атак, помимо обычной бдительности, помогает система "одноразовых паролей". Впрочем, из-за своей сложности она до сих пор не получила достаточно широкого распространения.

1.5.3 Вирусы, почтовые черви и "троянские кони"

Эти напасти поражают, в основном, не провайдеров или корпоративные коммуникации, а компьютеры конечных пользователей. Масштабы поражения при этом просто впечатляют - вспыхивающие все чаще глобальные компьютерные эпидемии приносят многомиллиардные убытки. Авторы же "зловредных" программ становятся все изощреннее, воплощая в современных вирусах самые передовые программные и психологические технологии. Вирусы и "троянские кони" - это разные классы "враждебного" программного кода. Вирусы внедряются в другие программы с целью выполнения заложенной в них вредоносной функции на рабочей станции конечного пользователя. Это может быть, например, уничтожение всех или только определенных файлов на винчестере (чаще всего), порча оборудования (пока экзотика) или другие операции. Часто вирусы запрограммированы на срабатывание в определенную дату (типичный пример - знаменитый WinChih, он же "Чернобыль"), а также на рассылку своих копий посредством электронной почты по всем адресам, найденным в адресной книге пользователя. "Троянский конь", в отличие от вируса, - самостоятельная программа, чаще всего не ориентированная на грубое разрушение информации, свойственное вирусам. Обычно цель внедрения "троянского коня" - получение скрытого удаленного контроля над компьютером для того, чтобы манипулировать содержащейся на нем информацией. "Троянские кони" успешно маскируются под различные игры или полезные программы, великое множество которых бесплатно распространяется в Интернете. Более того, хакеры иногда встраивают "троянских коней" в совершенно "невинные" и пользующиеся хорошей репутацией программы. Попав на компьютер, "троянский конь" обычно не афиширует свое присутствие, выполняя свои функции максимально скрытно. Такая программа может, к примеру, тишком отсылать своему хозяину-хакеру пароль и логин для доступа в Интернет с данного конкретного компьютера; делать и отправлять по заложенному в нее адресу определенные файлы; отслеживать все, что вводится с клавиатуры, и т.д. Более изощренные версии "троянских коней", адаптированные для атаки на конкретные компьютеры конкретных пользователей, могут по указанию хозяина заменять те или иные данные на другие, заранее заготовленные, или видоизменять хранящиеся в файлах данные, вводя тем самым в заблуждение владельца компьютера. К слову, довольно распространенный прием из арсенала промышленного шпионажа и провокаций. Борьба с вирусами и "троянскими конями" ведется при помощи специализированного программного обеспечения, причем, грамотно выстроенная защита обеспечивает двойной контроль: на уровне конкретного компьютера и на уровне локальной сети. Современные средства борьбы с вредоносным кодом достаточно эффективны, и практика показывает, что регулярно вспыхивающие глобальные эпидемии компьютерных вирусов происходят во многом благодаря "человеческому фактору" - большинство пользователей и многие системные администраторы (!) попросту ленятся регулярно обновлять базы данных антивирусных программ и проверять на вирусы приходящую электронную почту перед ее прочтением (хотя сейчас это все чаще делают сами провайдеры услуг Интернет).

1.5.4 Сетевая разведка

Собственно говоря, сетевую разведку нельзя назвать атакой на компьютерную систему - ведь никаких "зловредных" действий хакер при этом не производит. Однако сетевая разведка всегда предшествует собственно нападению, так как при его подготовке злоумышленникам необходимо собрать всю доступную информацию о системе. При этом информация собирается с использованием большого набора общедоступных данных и приложений - ведь хакер старается получить как можно больше полезной информации. При этом производится сканирование портов, запросы DNS, эхо-тестирование раскрытых с помощью DNS адресов и т.д. Так удается, в частности, выяснить, кому принадлежит тот или иной домен и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной сети, а средства сканирования портов позволяют составить полный список услуг, поддерживаемых этими хостами. Анализируются при проведении сетевой разведки и характеристики приложений, работающих на хостах, - словом, добывается информация, которую впоследствии можно использовать при взломе или проведении DoS-атаки. Полностью избавиться от сетевой разведки невозможно, в первую очередь потому, что формально враждебных действий не производится. Если, например, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, можно избавиться от эхо-тестирования, однако при этом окажутся потеряны данные, которые необходимы для диагностики сбоев в Сети.

К тому же, просканировать порты злоумышленники могут и без предварительного эхо-тестирования. Защитные и контролирующие системы на уровне сети и хостов обычно вполне справляются с задачей уведомления системного администратора о ведущейся сетевой разведке. При добросовестном отношении администратора к своим обязанностям это позволяет лучше подготовиться к предстоящей атаке и даже принять упреждающие меры, например, оповестив провайдера, из сети которого кто-то проявляет чрезмерное любопытство.

1.5.5 Сниффинг пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки). При этом сниффер ("нюхач") перехватывает все сетевые пакеты, которые передаются через атакуемый домен. Особенность ситуации в данном случае в том, что сейчас во многих случаях снифферы работают в сетях на вполне законном основании - их используют для диагностики неисправностей и анализа трафика. Поэтому далеко не всегда можно достоверно определить, используется или нет конкретная программа-сниффер злоумышленниками, и не произошло ли банальной подмены программы на аналогичную, но с "расширенными" функциями. При помощи сниффера злоумышленники могут узнать различную конфиденциальную информацию - такую, например, как имена пользователей и пароли. Связано это с тем, что ряд широко используемых сетевых приложений передает данные в текстовом формате (telnet, FTP, SMTP, POP3 и т.д.). Поскольку пользователи часто применяют одни и те же логин и пароль для множества приложений и систем, даже однократный перехват этой информации несет серьезную угрозу информационной безопасности предприятия. Единожды завладев логином и паролем конкретного сотрудника, хитроумный хакер может получить доступ к пользовательскому ресурсу на системном уровне и с его помощью создать нового, фальшивого, пользователя, которого можно в любой момент использовать для доступа в Сеть и к информационным ресурсам. Впрочем, используя определенный набор средств, можно существенно смягчить угрозу сниффинга пакетов. Во-первых, это достаточно сильные средства аутентификации, которые трудно обойти, даже используя "человеческий фактор". Например, однократные пароли (One-Time Passwords). Это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. При этом аппаратное или программное средство генерирует по случайному принципу уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Но это касается только паролей - к примеру, сообщения электронной почты все равно остаются незащищенными. Другой способ борьбы со сниффингом - использование анти-снифферов. Это работающие в Сети аппаратные или программные средства, которые распознают снифферы. Они измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать "лишний" трафик. Подобного рода средства не могут полностью ликвидировать угрозу сниффинга, но жизненно необходимы при построении комплексной системы защиты. Однако наиболее эффективной мерой, по мнению ряда специалистов, будет просто сделать работу снифферов бессмысленной. Для этого достаточно защитить передаваемые по каналу связи данные современными методами криптографии. В результате хакер перехватит не сообщение, а зашифрованный текст, то есть непонятную для него последовательность битов. Сейчас наиболее распространенными являются криптографические протоколы IPSec от корпорации Cisco, а также протоколы SSH (Secure Shell) и SSL (Secure Socket Layer).

1.5.6 IP-спуфинг

Спуфинг - это вид атаки, при которой хакер внутри организации или за ее пределами выдает себя за санкционированного пользователя. Для этого существуют различные способы. Например, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных к применению в рамках Сети данной организации IP-адресов, или авторизованным внешним адресом, в случае если ему разрешен доступ к определенным сетевым ресурсам. Кстати, IP-спуфинг часто используется как составная часть более сложной, комплексной атаки. Типичный пример - атака DDoS, для осуществления которой хакер обычно размещает соответствующую программу на чужом IP-адресе, чтобы скрыть свою истинную личность. Однако чаще всего IP-спуфинг используется для выведения из строя системы при помощи ложных команд, а также для воровства конкретных файлов или, наоборот, внедрения в базы данных ложной информации. Полностью устранить угрозу спуфинга практически невозможно, но ее можно существенно ослабить. Например, имеет смысл настроить системы безопасности таким образом, чтобы они отсекали любой трафик, поступающий из внешней сети с исходным адресом, который должен на самом деле находиться в сети внутренней. Впрочем, это помогает бороться с IP-спуфингом, только когда санкционированными являются лишь внутренние адреса. Если таковыми являются и некоторые внешние адреса, использование данного метода теряет смысл. Неплохо также на всякий случай заблаговременно пресечь попытки спуфинга чужих сетей пользователями вашей сети - эта мера может позволить избежать целого ряда неприятностей, если внутри организации объявится злоумышленник или просто компьютерный хулиган. Для этого нужно использовать любой исходящий трафик, если его исходный адрес не относится ко внутреннему диапазону IP-адресов организации. При необходимости данную процедуру может выполнять и провайдер услуг Интернет. Этот тип фильтрации известен под названием "RFC 2827". Опять-таки, как и в случае со сниффингом пакетов, самой лучшей защитой будет сделать атаку абсолютно неэффективной. IP-спуфинг может быть реализован только при условии, что аутентификация пользователей происходит на базе IP-адресов. Поэтому криптошифрование аутентификации делает этот вид атак бесполезными. Впрочем, вместо криптошифрования с тем же успехом можно использовать случайным образом генерируемые одноразовые пароли.

1.5.7 Атака на отказ в обслуживании

Сегодня одна из наиболее распространенных в мире форм хакерских атак - атака на отказ в обслуживании (Denial of Service - DoS). Между тем, это одна из самых молодых технологий - ее осуществление стало возможно только в связи с действительно повсеместным распространением Интернета. Не случайно о DoS-атаках широко заговорили только после того, как в декабре 1999 года при помощи этой технологии были "завалены" web-узлы таких известных корпораций, как Amazon, Yahoo, CNN, eBay и E-Trade. Хотя первые сообщения о чем-то похожем появились еще в 1996 году, до "рождественского сюрприза" 1999 года DoS-атаки не воспринимались как серьезная угроза безопасности в Сети. Однако спустя год, в декабре 2000-го, все повторилось: web-узлы крупнейших корпораций были атакованы по технологии DoS, а их системные администраторы вновь не смогли ничего противопоставить злоумышленникам. Ну а в 2001 году DoS-атаки стали уже обычным делом. Собственно говоря, DoS-атаки производятся отнюдь не для кражи информации или манипулирования ею. Основная их цель - парализовать работу атакуемого web-узла. В общем случае технология DoS-атаки выглядит следующим образом: на выбранный в качестве мишени web-узел обрушивается шквал ложных запросов со множества компьютеров по всему миру. В результате, обслуживающие узел серверы оказываются парализованы и не могут обслуживать запросы обычных пользователей. При этом пользователи компьютеров, с которых направляются ложные запросы, и не подозревают о том, что их машина тайком используется злоумышленниками. Такое распределение "рабочей нагрузки" не только усиливает разрушительное действие атаки, но и сильно затрудняет меры по ее отражению, не позволяя выявить истинный адрес координатора атаки. Сегодня наиболее часто используются следующие разновидности DoS-атак:

· Smurf - ping-запросы ICMP (Internet Control Message Protocol) по адресу направленной широковещательной рассылки. Используемый в пакетах этого запроса фальшивый адрес источника в результате оказывается мишенью атаки. Системы, получившие направленный широковещательный ping-запрос, отвечают на него и "затапливают" сеть, в которой находится сервер-мишень.

· ICMP flood - атака, аналогичная Smurf, только без усиления, создаваемого запросами по направленному широковещательному адресу.

· UDP flood - отправка на адрес системы-мишени множества пакетов UDP (User Datagram Protocol), что приводит к "связыванию" сетевых ресурсов.

· TCP flood - отправка на адрес системы-мишени множества TCP-пакетов, что также приводит к "связыванию" сетевых ресурсов.

· TCP SYN flood - при проведении такого рода атаки выдается большое количество запросов на инициализацию TCP-соединений с узлом-мишенью, которому, в результате, приходится расходовать все свои ресурсы на то, чтобы отслеживать эти частично открытые соединения.

В случае атаки трафик, предназначенный для переполнения атакуемой сети, необходимо "отсекать" у провайдера услуг Интернет, потому что на входе в Сеть сделать это уже будет невозможно - вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, говорится о распределенной атаке DoS (Distributed Denial of Service - DDoS). Угрозу DoS-атак можно снизить несколькими способами. Во-первых, необходимо правильно сконфигурировать функции анти-спуфинга на маршрутизаторах и межсетевых экранах. Эти функции должны включать, как минимум, фильтрацию RFC 2827. Если хакер будет не в состоянии замаскировать свою истинную личность, он вряд ли решится на проведение атаки. Во-вторых, необходимо включить и правильно сконфигурировать функции анти-DoS на маршрутизаторах и межсетевых экранах. Эти функции ограничивают число полуоткрытых каналов, не позволяя перегружать систему. Также рекомендуется при угрозе DoS-атаки ограничить объем проходящего по Сети некритического трафика. Об этом уже нужно договариваться со своим интернет-провайдером. Обычно при этом ограничивается объем трафика ICMP, так как он используется сугубо для диагностических целей.

1.5.8 Атаки типа Man-in-the-Middle

Этот тип атак весьма характерен для промышленного шпионажа. При атаке типа Man-in-the-Middle хакер должен получить доступ к пакетам, передаваемым по Сети, а потому в роли злоумышленников в данном случае часто выступают сами сотрудники предприятия или, к примеру, сотрудник фирмы-провайдера. Для атак Man-in-the-Middle часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Цель подобной атаки, соответственно, - кража или фальсификация передаваемой информации или же получение доступа к ресурсам сети. Защититься от подобных атак крайне сложно, так как обычно это атаки "крота" внутри самой организации. Поэтому в чисто техническом плане обезопасить себя можно только путем криптошифрования передаваемых данных. Тогда хакер вместо необходимых ему данных получит мешанину символов, разобраться в которой, не имея под рукой суперкомпьютера, попросту невозможно. Впрочем, если злоумышленнику повезет, и он сможет перехватить информацию о криптографической сессии, шифрование данных автоматически потеряет всяческий смысл. Так что "на переднем крае" борьбы в данном случае должны находиться не "технари", а кадровый отдел и служба безопасности предприятия.

...

Подобные документы

  • Знакомство с возможностями перехвата пароля при аутентификации в почтовых системах. Характеристика почтовой программы "The Bat!", анализ способов настройки и проверки работоспособности. Рассмотрение распространенных методов защиты от перехвата пароля.

    контрольная работа [1,1 M], добавлен 19.05.2014

  • Угрозы безопасности программного обеспечения и классификация средств атаки на средства защиты ПО. Методы и средства защиты программ от компьютерных вирусов и средств исследования программ. Анализ стандартов в области информационной безопасности.

    дипломная работа [1,4 M], добавлен 29.06.2012

  • Проблема защиты информации. Особенности защиты информации в компьютерных сетях. Угрозы, атаки и каналы утечки информации. Классификация методов и средств обеспечения безопасности. Архитектура сети и ее защита. Методы обеспечения безопасности сетей.

    дипломная работа [225,1 K], добавлен 16.06.2012

  • Основные задачи антивирусов и средства антивирусной защиты персонального компьютера. Механизм работы вирусов и способы их распространения. Методы и технологии защиты от вредоносных программ. Общие требования безопасности при работе за компьютером.

    реферат [241,2 K], добавлен 22.09.2016

  • Понятие и основные задачи информационной безопасности. Разработка и реализация политики ИБ в компании Microsoft. Виды угроз безопасности. Современные средства физической, аппаратной, программной защиты информации в локальном домашнем и офисном компьютере.

    курсовая работа [107,6 K], добавлен 09.04.2014

  • Технические средства защиты информации. Основные угрозы безопасности компьютерной системы. Средства защиты от несанкционированного доступа. Системы предотвращения утечек конфиденциальной информации. Инструментальные средства анализа систем защиты.

    презентация [3,8 M], добавлен 18.11.2014

  • Основные угрозы по отношению к информации. Понятия, методы и способы обеспечения защиты данных. Требования к системе защиты. Механизм авторизации в информационной базе для определения типа пользователя. Работа администратора с системой безопасности.

    курсовая работа [201,1 K], добавлен 24.06.2013

  • Характеристика информационных ресурсов агрохолдинга "Ашатли". Угрозы информационной безопасности, характерные для предприятия. Меры, методы и средства защиты информации. Анализ недостатков существующей и преимущества обновленной системы безопасности.

    курсовая работа [30,4 K], добавлен 03.02.2011

  • Пути проникновения вирусов. Общие средства защиты информации: детекторы, доктора ревизоры, доктора-ревизоры, фильтры, вакцины. Минимальные предостережения по защите от компьютерных вирусов. Интернет-угроза безопасности, кибермошенничество и спамы.

    реферат [33,3 K], добавлен 22.09.2015

  • Общие и программные средства для защиты информации от вирусов. Действие компьютерных вирусов. Резервное копирование информации, разграничение доступа к ней. Основные виды антивирусных программ для поиска вирусов и их лечения. Работа с программой AVP.

    реферат [2,0 M], добавлен 21.01.2012

  • Понятие системы информационной безопасности, ее цели состав. Классификация нарушителей; угрозы, особенности и примеры их реализации. Средства защиты информации: шифрование, авторизации, идентификации и аутентификации пользователей; антивирусные программы.

    презентация [947,4 K], добавлен 19.09.2016

  • Анализ информации как объекта защиты и изучение требований к защищенности информации. Исследование инженерно-технических мер защиты и разработка системы управления объектом защиты информации. Реализация защиты объекта средствами программы Packet Tracer.

    дипломная работа [1,2 M], добавлен 28.04.2012

  • Средства защиты информации. Профилактические меры, позволяющие уменьшить вероятность заражения вирусом. Предотвращение поступления вирусов. Специализированные программы для защиты. Несанкционированное использование информации. Методы поиска вирусов.

    реферат [23,5 K], добавлен 27.02.2009

  • Законодательные основы защиты персональных данных. Классификация угроз информационной безопасности. База персональных данных. Устройство и угрозы ЛВС предприятия. Основные программные и аппаратные средства защиты ПЭВМ. Базовая политика безопасности.

    дипломная работа [2,5 M], добавлен 10.06.2011

  • Анализ объекта информатизации. Политику информационной безопасности. Подсистемы технической защиты информации: управления доступом, видеонаблюдения, охранной и пожарной сигнализаций, защиты от утечки по техническим каналам, защиты корпоративной сети.

    презентация [226,0 K], добавлен 30.01.2012

  • Сущность проблемы и задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации, способы их воздействия на объекты. Концепция информационной безопасности предприятия. Криптографические методы и средства защиты информации.

    курсовая работа [350,4 K], добавлен 10.06.2014

  • Предпосылки создания системы безопасности персональных данных. Угрозы информационной безопасности. Источники несанкционированного доступа в ИСПДн. Устройство информационных систем персональных данных. Средства защиты информации. Политика безопасности.

    курсовая работа [319,1 K], добавлен 07.10.2016

  • Организационная и функциональная структура объекта автоматизации. Методы и средства защиты информации. Инвентаризация объектов, потенциально требующих защиты. Классификация объектов информационной системы. Анализ возможных каналов утечки информации.

    контрольная работа [312,5 K], добавлен 30.09.2012

  • Необходимость и потребность в защите информации. Виды угроз безопасности информационных технологий и информации. Каналы утечки и несанкционированного доступа к информации. Принципы проектирования системы защиты. Внутренние и внешние нарушители АИТУ.

    контрольная работа [107,3 K], добавлен 09.04.2011

  • Организация локальной сети на основе Windows Server 2008. Выбор сетевой архитектуры, маршрутизатора для доступа в Internet. Характеристика программного обеспечения, выбранного в качестве сетевого экрана для защиты информации от внешних атак и вирусов.

    курсовая работа [166,8 K], добавлен 07.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.