Компьютерное моделирование числовой и символьной информации
Моделирование - осуществление каким-либо способом отражения или воспроизведения в модели действительности для изучения объективных закономерностей. Построение компьютерной модели на абстрагировании от природы явлений. Числовая и символьная информация.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 04.10.2017 |
Размер файла | 22,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Самостоятельная работа студента
Дисциплина: Информационно-коммуникационные технологии
Тема: Компьютерное моделирование числовой и символьной информации
Подготовил: Тен А.А.
Актобе 2017г.
Введение
Моделирование означает осуществление каким-либо способом отражения или воспроизведения в модели действительности для изучения в ней объективных закономерностей. Оно основано на теории подобия
Модель - это естественный или искусственный объект однозначно соответствующий изучаемому или какой-либо его части.
Свойства модели и изучаемого объекта выявляются в результате эксперимента. Под экспериментом понимается специально организованная процедура постановки и обработки наблюдений, проводимых в естественных или лабораторных условиях над моделью объекта.
Что такое компьютерное моделирование?
Компьютерная модель (англ. computer model), или численная модель (англ. computational model) - компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.
О компьютерном моделировании
Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний об объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.
Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет определить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения её параметров и начальных условий.
Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Чем больше значимых свойств будет выявлено и перенесено на компьютерную модель - тем более приближенной она окажется к реальной модели, тем большими возможностями сможет обладать система, использующая данную модель. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.
Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путём последовательного выполнения большого количества элементарных операции. моделирование информация компьютерный
Числовая и символьная информация
В тех случаях, когда над числовыми данными приходится выполнять какие-либо математические операции, например сложение, вычитание, умножение и т. д., применяются особые принципы кодирования. Так, кодом целого положительного десятичного числа считается его запись в двоичной системе счисления, то есть равное ему двоичное число. Например, кодом десятичного числа +3710 является двоичное число 0010 01012 (или 2516). А число +98410 выглядит как 0000 0011 110110012 (или 03 D916). Для отрицательных целых чисел, а также для положительных и отрицательных дробных чисел используются более сложные методы кодирования. Для перехода от десятичной системы счисления к двоичной и назад - от двоичной к десятичной - применяются достаточно сложные специальные правила, на которых мы останавливаться не будем, так как в подавляющем большинстве ситуаций эти переходы осуществляются автоматически.
В случае кодирования числовой информации одного байта для записи числа, как правило, бывает недостаточно, так как с его помощью можно записать числа только из диапазона от 010 до 25610 или же, при использовании более сложного способа кодирования, от -12810 до +12710. Поэтому для записи чисел, не входящих в указанные диапазоны, используется несколько соседних байтов памяти. Обычно это один, два, четыре, восемь или десять байтов. Так, объединение двух байтов позволяет работать с числами от 010 до 65 53510, а объединение четырех - с числами от 010 до 4 294 96729510.
Символьная (алфавитно-цифровая) информация в IBM-совместимых компьютерах представляется с помощью 8-разрядных двоичных кодов. Число кодовых комбинаций из 0 и 1 определяется максимальным числом, которое может быть размещено в одном байте памяти компьютера. Поэтому коды символов могут принимать значения от 0 до 255. Каждому символу ставится в соответствие единственный код из числа кодовых комбинаций. С помощью 8-разрядного кода кодируются прописные и строчные буквы латинского алфавита и буквы кириллицы, цифры, знаки математических операций и препинания и т.д.
На базе 8-ми разрядного двоичного кода существует множество систем кодирования. При создании первых версий IBM PC, которые работали только под управлением ОС MS DOS, была разработана кодировка ASCII (American Standart Code for Information Interchange - Американский стандартный код обмена информацией). Он включает:
Латинские строчные и прописные буквы.
Цифровые знаки.
Знаки препинания, спецсимволы и пробел.
Управляющие коды, которые используются для разделения информации при её кодировании и управлении работой внешних устройств компьютера.
Символы с порядковыми номерами в ASCII-таблице от 128-254 - это буквы национальных алфавитов и знаки для прямоугольных рамок и линий.
Управляющие символы пронумерованы от 0 до 31. Пробел как символьное значение имеет порядковый номер 32.
При установке на компьютере соответствующего программного обеспечения множество символьных значений может содержать буквы русского алфавита, которые заменяют другие, относительно малоиспользуемые символы. При этом символы стандарта ASCII никогда не заменяются.
Система кодировки ASCII.
В операционной системе WINDOWS для IBM PC разработана специальная кодовая таблица ANSI. В этой таблице отсутствуют символы псевдографики, так как в WINDOWS можно рисовать линии и диаграммы достаточно просто.
Цели моделирования
1) Познание окружающего мира.
Зачем человек создает модели? Несколько миллионов лет назад первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать. Накопленные знания передавались из поколения в поколение устно, позже письменно, наконец, с помощью предметных моделей. Так родилась, к примеру, модель земного шара - глобус, - позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и расположении материков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром моделей.
2) Создание объектов с заданными свойствами (задача типа "Как сделать, чтобы...").
Накопив достаточно знаний, человек задал себе вопрос: "Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?" Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.
3) Определение последствий воздействия на объект и принятие правильного решения (задача типа "Что будет, если...": что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)
Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмешательства в природу.
4) Эффективность управления объектом (или процессом).
Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут "и волки сыты, и овцы целы". Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и к тому же быть "по карману" родителям, а с третьей - технология приготовления должна соответствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.
История возникновения и развития метода компьютерного моделирования
Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово "алгоритм" происходит от имени средневекового арабского ученого Аль Хорезми. Второе "рождение" этой методологии пришлось на конец 40-х начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них - появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но, тем не менее, избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ - выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно "осуществлены" в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Эффективные численные методы и программы, разработанные для многих классов задач, позволили уже на ЭВМ второго поколения решить многие практически важные задачи.
Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам)
Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, "встраиваясь" в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными "ресурсами" нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного "сырья" в готовый "продукт", т. е. в точное знание.
История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества. Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в "единственном экземпляре". Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире - информационное) моделирование является неизбежной составляющей научно-технического прогресса.
Наиболее впечатляющие успехи достигнуты при применении математического моделирования в инженерии и технологии. В настоящее время отмечается все возрастающий уровень математизации химии.
Например, химическая кинетика базируется на системах обыкновенных дифференциальных уравнений, химическая гидродинамика - на уравнениях в частных производных и т.д.
Повышается и уровень математизации биологии. В этой связи достаточно сослаться на классические работы В.Вольтерра по моделированию системы хищник - жертва, выполненные еще в начале двадцатого века.
Мы являемся свидетелями все более широкого использования математических идей в экономике, истории и других гуманитарных науках.
Процесс математизации наук идет чрезвычайно быстро благодаря опыту, накопленному при математизации механики и физики, благодаря достигнутому уровню развития самой математики.
Достоинства и недостатки компьютерного моделирования
Преимущества компьютерного моделирования:
Свободно и доступно в использовании.
Можно рассчитывать и создавать такие объекты, которые в реальных условиях невозможны.
С помощью компьютерного моделирования возможно не только наблюдать, но и предсказывать результаты экспериментов.
Находить оптимальную форму и конструкцию не создавая пробных деталей.
Эксперименты без риска для здоровья человека и не представляет опасности для природы.
Возможность обзора объекта со всех сторон.
Недостатки компьютерного моделирования:
Заблуждение о том, что моделирование может качественно обнаруживать новые явления. Т.к. должно быть подтверждение в реальных условиях и в реальных экспериментах.
Модельный анализ уменьшает возможные объяснения.
Заключение
На сегодняшний день компьютерное моделирование является важным инструментом во всех областях человеческой деятельности.
За более чем полстолетия средства имитационного моделирования прошли значительный путь развития. Современные программные продукты не требуют специального обучения пользователя, и у него есть возможность уделить больше внимания проведению имитационных экспериментов и интерпретации их результатов. Перспективными направлениями развития моделирования представляются следующие области:
- имитационное моделирование системы одновременно с ее функционированием, что позволит предсказывать поведение системы;
- замена физических моделей объектов управления на имитационные, что позволит изучать разные алгоритмы управления объектами;
- оптимизация результатов имитационных экспериментов;
- распределенное в пространстве имитационное моделирование сложных систем;
- отображение реального производства в виде имитационной модели.
Возможности моделирования неуклонно растут и требуют все больших вычислительных мощностей.
Ошибочно думать, будто традиционные виды моделирования противопоставляются компьютерному моделированию. Наоборот, доминирующей тенденцией сегодня является взаимопроникновение всех видов моделирования, симбиоз различных информационных технологий в области моделирования, особенно, для сложных приложений и комплексных проектов по моделированию. Так, например, имитационное моделирование включает в себя концептуальное моделирование (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) для целей описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (натурного) - моделирования. Наконец, структурно-функциональное моделирование используется при создании стратифицированного описания многомодельных комплексов.
Из всего многообразия средств компьютерного моделирования, описаны лишь наиболее важные ключевые моменты, относящие к развитию имитационного моделирования с применением компьютерных технологий, которые определяли тенденции в развитии и становлении этого направления.
Размещено на Allbest.ru
...Подобные документы
Понятие и условие устойчивости бистабильной системы. Исследование модели "нагреватель - охлаждающая жидкость", построение фазового портрета стационарных состояний нагревателя. Компьютерное моделирование данной системы в пакете model vision studium.
курсовая работа [1,1 M], добавлен 07.06.2013Оптимизационные модели на производстве. Компьютерное моделирование и программные средства. Трехмерное моделирование в T-Flex. Инженерный анализ в ANSYS. Интерфейс табличного процессора MS Excel. Построение математической модели задачи, ее реализация.
курсовая работа [5,2 M], добавлен 13.04.2014Методы, основанные на применении математических функций: экстраполяционный и аналитический. Компьютерное моделирование структуры популяции. Информация для реализации модели. Основные сведения о Всемирной организации здравоохранения. Структура базы данных.
дипломная работа [873,7 K], добавлен 24.12.2013Построение концептуальной модели системы и ее формализация. Алгоритмизация модели системы и ее машинная реализация. Построение логической схемы модели. Проверка достоверности модели системы. Получение и интерпретация результатов моделирования системы.
курсовая работа [67,9 K], добавлен 07.12.2009Анализ и формализация задачи моделирования: построение концептуальной модели, ее формализация в виде Q-схемы. Построение имитационной модели: создание блок-схемы, представление базовой исходной имитационной модели. Исследование экономических процессов.
контрольная работа [156,0 K], добавлен 21.11.2010Построение структурной модели в программе RMSRoxar, исследование интерфейса и меню, назначение закладок. Гидродинамическое моделирование и построение соответствующей модели. Особенности построения моделей на разных стадиях изученности месторождения.
отчет по практике [5,6 M], добавлен 18.12.2014Сущность понятия "имитационное моделирование". Подклассы систем, ориентированных на системное и логическое моделирование. Способы построения моделирующего алгоритма. Имитационные модели производственных процессов. Структура обобщенной имитационной модели.
реферат [453,5 K], добавлен 26.10.2010Основные виды модели. Моделирование в частотной и во временной областях. Построение амплитудно-фазной, амплитудно-частотной и фазо-частотной характеристики (моделирование в частотной области) и переходный процесс (моделирование во временной области).
курсовая работа [174,4 K], добавлен 01.03.2009Моделирование как основная функция вычислительных систем. Разработка концептуальной модели для системы массового обслуживания и ее формализация. Аналитический расчет и алгоритмизация модели, построение блок-диаграмм. Разработка и кодирование программы.
курсовая работа [164,8 K], добавлен 18.12.2011Методы материального моделирования в среде GPSS. Построение и разработка концептуальной модели. Алгоритмизация модели и ее машинная реализация. Экспериментальное моделирование на ЭВМ. Определение максимальной длины очереди готовых к обработке пакетов.
курсовая работа [189,0 K], добавлен 14.09.2011Концептуальное, физическое, структурно-функциональное, математическое (логико-математическое), имитационное (программное) и компьютерное моделирование. Построение имитационной модели в среде AnyLogic. Дискретные и непрерывно изменяющиеся модели.
курсовая работа [1,6 M], добавлен 21.11.2013Роль моделирования общественно-исторических процессов. Распределенный банк данных системы сбора информации. Концептуальная схема модели системы. Критерии оценки эффективности процесса функционирования СМО. Выдвижение гипотез и принятие предположений.
дипломная работа [140,1 K], добавлен 30.07.2009Создание web-страниц с использованием языка HTML. Работа с графикой в Adobe Photoshop и Flash CS. Создание динамических web-страниц с использованием JavaScript и PHP. Базы данных и PHP. Пример реализации "Эконометрической модели экономики России" под WEB.
презентация [432,3 K], добавлен 25.09.2013Сферы применения машинной графики. Использование растровой, векторной и фрактальной графики. Цветовое разрешение и модели. Создание, просмотр и обработка информации. Форматы графических файлов. Программы просмотра. Компьютерное моделирование и игра.
презентация [661,5 K], добавлен 24.03.2017Компьютерное моделирование - вид технологии. Анализ электрических процессов в цепях второго порядка с внешним воздействием с применением системы компьютерного моделирования. Численные методы аппроксимации и интерполяции и их реализация в Mathcad и Matlab.
курсовая работа [1,1 M], добавлен 21.12.2013Основные понятия: модель, моделирование, виды моделей. Пути и способы изучения темы "Моделирование и формализация" в курсе информатики в 8 классе. Создание табличной информационной модели. Понятие информационной модели, системы и структуры системы.
методичка [1,8 M], добавлен 30.05.2013Разработка системы расчета характеристик разомкнутых экспоненциальных сетевых моделей, выполняющая имитационное моделирование заданной сетевой модели. Построение модели на языке GPSS, анализ эффективности аналитической модели, выполняющей роль эталона.
курсовая работа [483,6 K], добавлен 01.12.2010Построение модели системы массового обслуживания с помощью ЭВМ с использованием методов имитационного моделирования. Моделирование проводилось с помощью GPSS World Student version, позволяющего достоверно воссоздать систему массового обслуживания.
курсовая работа [555,7 K], добавлен 29.06.2011Формы и системы представления информации для ее машинной обработки. Аналоговая и дискретная информация, представление числовой, графической и символьной информации в компьютерных системах. Понятие и особенности файловых систем, их классификация и задачи.
реферат [170,3 K], добавлен 14.11.2013Построение структурной схемы модели системы, укрупненной схемы моделирующего алгоритма. Проект математической модели информационно-поисковой библиографической системы, построенной на базе двух ЭВМ и имеющей один терминал для ввода и вывода информации.
курсовая работа [598,2 K], добавлен 21.06.2011