Прикладное программирование

Характеристика интерфейса прикладного программирования. Изучение одноранговых и серверных сетевых операционных систем. Исследование особенностей семафоров. Рассмотрение процесса кэширования данных. Анализ главных принципов управления файловой системой.

Рубрика Программирование, компьютеры и кибернетика
Вид учебное пособие
Язык русский
Дата добавления 06.10.2017
Размер файла 806,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Например, для Windowsпрограммы, работающей на Macintosh, при интерпретации команд процессора Intel 80x86 производительность может быть очень низкой. Но когда производится вызов функции GUI открытия окна, модуль ОС, реализующий прикладную среду Windows, может перехватить этот вызов и перенаправить его на перекомпилированную для процессора Motorola 680x0 подпрограмму открытия окна. В результате на таких участках кода скорость работы программы может достичь (а возможно, и превзойти) скорость работы на своем «родном» процессоре.

Чтобы программа, написанная для одной ОС, могла быть выполнена в рамках другой ОС, недостаточно лишь обеспечить совместимость API. Концепции, положенные в основу разных ОС, могут входить в противоречие друг с другом. Например, в одной операционной системе приложению может быть разрешено непосредственно управлять устройствами ввода-вывода, в другой эти действия являются прерогативой ОС. Каждая операционная система имеет свои собственные механизмы защиты ресурсов, свои алгоритмы обработки ошибок и исключительных ситуаций, особую структуру процесса и схему управления памятью, свою семантику доступа к файлам и графический пользовательский интерфейс. Для обеспечения совместимости необходимо организовать бесконфликтное сосуществование в рамках одной ОС нескольких способов управления ресурсами компьютера.

2.7.3. Способы реализации прикладных программных сред

Создание полноценной прикладной среды, полностью совместимой со средой другой операционной системы, является достаточно сложной задачей, тесно связанной со структурой операционной системы. Существуют различные варианты построения множественных прикладных сред, отличающиеся как особенностями архитектурных решений, так и функциональными возможностями, обеспечивающими различную степень переносимости приложений.

Во многих версиях ОС UNIX транслятор прикладных сред реализуется в виде обычного приложения. В операционных системах, построенных с использованием микроядерной концепции, таких, как, например, Windows NT, прикладные среды выполняются в виде серверов пользовательского режима. А в OS/2 с ее более простой архитектурой средства организации прикладных сред встроены глубоко в операционную систему.

Один из наиболее очевидных вариантов реализации множественных прикладных сред основывается на стандартной многоуровневой структуре ОС. Для этого в ее составе имеется специальное приложение - прикладная программная среда, которая транслирует интерфейс «чужой» операционной системы -API OS2 в интерфейс своей «родной» операционной системы - API OS1.

В другом варианте реализации множественных прикладных сред операционная система имеет несколько равноправных прикладных программных интерфейсов. Для этого непосредственно в пространстве ядра системы размещены прикладные программные интерфейсы всех этих ОС: API OS1, API OS2 и API OS3.

В этом варианте функции уровня API обращаются к функциям нижележащего уровня ОС, которые должны поддерживать все три в общем случае несовместимые прикладные среды. В разных ОС поразному осуществляется управление системным временем, используется разный формат времени дня, на основании собственных алгоритмов разделяется процессорное время и т. д. Функции каждого API реализуются ядром с учетом специфики соответствующей ОС, даже если они имеют аналогичное назначение.

Еще один способ построения множественных прикладных сред основан на микроядерном подходе. При этом очень важно отделить базовые, общие для всех прикладных сред, механизмы операционной системы от специфических для каждой из прикладных сред высокоуровневых функций, решающих стратегические задачи.

В соответствии с микроядерной архитектурой все функции ОС реализуются микроядром и серверами пользовательского режима. Важно, что каждая прикладная среда оформляется в виде отдельного сервера пользовательского режима и не включает базовых механизмов. Приложения, используя API, обращаются с системными вызовами к соответствующей прикладной среде через микроядро. Прикладная среда обрабатывает запрос, выполняет его (возможно, обращаясь для этого за помощью к базовым функциям микроядра) и отсылает приложению результат. В ходе выполнения запроса прикладной среде приходится, в свою очередь, обращаться к базовым механизмам ОС, реализуемым микроядром и другими серверами ОС.

Такому подходу к конструированию множественных прикладных сред присущи все достоинства и недостатки микроядерной архитектуры, в частности:

очень просто можно добавлять и исключать прикладные среды, что является следствием хорошей расширяемости микроядерных ОС;

надежность и стабильность выражаются в том, что при отказе одной из прикладных сред все остальные сохраняют работоспособность;

низкая производительность микроядерных ОС сказывается на скорости работы прикладных сред, а значит, и на скорости выполнения приложений.

Создание в рамках одной операционной системы нескольких прикладных сред для выполнения приложений различных ОС представляет собой путь, который позволяет иметь единственную версию программы и переносить ее между операционными системами. Множественные прикладные среды обеспечивают совместимость на двоичном уровне данной ОС с приложениями, написанными для других ОС. В результате пользователи получают большую свободу выбора операционных систем и более легкий доступ к качественному программному обеспечению.

Вопросы для самопроверки

49. В чем отличие микроядерной архитектуры от традиционной архитектуры ОС?

50. Почему микроядро хорошо подходит для поддержки распреде-ленных вычислений?

51. Что подразумевается под концепцией множественных приклад-ных сред?

52. В чем суть метода трансляции библиотек?

Контрольные вопросы

53. Каким термином в микроядерной архитектуре принято называть менеджеры ресурсов, вынесенные в пользовательский режим?

54. Можно ли считать микроядерную архитектуру в высокой степени переносимой?

55. Почему микроядерная архитектура ОС в большей степени расширяемая, чем классическая ОС?

56. Является ли микроядерная архитектура более надежной, чем традиционная?

57. Укажите причину, из-за которой производительность микроядерной архитектуры хуже традиционной схемы ОС.

58. Можно ли считать ОС Windows NT 4.0 системой с микроядерной архитектурой?

59. Какие виды совместимости Вам известны?

60. За счет каких действий достигается двоичная совместимость для процессоров различных архитектур?

61. Укажите способ, который позволяет повысить производительность ПК при выполнении «чужого» исполняемого файла.

62. Достаточно ли одного метода трансляции библиотек для полной совместимости приложений?

3. Процессы и потоки

Важнейшей функцией операционной системы является организация рационального использования всех ее аппаратных и информационных ресурсов. К основным ресурсам могут быть отнесены процессоры, память, внешние устройства, данные и программы. Располагающая одними и теми же аппаратными ресурсами, но управляемая различными ОС, вычислительная система может работать с разной степенью эффективности. Поэтому знание внутренних механизмов операционной системы позволяет косвенно судить о ее эксплуатационных возможностях и характеристиках. Хотя и в однопрограммной ОС необходимо решать задачи управления ресурсами (например, распределение памяти между приложением и ОС), главные сложности на этом пути возникают в мультипрограммных ОС, в которых за ресурсы конкурируют сразу несколько приложений. Именно поэтому большая часть всех проблем относится к мультипрограммным системам.

3.1 Мультипрограммирование

Мультипрограммирование или многозадачность (multitasking) это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются сразу несколько программ. Эти программы совместно используют не только процессор, но и другие ресурсы компьютера: оперативную и внешнюю память, устройства ввода-вывода, данные. Мультипрограммирование призвано повысить эффективность использования вычислительной системы, однако эффективность может пониматься по-разному.

Наиболее характерными критериями эффективности вычислительных систем являются:

пропускная способность количество задач, выполняемых вычислительной системой в единицу времени;

удобство работы пользователей, заключающееся, в частности, в том, что они имеют возможность интерактивно работать одновременно с несколькими приложениями на одной машине;

реактивность системы способность системы выдерживать заранее заданные (возможно, очень короткие) интервалы времени между запуском программы и получением результата.

В зависимости от выбранного критерия эффективности ОС делятся на системы пакетной обработки, системы разделения времени и системы реального времени. Каждый тип ОС имеет специфические внутренние механизмы и особые области применения. Некоторые операционные системы могут поддерживать одновременно несколько режимов, например, часть задач может выполняться в режиме пакетной обработки, а часть в режиме реального времени или в режиме разделения времени.

3.1.1 Мультипрограммирование в системах пакетной обработки

При использовании мультипрограммирования в системах пакетной обработки для повышения пропускной способности компьютера главной целью является минимизация простоев всех устройств компьютера и, прежде всего, центрального процессора. Такие простои могут возникать изза приостановки задачи по ее внутренним причинам, связанным, например, с ожиданием ввода данных для обработки.

При возникновении такого рода блокировки выполняемой задачи естественным решением, ведущим к повышению эффективности использования процессора, является переключение процессора на выполнение другой задачи, у которой есть данные для обработки. Такая концепция мультипрограммирования положена в основу так называемых пакетных систем.

Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени.

Для достижения этой цели в системах пакетной обработки используется следующая схема функционирования: в начале работы формируется пакет заданий, каждое задание содержит требование к системным ресурсам; из этого пакета заданий формируется мультипрограммная смесь, то есть множество одновременно выполняемых задач. Для одновременного выполнения выбираются задачи, предъявляющие разные требования к ресурсам, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины. Таким образом, выбор нового задания из пакета заданий зависит от внутренней ситуации, складывающейся в системе. Следовательно, в вычислительных системах, работающих под управлением пакетных ОС, невозможно гарантировать выполнение того или иного задания в течение определенного периода времени.

В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит по инициативе самой активной задачи, например, когда она отказывается от процессора из-за необходимости выполнить операцию ввода-вывода. Поэтому существует высокая вероятность того, что одна задача может надолго занять процессор и выполнение интерактивных задач станет невозможным. Взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок повышает эффективность функционирования аппаратуры, но снижает эффективность работы пользователя.

3.1.2 Мультипрограммирование в системах разделения времени

Повышение удобства и эффективности работы пользователя является целью другого способа мультипрограммирования разделения времени. В системах разделения времени пользователям (или одному пользователю) предоставляется возможность интерактивной работы сразу с несколькими приложениями. Для этого каждое приложение должно регулярно получать возможность «общения» с пользователем. Понятно, что в пакетных системах возможности диалога пользователя с приложением весьма ограничены.

В системах разделения времени эта проблема решается за счет того, что ОС принудительно периодически приостанавливает приложения, не дожидаясь, когда они добровольно освободят процессор. Всем приложениям попеременно выделяется квант процессорного времени, таким образом пользователи, запустившие программы на выполнение, получают возможность поддерживать с ними диалог.

Системы разделения времени призваны исправить основной недостаток систем пакетной обработки изоляцию пользователяпрограммиста от процесса выполнения его задач. Каждому пользователю в этом случае предоставляется терминал, с которого он может вести диалог со своей программой. Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго и время ответа оказывается приемлемым. Если квант выбран достаточно небольшим, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них единолично использует машину.

Ясно, что системы разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, так как на выполнение принимается каждая запущенная пользователем задача, а не та, которая «выгодна» системе. Кроме того, производительность системы снижается изза возросших накладных расходов вычислительной мощности на более частое переключение процессора с задачи на задачу. Это вполне соответствует тому, что критерием эффективности систем разделения времени является не максимальная пропускная способность, а удобство и эффективность работы пользователя. Вместе с тем мультипрограммное выполнение интерактивных приложений повышает и пропускную способность компьютера (пусть и не в такой степени, как пакетные системы). Аппаратура загружается лучше, поскольку в то время, пока одно приложение ждет сообщения пользователя, другие приложения могут обрабатываться процессором.

3.1.3 Мультипрограммирование в системах реального времени

Еще одна разновидность мультипрограммирования используется в системах реального времени, предназначенных для управления от компьютера различными техническими объектами (например, станком, спутником, научной экспериментальной установкой и т. д.) или технологическими процессами (например, гальванической линией, доменным процессом и т. п.). Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная управляющая объектом программа. Критерием эффективности здесь является способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). Это время называется временем реакции системы, а соответствующее свойство системы реактивностью. Требования ко времени реакции зависят от специфики управляемого процесса. Контроллер робота может требовать от встроенного компьютера ответ в течение менее 1 мс, в то время как при моделировании полета может быть приемлем ответ в 40 мс.

В системах реального времени мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется по прерываниям (исходя из текущего состояния объекта) или в соответствии с расписанием плановых работ.

В системах реального времени не стремятся максимально загружать все устройства, наоборот, при проектировании программного управляющего комплекса обычно закладывается некоторый «запас» вычислительной мощности на случай пиковой нагрузки. Статистические аргументы о низкой вероятности возникновения пиковой нагрузки основаны на том, что вероятность одновременного возникновения большого количества независимых событий очень мала.

Вопросы для самопроверки

63. Укажите характерные критерии эффективности вычислительной системы.

64. Гарантирует ли система пакетной обработки точное время выполнения задачи?

65. Какой принцип заложен в механизм разделения времени?

66. Каков главный критерий эффективности систем реального времени?

Контрольные вопросы

67. Каким термином принято называть способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ?

68. В чем суть концепции мультипрограммирования в системах пакетной обработки?

69. Какая главная цель ставится перед ОС в системах пакетной обработки?

70. Допускает ли система пакетной обработки ситуацию «зависания» ПК?

71. Какая из систем - пакетной обработки или разделения времени - обладает большей пропускной способностью?

72. Какой тип мультипрограммирования принято использовать в ОС, предназначенных для управления различными техническими объектами?

3.2 Мультипроцессорная обработка

Мультипроцессорная обработка это способ организации вычислительного процесса в системах с несколькими процессорами, при котором несколько задач (процессов, потоков) могут одновременно выполняться на разных процессорах системы.

Концепция мультипроцессирования не нова, она известна с 70х годов, но до середины 80х доступных многопроцессорных систем не существовало. Однако к настоящему времени стало обычным включение нескольких процессоров в архитектуру даже персонального компьютера. Более того, многопроцессорность теперь является одним из необходимых требований, которые предъявляются к компьютерам, используемым в качестве центрального сервера более-менее крупной сети.

Не следует путать мультипроцессорную обработку с мультипрограммной обработкой. В мультипрограммных системах параллельная работа разных устройств позволяет одновременно вести обработку нескольких программ, но при этом в процессоре в каждый момент времени выполняется только одна программа. То есть в этом случае несколько задач выполняются попеременно на одном процессоре, создавая лишь видимость параллельного выполнения. А в мультипроцессорных системах несколько задач выполняются действительно одновременно, так как имеется несколько обрабатывающих устройств процессоров. Конечно, мультипроцессирование вовсе не исключает мультипрограммирования: на каждом из процессоров может попеременно выполняться некоторый закрепленный за данным процессором набор задач.

Мультипроцессорная организация системы приводит к усложнению всех алгоритмов управления ресурсами, например, требуется планировать процессы не для одного, а для нескольких процессоров, что гораздо сложнее. Сложности заключаются и в возрастании числа конфликтов по обращению к устройствам ввода-вывода, данным, общей памяти и совместно используемым программам. Необходимо предусмотреть эффективные средства блокировки при доступе к разделяемым информационным структурам ядра. Все эти проблемы должна решать операционная система путем синхронизации процессов, ведения очередей и планирования ресурсов. Более того, сама операционная система должна быть спроектирована так, чтобы уменьшить существующие взаимозависимости между собственными компонентами.

В наши дни становится общепринятым введение в ОС функций поддержки мультипроцессорной обработки данных. Такие функции имеются во всех популярных ОС, таких, как Sun Solaris 2.x, Santa Cruz Operations Open Server 5.x, IBM OS/2, Microsoft Windows NT и Novell NetWare, начиная с 4.1. Мультипроцессорные системы часто характеризуют либо как симметричные, либо как несимметричные. При этом следует четко определять, к какому аспекту мультипроцессорной системы относится эта характеристика к типу архитектуры или к способу организации вычислительного процесса.

Симметричная архитектура мультипроцессорной системы предполагает однородность всех процессоров и единообразие включения процессоров в общую схему мультипроцессорной системы. Традиционные симметричные мультипроцессорные конфигурации разделяют одну большую память между всеми процессорами.

Масштабируемость, или возможность наращивания числа процессоров, в симметричных системах ограничена вследствие того, что все они пользуются одной и той же оперативной памятью и, следовательно, должны располагаться в одном корпусе. Такая конструкция, называемая масштабируемой по вертикали, практически ограничивает число процессоров до четырех или восьми. В симметричных архитектурах все процессы пользуются одной и той же схемой отображения памяти. Они могут очень быстро обмениваться данными, так что обеспечивается достаточно высокая производительность для тех приложений (например, при работе с базами данных), в которых несколько задач должны активно взаимодействовать между собой.

В асимметричной архитектуре разные процессоры могут отличаться как своими характеристиками (производительностью, надежностью, системой команд и т. д., вплоть до модели микропроцессора), так и функциональной ролью, которая поручается им в системе. Например, одни процессоры могут предназначаться для работы в качестве основных вычислителей, другие для управления подсистемой ввода-вывода, третьи еще для каких-то особых целей. Функциональная неоднородность в асимметричных архитектурах влечет за собой структурные отличия во фрагментах системы, содержащих разные процессоры системы.

Масштабирование в асимметричной архитектуре реализуется иначе, чем в симметричной. Так как требование единого корпуса отсутствует, система может состоять из нескольких устройств, каждое из которых содержит один или несколько процессоров. Это масштабирование по горизонтали. Каждое такое устройство называется кластером, а вся мультипроцессорная система кластерной. Другим аспектом мультипроцессорных систем, который может характеризоваться симметрией или ее отсутствием, является способ организации вычислительного процесса. Последний, как известно, определяется и реализуется операционной системой.

Асимметричное мультипроцессирование является наиболее простым способом организации вычислительного процесса в системах с несколькими процессорами. Этот способ часто называют также «ведущий-ведомый».

Функционирование системы по принципу «ведущий-ведомый» предполагает выделение одного из процессоров в качестве «ведущего», на котором работает операционная система и который управляет всеми остальными «ведомыми» процессорами. То есть ведущий процессор берет на себя функции распределения задач и ресурсов, а ведомые процессоры работают только как обрабатывающие устройства и никаких действий по организации работы вычислительной системы не выполняют.

Так как операционная система работает только на одном процессоре и функции управления полностью централизованы, то такая операционная система оказывается не намного сложнее ОС однопроцессорной системы.

Асимметричная организация вычислительного процесса может быть реализована как для симметричной мультипроцессорной архитектуры, в которой все процессоры аппаратно неразличимы, так и для несимметричной, для которой характерны неоднородность процессоров и их специализация на аппаратном уровне.

В архитектурно-асимметричных системах на роль ведущего процессора может быть назначен наиболее надежный и производительный процессор. Если в наборе процессоров имеется специализированный процессор, ориентированный, например, на матричные вычисления, то при планировании процессов операционная система, реализующая асимметричное мультипроцессирование, должна учитывать специфику этого процессора. Такая специализация снижает надежность системы в целом, так как процессоры не являются взаимозаменяемыми.

Симметричное мультипроцессирование как способ организации вычислительного процесса может быть реализовано в системах только с симметричной мультипроцессорной архитектурой. Напомним, что в таких системах процессоры работают с общими устройствами и разделяемой основной памятью.

Симметричное мультипроцессирование реализуется общей для всех процессоров операционной системой. При симметричной организации все процессоры равноправно участвуют и в управлении вычислительным процессом, и в выполнении прикладных задач. Например, сигнал прерывания от принтера, который распечатывает данные прикладного процесса, выполняемого на некотором процессоре, может быть обработан совсем другим процессором. Разные процессоры могут в какой-то момент одновременно обслуживать как разные, так и одинаковые модули общей операционной системы. Для этого программы операционной системы должны обладать свойством повторной входимости (реентерабельностью). Операционная система полностью децентрализована. Модули ОС выполняются на любом доступном процессоре. Как только процессор завершает выполнение очередной задачи, он передает управление планировщику задач, который выбирает из общей для всех процессоров системной очереди задачу, которая будет выполняться на данном процессоре следующей. Все ресурсы выделяются для каждой выполняемой задачи по мере возникновения в них потребностей и никак не закрепляются за процессором. При таком подходе все процессоры работают с одной и той же динамически выравниваемой нагрузкой. В решении одной задачи могут участвовать сразу несколько процессоров, если она допускает такое распараллеливание, например путем представления в виде нескольких потоков.

В случае отказа одного из процессоров симметричные системы, как правило, сравнительно просто реконфигурируются, что является их большим преимуществом перед плохо реконфигурируемыми асимметричными системами.

Симметричная и асимметричная организация вычислительного процесса в мультипроцессорной системе не связана напрямую с симметричной или асимметричной архитектурой, она определяется типом операционной системы. Так, в симметричных архитектурах вычислительный процесс может быть организован как симметричным образом, так и асимметричным. Однако асимметричная архитектура непременно влечет за собой и асимметричный способ организации вычислений.

Вопросы для самопроверки

73. В чем отличие мультипроцессорной обработки от мульти-программной?

74. Является ли симметричная архитектура мультипроцессорных систем иерархической?

75. Можно ли реализовать симметричный способ организаций вычислений в асимметричной архитектуре?

Контрольные вопросы

76. Назовите известные Вам архитектуры мультипроцессорных

систем.

77. Назовите основные отличия симметричной и асимметричной архитектур.

78. Какой термин используется для обозначения асимметричной архитектуры?

79. Можно ли реализовать асимметричную организацию вычисли-тельного процесса в симметричной архитектуре?

3.3 Планирование процессов и потоков

Одной из основных подсистем мультипрограммной ОС, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами и потоками, которая занимается их созданием и уничтожением, поддерживает взаимодействие между ними, а также распределяет процессорное время между несколькими одновременно существующими в системе процессами и потоками.

Каждый раз, когда процесс завершается, ОС предпринимает шаги, чтобы «зачистить следы» его пребывания в системе. Подсистема управления процессами закрывает все файлы, с которыми работал процесс, освобождает области оперативной памяти, отведенные под коды, данные и системные информационные структуры процесса. Выполняется коррекция всевозможных очередей ОС и списков ресурсов, в которых имелись ссылки на завершаемый процесс.

3.4 Понятия «процесс» и «поток»

Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будут разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы. Более крупная единица работы, обычно носящая название процесса или задачи, требует для своего выполнения нескольких более мелких работ, для обозначения которых используют термины «поток».

Очевидно, что любая работа вычислительной системы заключается в выполнении некоторой программы. Поэтому и с процессом, и с потоком связывается определенный программный код, который для этих целей оформляется в виде исполняемого модуля.

В операционных системах процесс рассматривается ОС как заявка на потребление всех видов ресурсов, кроме одного процессорного времени. Этот последний важнейший ресурс распределяется операционной системой между другими единицами работы потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд. В простейшем случае процесс состоит из одного потока, и именно таким образом трактовалось понятие «процесс» до середины 80х годов (например, в ранних версиях UNIX) и в таком же виде оно сохранилось в некоторых современных ОС. В таких системах понятие «поток» полностью поглощается понятием «процесс», то есть остается только одна единица работы и потребления ресурсов - процесс. Мультипрограммирование осуществляется в таких ОС на уровне процессов.

Для того чтобы процессы не могли вмешаться в распределение ресурсов, а также не могли повредить коды и данные друг друга, важнейшей задачей ОС является изоляция одного процесса от другого. Для этого операционная система обеспечивает каждый процесс отдельным виртуальным адресным пространством, так что ни один процесс не может получить прямого доступа к командам и данным другого процесса.

При необходимости взаимодействия процессы обращаются к операционной системе, которая, выполняя функции посредника, предоставляет им средства межпроцессной связи конвейеры, почтовые ящики, разделяемые секции памяти и некоторые другие средства.

Однако в системах, в которых отсутствует понятие потока, возникают проблемы при организации параллельных вычислений в рамках процесса. А такая необходимость может возникать. Приложение, выполняемое в рамках одного процесса, может обладать внутренним параллелизмом, который в принципе мог бы позволить ускорить его решение. Если, например, в программе предусмотрено обращение к внешнему устройству, то на время этой операции можно не блокировать выполнение всего процесса, а продолжить вычисления по другой ветви программы. Параллельное выполнение нескольких работ в рамках одного интерактивного приложения повышает эффективность работы пользователя.

В общем случае использование для создания процессов стандартных средств ОС не позволяет учесть тот факт, что эти процессы решают единую задачу, а значит, имеют много общего между собой они могут работать с одними и теми же данными, использовать один и тот же кодовый сегмент, наделяться одними и теми же правами доступа к ресурсам вычислительной системы.

Таким образом, в операционной системе наряду с процессами нужен другой механизм распараллеливания вычислений, который учитывал бы тесные связи между отдельными ветвями вычислений одного и того же приложения. Для этих целей современные ОС предлагают механизм многопоточной обработки (multithreading). При этом вводится новая единица работы поток выполнения, а понятие «процесс» в значительной степени меняет смысл. Понятию «поток» соответствует последовательный переход процессора от одной команды программы к другой. ОС распределяет процессорное время между потоками. Процессу ОС назначает адресное пространство и набор ресурсов, которые совместно используются всеми его потоками.

Создание потоков требует от ОС меньших накладных расходов, чем процессов. В отличие от процессов, которые принадлежат разным конкурирующим приложениям, все потоки одного процесса всегда принадлежат одному приложению, поэтому ОС изолирует потоки в гораздо меньшей степени, нежели процессы в традиционной мультипрограммной системе. Все потоки одного процесса используют общие файлы, таймеры, устройства, одну и ту же область оперативной памяти, одно и то же адресное пространство и разделяют одни и те же глобальные переменные. Поскольку каждый поток может иметь доступ к любому виртуальному адресу процесса, один поток может использовать стек другого потока. Между потоками одного процесса нет полной защиты, потому что, во-первых, это невозможно, а во-вторых, не нужно. Чтобы организовать взаимодействие и обмен данными, потокам вовсе не требуется обращаться к ОС, им достаточно использовать общую память один поток записывает данные, а другой читает их. С другой стороны, потоки разных процессов попрежнему хорошо защищены друг от друга.

Итак, мультипрограммирование более эффективно на уровне потоков, а не процессов. Наибольший эффект от введения многопоточной обработки достигается в мультипроцессорных системах, в которых потоки, в том числе и принадлежащие одному процессу, могут выполняться на разных процессорах действительно параллельно (а не псевдопараллельно).

3.4.1 Создание процессов и потоков

Создать процесс это прежде всего означает создать описатель процесса, в качестве которого выступает одна или несколько информационных структур, содержащих все сведения о процессе, необходимые операционной системе для управления им. В число таких сведений могут входить, например, идентификатор процесса, данные о расположении в памяти исполняемого модуля, степень привилегированности процесса (приоритет и права доступа) и т. п. Создание описателя процесса знаменует собой появление в системе еще одного претендента на вычислительные ресурсы. Начиная с этого момента при распределении ресурсов ОС должна принимать во внимание потребности нового процесса.

Создание процесса включает также загрузку кодов и данных исполняемой программы данного процесса с диска в оперативную память. Для этого ОС должна обнаружить местоположение такой программы на диске, перераспределить оперативную память и выделить память исполняемой программе нового процесса. Затем необходимо считать программу в выделенные для нее участки памяти и, возможно, изменить параметры программы в зависимости от размещения в памяти. В системах с виртуальной памятью в начальный момент может загружаться только часть кодов и данных процесса, с тем чтобы «подкачивать» остальные по мере необходимости.

В многопоточной системе при создании процесса ОС создает для каждого процесса как минимум один поток выполнения. При создании потока так же, как и при создании процесса, операционная система генерирует специальную информационную структуру описатель потока, который содержит идентификатор потока, данные о правах доступа и приоритете, о состоянии потока и другую информацию. В исходном состоянии поток (или процесс, если речь идет о системе, в которой понятие «поток» не определяется) находится в приостановленном состоянии. Момент выборки потока на выполнение осуществляется в соответствии с принятым в данной системе правилом предоставления процессорного времени и с учетом всех существующих в данный момент потоков и процессов. В случае если коды и данные процесса находятся в области подкачки, необходимым условием активизации потока процесса является также наличие места в оперативной памяти для загрузки его исполняемого модуля.

Во многих системах поток может обратиться к ОС с запросом на создание так называемых потоков-потомков. В разных ОС по-разному строятся отношения между потоками-потомками и их родителями. Например, в одних ОС выполнение родительского потока синхронизируется с его потомками, в частности, после завершения родительского потока ОС может снимать с выполнения всех его потомков. В других системах потоки-потомки могут выполняться асинхронно по отношению к родительскому потоку. Потомки, как правило, наследуют многие свойства родительских потоков. Во многих системах порождение потомков является основным механизмом создания процессов и потоков.

Рассмотрим в качестве примера создание процессов в популярной версии операционной системы UNIX System V Release 4. В этой системе потоки не поддерживаются, в качестве единицы управления и единицы потребления ресурсов выступает процесс.

При управлении процессами операционная система использует два основных типа информационных структур: дескриптор процесса и контекст процесса.

Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса независимо от того, находится он в активном или пассивном состоянии, находится образ процесса в оперативной памяти или выгружен на диск (образом процесса называется совокупность его кодов и данных).

Дескрипторы отдельных процессов объединены в список, образующий таблицу процессов. Память для таблицы процессов отводится динамически в области ядра. На основании информации, содержащейся в таблице процессов, операционная система осуществляет планирование и синхронизацию процессов. В дескрипторе прямо или косвенно (через указатели на связанные с процессом структуры) содержится информация о состоянии процесса, о расположении образа процесса в оперативной памяти и на диске, о значении отдельных составляющих приоритета, а также о его итоговом значении глобальном приоритете, об идентификаторе пользователя, создавшего процесс, о родственных процессах, о событиях, осуществления которых ожидает данный процесс, и некоторая другая информация.

Контекст процесса содержит менее оперативную, но более объемную часть информации о процессе, необходимую для возобновления выполнения процесса с прерванного места: содержимое регистров процессора, коды ошибок выполняемых процессором системных вызовов, информация обо всех открытых данным процессом файлах и незавершенных операциях ввода-вывода и другие данные, характеризующие состояние вычислительной среды в момент прерывания. Контекст, так же, как и дескриптор процесса, доступен только программам ядра, то есть находится в виртуальном адресном пространстве операционной системы, однако он хранится не в области ядра, а непосредственно примыкает к образу процесса и перемещается вместе с ним, если это необходимо, из оперативной памяти на диск.

Порождение процессов в системе UNIX происходит в результате выполнения системного вызова fork. ОС строит образ порожденного процесса, являющийся точной копией образа породившего процесса, то есть дублируются дескриптор, контекст и образ процесса. Сегмент данных и сегмент стека родительского процесса копируются на новое место, образуя сегменты данных и стека процесса-потомка.

После выполнения системного вызова fork оба процесса продолжают выполнение с одной и той же точки. Чтобы процесс мог опознать, является он родительским процессом или процессом-потомком, системный вызов fork возвращает в качестве своего значения в породивший процесс идентификатор порожденного процесса, а в порожденный процесс NULL.

Таким образом, в UNIX порождение нового процесса происходит в два этапа сначала создается копия процессародителя, затем у нового процесса производится замена кодового сегмента на заданный.

Вновь созданному процессу операционная система присваивает целочисленный идентификатор, уникальный на весь период функционирования системы.

3.4.2 Планирование и диспетчеризация потоков

На протяжении существования процесса выполнение его потоков может быть многократно прервано и продолжено. (В системе, не поддерживающей потоки, все сказанное ниже о планировании и диспетчеризации относится к процессу в целом.)

Переход от выполнения одного потока к другому осуществляется в результате планирования и диспетчеризации. Работа по определению того, в какой момент необходимо прервать выполнение текущего активного потока и какому потоку предоставить возможность выполняться, называется планированием. Планирование потоков осуществляется на основе информации, хранящейся в описателях процессов и потоков. При планировании могут приниматься во внимание приоритет потоков, время их ожидания в очереди, накопленное время выполнения, интенсивность обращений к вводу-выводу и другие факторы. ОС планирует выполнение потоков независимо от того, принадлежат ли они одному или разным процессам. Так, например, после выполнения потока некоторого процесса ОС может выбрать для выполнения другой поток того же процесса или же назначить к выполнению поток другого процесса.

Планирование потоков, по существу, включает в себя решение двух задач:

определение момента времени для смены текущего активного потока;

выбор для выполнения потока из очереди готовых потоков.

Существует множество различных алгоритмов планирования потоков, по-своему решающих каждую из приведенных выше задач. Алгоритмы планирования могут преследовать различные цели и обеспечивать разное качество мультипрограммирования. Например, в одном случае выбирается такой алгоритм планирования, при котором гарантируется, что ни один поток/процесс не будет занимать процессор дольше определенного времени, в другом случае целью является максимально быстрое выполнение «коротких» задач, а в третьем случае преимущественное право занять процессор получают потоки интерактивных приложений. Именно особенности реализации планирования потоков в наибольшей степени определяют специфику операционной системы, в частности, является ли она системой пакетной обработки, системой разделения времени или системой реального времени.

В большинстве операционных систем универсального назначения планирование осуществляется динамически (online), то есть решения принимаются во время работы системы на основе анализа текущей ситуации. ОС работает в условиях неопределенности потоки и процессы появляются в случайные моменты времени и также непредсказуемо завершаются. Динамические планировщики могут гибко приспосабливаться к изменяющейся ситуации и не используют никаких предположений о мультипрограммной смеси. Для того чтобы оперативно найти в условиях такой неопределенности оптимальный в некотором смысле порядок выполнения задач, операционная система должна затрачивать значительные усилия.

Другой тип планирования статический может быть использован в специализированных системах, в которых весь набор одновременно выполняемых задач определен заранее, например, в системах реального времени. Планировщик называется статическим (или предварительным планировщиком), если он принимает решения о планировании не во время работы системы, а заранее (offline). Соотношение между динамическим и статическим планировщиками аналогично соотношению между диспетчером железной дороги, который пропускает поезда строго по предварительно составленному расписанию, и регулировщиком на перекрестке автомобильных дорог, не оснащенном светофорами, который решает, какую машину остановить, а какую пропустить, в зависимости от ситуации на перекрестке.

Результатом работы статического планировщика является таблица, называемая расписанием, в которой указывается, какому потоку/процессу, когда и на какое время должен быть предоставлен процессор. Накладные расходы ОС на исполнение расписания оказываются значительно меньшими, чем при динамическом планировании, и сводятся лишь к диспетчеризации потоков/процессов.

Диспетчеризация заключается в реализации найденного в результате планирования (динамического или статистического) решения, то есть в переключении процессора с одного потока на другой.

Диспетчеризация сводится к следующему:

сохранение контекста текущего потока, который требуется сменить;

загрузка контекста нового потока, выбранного в результате планирования;

запуск нового потока на выполнение.

Поскольку операция переключения контекстов существенно влияет на производительность вычислительной системы, программные модули ОС выполняют диспетчеризацию потоков совместно с аппаратными средствами процессора.

В различных ОС можно встретить компоненты ОС, имеющие названия планировщик (scheduler) или диспетчер (dispatcher). He следует однозначно судить о функциональном назначении этих компонентов по их названиям, то есть считать, что планировщик выполняет планирование, а диспетчер диспетчеризацию, в том смысле, в котором эти функции были определены выше. Чаще всего то и другое названия используются для обозначения компонентов, которые занимаются планированием.

3.4.3 Состояния потока

ОС выполняет планирование потоков, принимая во внимание их состояние. В мультипрограммной системе поток может находиться в одном из трех основных состояний:

выполнение активное состояние потока, во время которого поток обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;

ожидание пассивное состояние потока, находясь в котором поток заблокирован по своим внутренним причинам (ждет осуществления некоторого события, например завершения операции вводавывода, получения сообщения от другого потока или освобождения какоголибо необходимого ему ресурса);

готовность также пассивное состояние потока, но в этом случае поток заблокирован в связи с внешним по отношению к нему обстоятельством (имеет все требуемые для него ресурсы, готов выполняться, однако процессор занят выполнением другого потока).

Состояния выполнения и ожидания могут быть отнесены и к задачам, выполняющимся в однопрограммном режиме, а вот состояние готовности характерно только для режима мультипрограммирования.

В течение своей жизни каждый поток переходит из одного состояния в другое в соответствии с алгоритмом планирования потоков, принятым в данной операционной системе.

Рассмотрим типичный граф состояния потока. Только что созданный поток находится в состоянии готовности, он готов к выполнению и стоит в очереди к процессору. Когда в результате планирования подсистема управления потоками принимает решение об активизации данного потока, он переходит в состояние выполнения и находится в нем до тех пор, пока либо он сам освободит процессор, перейдя в состояние ожидания какогонибудь события, либо будет принудительно «вытеснен» из процессора, например, вследствие исчерпания отведенного данному потоку кванта процессорного времени. В последнем случае поток возвращается в состояние готовности. В это же состояние поток переходит из состояния ожидания, после того как ожидаемое событие произойдет.

В состоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в каждом из состояний ожидания и готовности несколько потоков.

Потоки образуют очереди соответственно ожидающих и готовых потоков. Очереди потоков организуются путем объединения в списки описателей отдельных потоков. Таким образом, каждый описатель потока, кроме всего прочего, содержит по крайней мере один указатель на другой описатель, соседствующий с ним в очереди. Такая организация очередей позволяет легко их переупорядочивать, включать и исключать потоки, переводить потоки из одного состояния в другое.

3.4.4 Вытесняющие и невытесняющие алгоритмы планирования

С самых общих позиций все множество алгоритмов планирования можно разделить на два класса: вытесняющие и невытесняющие алгоритмы планирования.

Невытесняющие (nonpreemptive) алгоритмы основаны на том, что активному потоку позволяется выполняться, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению поток.

Вытесняющие (preemptive) алгоритмы это такие способы планирования потоков, в которых решение о переключении процессора с выполнения одного потока на выполнение другого потока принимается операционной системой, а не активной задачей.

Основным различием между вытесняющими и невытесняющими алгоритмами является степень централизации механизма планирования потоков. При вытесняющем мультипрограммировании функции планирования потоков целиком сосредоточены в операционной системе и программист пишет свое приложение, не заботясь о том, что оно будет выполняться одновременно с другими задачами. При этом операционная система выполняет следующие функции: определяет момент снятия с выполнения активного потока, запоминает его контекст, выбирает из очереди готовых потоков следующий, запускает новый поток на выполнение, загружая его контекст.

При невытесняющем мультипрограммировании механизм планирования распределен между операционной системой и прикладными программами. Прикладная программа, получив управление от операционной системы, сама определяет момент завершения очередного цикла своего выполнения и только затем передает управление ОС с помощью какого-либо системного вызова. ОС формирует очереди потоков и выбирает в соответствии с некоторым правилом (например, с учетом приоритетов) следующий поток на выполнение. Такой механизм создает проблемы как для пользователей, так и для разработчиков приложений. Для пользователей это означает, что управление системой теряется на произвольный период времени, который определяется приложением (а не пользователем). Если приложение тратит слишком много времени на выполнение какой-либо работы, например на форматирование диска, пользователь не может переключиться с этой задачи на другую задачу, например на текстовый редактор, в то время как форматирование продолжалось бы в фоновом режиме. Поэтому разработчики приложений для операционной среды с невытесняющей многозадачностью вынуждены, возлагая на себя часть функций планировщика, создавать приложения так, чтобы они выполняли свои задачи небольшими частями. Программист должен обеспечить «дружественное» отношение своей программы к другим выполняемым одновременно с ней программам. Для этого в программе должны быть предусмотрены частые передачи управления операционной системе. Крайним проявлением «не дружественности» приложения является его зависание, которое приводит к общему краху системы. В системах с вытесняющей многозадачностью такие ситуации, как правило, исключены, так как центральный планирующий механизм имеет возможность снять зависшую задачу с выполнения.

Почти во всех современных операционных системах, ориентированных на высокопроизводительное выполнение приложений (UNIX, Windows NT/2000, OS/2,VAX/VMS), реализованы вытесняющие алгоритмы планирования потоков (процессов). В последнее время дошла очередь и до ОС класса настольных систем, например OS/2 Warp и Windows 95/98.

Примером эффективного использования невытесняющего планирования являются файл-серверы NetWare 3.x и 4.x, в которых в значительной степени благодаря такому планированию достигнута высокая скорость выполнения файловых операций.

Невытесняющий механизм организации многопоточной работы в ОС NetWare v3.x и NetWare 4.x потенциально очень производителен, так как отличается небольшими накладными расходами ОС на диспетчеризацию потоков за счет простых алгоритмов планирования и иерархии контекстов. Но для достижения высокой производительности к разработчикам приложений для ОС NetWare предъявляются высокие требования, так как распределение процессорного времени между различными приложениями зависит в конечном счете от искусства программиста.

...

Подобные документы

  • Разработка и анализ интерфейса пользователя базы данных. Ознакомление с процессом поэтапного создания проекта и добавления файла локальной базы данных. Исследование и характеристика главных принципов программирования функциональной части интерфейса.

    дипломная работа [3,0 M], добавлен 27.09.2017

  • Назначение серверных операционных систем. Сравнительный анализ серверных операционных систем Windows и Linux и сравнение их по важным показателям таким как: пользовательский графический интерфейс, безопасность, стабильность работы, возможность и цена.

    курсовая работа [50,1 K], добавлен 03.07.2012

  • Интерфейс API, реализация функций API на уровне ОС, системы программирования и с помощью внешних библиотек. Характеристики сетевого интерфейса прикладного программирования Winsock, особенности его применения в операционных системах UNIX и Windows.

    контрольная работа [74,2 K], добавлен 04.06.2015

  • Операционная система - программа, которая загружается при включении компьютера. Способы реализации интерфейса и классификация операционных систем. Организация файловой системы, типы файлов и их наименования. Понятие каталога, атрибуты файловой системы.

    реферат [16,6 K], добавлен 25.02.2011

  • Сущность web–программирования, понятие и характеристика главных клиентских и серверных языков. Основные события JavaScript. История и виды баннера, особенности его создание, формирование формата и скрипт показа. Пример программирования flаsh-баннера.

    курсовая работа [706,0 K], добавлен 13.01.2014

  • Ознакомление с языком программирование PHP. Операторы управления и передачи данных, конструкции разветвления и повторения. Создание функции в PHP. Работа с числами, строками и датой/временем в PHP. Работа с массивами данных. Работа с файловой системой.

    курсовая работа [1,5 M], добавлен 09.09.2011

  • История развития и классификация высокоуровневых языков логического программирования. Определение понятий графического интерфейса, сетевых протоколов и моделей баз данных. Современные системы программирования компании Borland/Inprise и фирмы Microsoft.

    курсовая работа [72,3 K], добавлен 11.07.2011

  • Изучение особенностей операционной системы, набора программ, контролирующих работу прикладных программ и системных приложений. Описания архитектуры и программного обеспечения современных операционных систем. Достоинства языка программирования Ассемблер.

    презентация [1,3 M], добавлен 22.04.2014

  • История создания и общая характеристика операционных систем Windows Server 2003 и Red Hat Linux Enterprise 4. Особенности установки, файловых систем и сетевых инфраструктур данных операционных систем. Использование протокола Kerberos в Windows и Linux.

    дипломная работа [142,7 K], добавлен 23.06.2012

  • Изучение особенностей структурного программирования и процесса применения многомодульности оконного интерфейса приложения. Описание внутренних переменных модуля. Рассмотрение и характеристика преимуществ современных интегрированных сред разработки.

    контрольная работа [487,0 K], добавлен 05.07.2017

  • Описания сетевых протоколов прикладного уровня, позволяющих производить удалённое управление операционной системой. Основные характеристики протокола CMIP. Изучение особенностей Telnet, сетевого протокола для реализации текстового интерфейса по сети.

    реферат [47,0 K], добавлен 24.01.2014

  • Прорыв на рынок Windows как графической оболочки MS-DOS. Рассмотрение интерфейса, функций, системных требований и отличительных особенностей поколений операционных систем Windows: 9x, NT, NET, Vista. Анализ мобильности и безопасности последней версии ОС.

    реферат [1,4 M], добавлен 16.01.2010

  • Обзор существующих систем управления базы данных. Основные характеристики языка программирования MS VB 2010. Содержание базы данных для хранения информации об успеваемости. Программирование системных модулей программы, содержание интерфейса пользователя.

    курсовая работа [1,1 M], добавлен 22.02.2014

  • Исследование теоретических аспектов разработки программы посредством использования Visual Basic. Анализ достоинств и недостатков данного языка программирования. Изучение особенностей создания интерфейса приложения. Основные этапы реализации программы.

    практическая работа [460,6 K], добавлен 22.01.2013

  • Проблемы и тенденции проектирования операционных систем, структура ОС. Руководящие принципы при разработке интерфейса. Парадигмы пользователя, исполнения и данных. Примеры применения ортогональности и связывания. Методы практической реализации систем.

    реферат [60,9 K], добавлен 26.01.2011

  • Изучение этапов возникновения компьютерных операционных систем. Особенности их прикладного программного интерфейса и конфигурации. Характеристика набора вспомогательных программ - редакторов, компиляторов, программ работы с файлами (системные утилиты).

    презентация [98,0 K], добавлен 29.05.2010

  • Характеристики и свойства языков программирования. Исследование эволюции объектно-ориентированных языков программирования. Построение эволюционной карты механизмов ООП. Разработка концептуальной модели функционирования пользовательского интерфейса.

    курсовая работа [2,6 M], добавлен 17.11.2014

  • Рассмотрение особенностей среды программирования Delphi, анализ клиент-серверной версии. Знакомство с библиотекой визуальных компонентов. Основные функции интеллектуального редактора. Характеристика требований к базам данных. Функции программы "Магистр".

    дипломная работа [1,5 M], добавлен 10.03.2013

  • Microsoft Office как пример прикладного программного обеспечения (ПО). Проблемы выбора и использования прикладного ПО. Роль программных продуктов пакетного типа, обеспечивающих свободную конвертацию данных между различными компьютерными технологиями.

    реферат [18,2 K], добавлен 21.02.2010

  • Общая характеристика преимуществ взаимодействующих процессов: модульность, ускорение вычислений. Знакомство с основами современных операционных систем. Анализ особенностей использования общего почтового ящика, рассмотрение способов создания и удаления.

    презентация [1,6 M], добавлен 24.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.