Тенденции развития вычислительных систем
Информатика и внедрение её практических результатов – важнейший двигатель научно-технического прогресса и развития человеческого общества. Средства обработки и передачи информации. Процесс расширения сфер применения электронных вычислительных машин.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.10.2017 |
Размер файла | 28,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Тенденции развития вычислительных систем
информатика электронный вычислительный машина
Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.
Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.
Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы - вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.
Специалисты считают, что в первой четверти XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) станут катастрофически малы по сравнению с объемами получаемой информации посредством компьютерных сетей.
Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet.
Уже сегодня пользователям глобальной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация.
Электронная почта Internet позволяет получить почтовое отправление из любой точки Земного шара (где есть терминалы этой сети) через 5 с, а не через неделю или месяц, как это имеет место при использовании обычной почты.
В Массачусетском университете (США) создана электронная книга, куда можно записывать любую информацию из сети; читать эту книгу можно, отключившись от сети, автономно, в любом месте. Сама книга в твердом переплете, содержит тонкие жидкокристаллические индикаторы - страницы с бумагообразной синтетической поверхностью и высоким качеством "печати".
При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, - нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП - транспьютеры.
Транспьютер - микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц - 20 млн. оп/с (оба транспьютера 32-разрядные).
Ближайшие прогнозы по созданию отдельных устройств ЭВМ:
1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.
2. Встроенные сетевые и видеоинтерфейсы;
3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;
4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.
Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).
Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.
Этому уже сейчас способствуют:
1. Зарождающиеся технологии медиа-серверов, способных собирать и хранить огромнейшие объемы информации и выдавать ее в реальном времени по множеству одновременно приходящих запросов;
2. Системы сверхскоростных широкополосных информационных магистралей, связывающие воедино все потребительские системы.
Названные ожидаемые технологии и характеристики устройств ЭВМ совместно с их общей миниатюризацией могут сделать всевозможные вычислительные средства и системы вездесущими, привычными, обыденными, естественно насыщающими нашу повседневную жизнь.
Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.
Информационная революция затронет все стороны жизнедеятельности, появятся системы, создающие виртуальную реальность:
1. Компьютерные системы - при работе на ЭВМ с "дружественным интерфейсом" абоненты по видеоканалу будут видеть виртуального собеседника, активно общаться с ним на естественном речевом уровне с аудио- и видеоразъяснениями, советами, подсказками. "Компьютерное одиночество", так вредно влияющее на психику активных пользователей ЭВМ, исчезнет.
2. Системы автоматизированного обучения - при наличии обратной видеосвязи абонент будет общаться с персональным виртуальным учителем, учитывающим психологию, подготовленность, восприимчивость ученика.
3. Торговля - любой товар будет сопровождаться не магнитным кодом, нанесенным на торговый ярлык, а активной компьютерной табличкой, дистанционно общающейся с потенциальным покупателем и сообщающей всю необходимую ему информацию - что, где, когда, как, сколько и почем.
Техническое обеспечение, необходимое для создания таких виртуальных систем:
1. Дешевые, простые, портативные компьютеры со средствами мультимедиа;
2. Программное обеспечение для "вездесущих" приложений.
3. Миниатюрные приемопередающие радиоустройства (трансиверы) для связи компьютеров друг с другом и с сетью.
4. Распределенные широкополосные каналы связи и сети.
Многие предпосылки для создания указанных компонентов, да и простейшие их прообразы уже существуют.
Но есть и проблемы. Важнейшая из них - обеспечение прав интеллектуальной собственности и конфиденциальности информации, чтобы личная жизнь каждого из нас не стала всеобщим достоянием. [3]
Характерной чертой компьютеров пятого поколения обязано быть внедрение искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут просто управляемы. Пользователь сумеет голосом подавать машине команды.
Предполагается, что XXI век будет веком наибольшего использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле.
Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер внедрения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким спектром функциональных возможностей и черт.
Примерная характеристика компьютеров шестого поколения:
Характеристики VI поколение
Элементная база Оптоэлектроника, криолектроника
Размер (габариты) карманные и меньше
Максимальное быстродействие процессора неограниченно
Максимальный объем ОЗУ ?
Периферийные Ввод с голоса, голосовое общение, машинное «зрение» и «осязание» и пр. Программное обеспечение Интеллектуальные программные системы
Области применения: В творческой деятельности человека, искусственный интеллект [2].
2. Тенденции развития информатики
В области научной методологии происходит философское переосмысление роли информации и информационных процессов в развитии природы и общества. Информационный подход становится фундаментальным методом научного познания.
Для теоретической информатики наиболее перспективными представляются исследования общих свойств информации, изучение принципов информационного взаимодействия в природе и обществе, основных закономерностей реализации информационных процессов.
Открываются новые возможности для информатизации экономики, управления городским хозяйством, транспортными системами, а также материальными и людскими ресурсами.
Существенное расширение функциональных возможностей получают информационные технологии по обработке и использованию изображений, речевой информации, полнотекстовых документов, результатов научных измерений и массового мониторинга (особенно в связи с развитием электронных библиотек, а также электронных полнотекстовых архивов).
Продолжаются поиски эффективных методов формализованного представления знаний, в том числе нечетких и плохо формализуемых, а также методов их использования при автоматизированном решении сложных задач в различных сферах социальной практики.
На недостаточном уровне находится использование достижений информатики в исследовании человека, медицине, развитии культуры. Связано это как с финансовыми ограничениями, так и с отставанием в области подготовки специалистов в соответствующих предметных областях, хорошо владеющих средствами и методами информатики.
Информатика как современная наука, непосредственно связанная с информационными технологиями и техническим прогрессом, не может оставаться на текущем уровне развития, она меняется и развивается. Языки программирования, как важная часть информатики, так же имеют определенные тенденции и перспективы совершенствования и развития.
Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов - языков программирования. Смысл появления такого языка - оснащенный набор вычислительных формул дополнительной информации, превращает данный набор в алгоритм.
Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать. Первой цели идеально отвечает язык, который настолько "близок к машине", что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом. Второй цели идеально отвечает язык, который настолько "близок к решаемой задаче", чтобы концепции ее решения можно было выражать прямо и коротко.
Тенденции развития языков программирования обусловлены следующими причинами:
1. Потребность в решении более сложных и разнообразных задач. Первые ЭВМ имели ограниченные возможности, следовательно, и программы были простыми. В процессе эволюции вычислительной техники от нее требовалось решение все более сложных и разнообразных задач. Следовательно, язык программирования должен был позволять писать программы для решения этих новых задач. Это способствовало появлению и развитию в языках программирования различных новых технологий. Например, пользуется широкой популярностью технология объектно-ориентированного программирования.
2. Программы становились сложнее и больше по объему. Появилось стремление к повышению эффективности процесса создания программ. Поэтому существует тенденция в развитии языков программирования к быстрому написанию программ. Здесь также следует отметить появление множества систем визуального программирования, в какой-то степени облегчающие труд программиста.
3. Желание, чтобы программы работали на разных платформах, привело к развитию независимости от ЭВМ языков системного программирования. Языки системного программирования, на которых создаются операционные системы, трансляторы и другие системные программы, развиваются в направлении независимости от ЭВМ. Так, например, большая часть операционных систем написана на языке C, а не на ассемблере. Например, операционная система Unix практически полностью написана на C.
4. Большие проекты предусматривают совместный труд множества программистов. В возможности легкой командной работы хорошо себя зарекомендовала технология объектно-ориентированного программирования. Поэтому большинство современных языков программирования поддерживают ООП.
Таким образом, языки программирования развиваются в сторону все большей абстракции от реальных машинных команд. И самым очевидным преимуществом здесь является увеличение скорости разработки программы. [4]
Также приоритетным направлением информатики является разработка интеллектуальных систем. Интеллектуальная система (ИС, англ. intelligent system) -- это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока -- базу знаний, решатель и интеллектуальный интерфейс. [6].
Интеллсист - наукоемкое производство интеллектуального программного продукта.
Принципы создания Интеллсист:
1. Исходный текст знаний и заданий (или запросов) должен быть максимально близким к текстам непосредственных пользователей, которые являются специалистами в своей области (или областях) знаний. Текст должен состоять из терминов пользователя, собранных в лексикон данной области знаний.
2. Каждый запрос пользователя принимается за истинный, исключая случаи формальных или фундаментальных ошибок или противоречий имеющимся знаниям, которые опровергают истинность фраз знаний или запроса.
3. Внутренний код (представления в памяти Интеллсист), получаемый в результате трансляции исходного текста на внутреннее представления, должен отображать только необходимые непротиворечивые, независимые и по возможности полные знания. Причем процесс отображения должен проходить без потери знания, или потеря известна пользователю.
4. Разнообразие представлений знаний и данных должно соответствовать потребностям пользователя, правилам грамматик ЕЯ, СеГ и языка Лейбниц.
5. Интеллсист должна порождать результаты решения задач только в соответствии со знаниями, сообщенными ей через БЗ или запросы, и с требованиями, которые порождены в результате обсуждения недостатков ПП.
6. Должна обеспечиваться надежность разрешения запросов: компилятор и отладчик знаний должны обнаруживать ошибки, по возможности исправлять их или подсказывать пути их исправления, запрашивать дополнительные знания.
7. Каждая Интеллсист должна быть максимально интеллектуальной (каждый шаг связан с логическим выводом по правилам ИЛ), учитывать накопленные в информатике знания по интерфейсу и диалогу с пользователем, а также должна быть оценена мерой интеллектуальности.
Пользователь только ориентируется в возможностях Интеллсист, выполнение запроса не требует специальных формулировок для решения того или иного класса задач, Интеллсист сама определяет класс решаемых задач, а пользователь только по ответу может судить к какому классу следует отнести этот запрос. Следует заметить, что в инструментарии предусмотрен диалог для ввода параметров точной характеристики каждого класса задач. Например, пользователю кажется, что он сформулировал теорему, а в диалоге с инструментарием указал фразы, которые будут выведены в качестве результата. В результате прогона ее в Интеллсист выведены условия истинности теоремы, следовательно, решалась задача класса А, а ответ подсказал, что решалась задача класса Б. В рамках классической или интуиционистской логик решение подобных проблем затруднено построениями индивидуальных алгоритмов и программ для решения любых задач без учета плохо формализуемых частей исходной постановки проблемы. Ныне реализованное эвристическое программирование (с помощью ЭС) решает некоторые проблемы программирования плохо формализуемых заданий, но оно базируется на командах специального вида - продукциях, не решает всех указанных информатических проблем и не имеет средств для отладки знаний. Основная причина, тормозящая решение проблем в рамках классических логик, заключена в использовании дедуктивного метода, который не реализуется эффективно на современных ВМ. Для построения Интеллсист стала необходимой новая, так называемая, информатическая логика, она не использует дедукцию явно, а неявное использование вообще не порождает глубоких деревьев перебора вариантов логического вывода.
Классификация Интеллсист позволяют определить место Интеллсист среди средств ИП и ИИ, которое характеризуется главным образом возможностью привлечения прямого пользователя ВМ к СВТ, определяя стиль применения ВМ средствами широко распространенной программной системы WINDOWS. Классификация Интеллсист определяет общие направления использования (предметную и проблемную области) ВМ для решения задач изобретания, проектирования, разработки и сопровождения объектов различной природы. Классификационное пространство образует довольно емкую совокупность решаемых с помощью Интеллсист проблем. Можно высказать предположение, что этот объем превосходит объем решаемых проблем в ПП. ИП на основе Интеллсист обладает свойством привлечения к информатике большого числа пользователей, не обладающих знаниями в программировании. ИП расширяет круг пользователей и области применения ВМ.
При классификации Интеллсист мы выделим семь независимых осей классификационных координат. Каждая координата является характеристикой применения одной и той же Интеллсист:
1. база знаний,
2. язык профессиональной прозы,
3. форма запроса,
4. вид знаний,
5. логическое исчисление,
6. значность логического исчисления,
7. структуры Интеллсист и инструментария.
Важно обратить внимание на то обстоятельство, что точка в пространстве таких координат определяет реализацию Интеллсист для данного конкретного применения. [5]
Заключение
Основываясь на приведенном выше материале, можно строить предположения, что будет собой представлять вычислительная система будущего. Во-первых, компоненты этой системы будут отличаться малыми габаритами и поразительным быстродействием. Во-вторых, вычислительная система будет характеризоваться широким внедрением средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, которые позволят общаться с компьютером на естественном языке.
Будут распространены нейрокомпьютеры. С достоверностью известно, что уже сейчас существуют системы обработки информации, построенные на объединении оптических и нейронных компьютеров, - это так называемые нейронно-оптические компьютеры. Для того чтобы создать мощную систему обработки информации, пришлось разработать гибридную систему, т. е. имеющую свойства как оптических, так и нейронных компьютеров. Можно предположить, что такое объединение даст миру самую мощную гибридную вычислительную систему. Такую систему от обычной будут отличать огромная производительность (за счет параллелизма) и возможность эффективной обработки и управления сенсорной информацией. Но это лишь предположение, которое никакими фактическими доказательствами в настоящее время не подкреплено. Однако, технология создания вычислительных систем не стоит на месте, и в ближайшем будущем на рынке возможно появление новых вычислительных систем.
Так же, не стоит на месте прогресс информатики, как науки, включающей в себя отрасль программирования. Развитие информатики обуславливает тенденцию развития языков программирования. Появляются и развиваются интеллектуальные системы.
Размещено на Allbest.ru
...Подобные документы
Определение перспектив, направлений и тенденций развития вычислительных систем как совокупности техники и программных средств обработки информации. Развитие специализации вычислительных систем и проблема сфер применения. Тенденции развития информатики.
реферат [19,5 K], добавлен 17.03.2011Периодизация развития электронных вычислительных машин. Счетные машины Паскаля и Лейбница. Описаний эволюционного развития отечественных и зарубежных пяти поколений электронных вычислительных машин. Сущность внедрения виртуальных средств мультимедиа.
доклад [23,6 K], добавлен 20.12.2008Анализ понятия информатика. История появления первых вычислительных машин. Развитие речи, письменности, книгопечатания и научно-технической революции как средств хранения, обработки и передачи информации. Информационно-логическое представление знаний.
презентация [839,2 K], добавлен 17.05.2016Информатика - наука об общих свойствах и закономерностях информации. Появление электронно-вычислительных машин. Математическая теория процессов передачи и обработки информации. История компьютера. Глобальная информационная сеть.
реферат [120,1 K], добавлен 18.04.2004Основные этапы развития вычислительных машин. Роль абстракции в вычислительной технике. Понятие "алгоритм" в контексте понятия "вычислительная техника". Изобретатели механических вычислительных машин. Многообразие подходов к процессу программирования.
презентация [104,7 K], добавлен 14.10.2013Причины появления информационных систем. Назначение электронных вычислительных машин: числовые расчеты, обработка, хранение и передача информации. Созданиеи первого жесткого магнитного диска - винчестера. Разработка локальной сети для передачи информации.
презентация [339,2 K], добавлен 06.01.2014Архитектуры вычислительных систем сосредоточенной обработки информации. Архитектуры многопроцессорных вычислительных систем. Классификация и разновидности компьютеров по сферам применения. Особенности функциональной организации персонального компьютера.
контрольная работа [910,2 K], добавлен 11.11.2010Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.
реферат [37,7 K], добавлен 01.04.2014Структуры вычислительных машин и систем. Фон-неймановская архитектура, перспективные направления исследований. Аналоговые вычислительные машины: наличие и функциональные возможности программного обеспечения. Совокупность свойств систем для пользователя.
курсовая работа [797,5 K], добавлен 05.11.2011Историческое развитие средств вычислений. Структурные схемы вычислительных систем. Развитие элементной базы и развитие архитектуры самих систем. Основные классы вычислительных машин. Каналы передачи данных. Требования к составу периферийных устройств.
реферат [48,7 K], добавлен 09.01.2011Роль компьютеров и информационных технологий в жизни современно человека. Основные принципы функционирования современных персональных электронных вычислительных машин. Основные устройства компьютера, компоненты системного блока и их взаимодействие.
реферат [29,2 K], добавлен 10.12.2012Реализация алгоритмов вычисления математических объектов на конкретных вычислительных машинах. Числовые данные в практических задачах. Анализ математических моделей, связанных с применением вычислительных машин в различных областях научной деятельности.
курсовая работа [369,3 K], добавлен 13.01.2018Общая характеристика информационных систем, предназначенных для передачи, преобразования и хранения информации. Изучение форм представления детерминированных сигналов. Энтропия сложных сообщений. Рассмотрение основных элементов вычислительных машин.
лекция [1,5 M], добавлен 13.04.2014История создания и развития профессиональных электронных вычислительных машин (ЭВМ), предназначеных для решения узкого круга специальных задач, и все программные и технические средства которых ориентированы на конкретную профессию или выполняемую задачу.
презентация [7,0 M], добавлен 11.07.2011Требования, предъявляемые к свойствам систем распределенной обработки информации. Логические слои прикладного программного обеспечения вычислительных систем. Механизмы реализации распределенной обработки информации. Технологии обмена сообщениями.
курсовая работа [506,8 K], добавлен 03.03.2011Классификация вычислительных систем по способам взаимодействия потоков выполняемых команд и потоков обрабатываемых данных, их разновидности и функциональные особенности. Принципы расширения классификации Флинна. Виды топологии соединительной сети.
презентация [175,6 K], добавлен 11.10.2014Применение электронных вычислительных машин. Создание локально-вычислительных сетей. Исследование принципов работы сети Ethernet. Изучение архитектуры прикладного интерфейса Windows. Назначение протокола NetBIOS и консольного приложения MyServer.
контрольная работа [162,7 K], добавлен 19.01.2016Задача обработки естественного языка при помощи ЭВМ с каждым днем становится все актуальней и актуальней. Развитие научно-технического прогресса во всем мире привело к тому, что объем новой информации постоянно растет с увеличивающейся скоростью.
реферат [13,0 K], добавлен 26.11.2004Проект машины для выполнения научных расчётов Бэббиджа. Вычислительные машины на основе электронных ламп. Внедрение транзисторов и микросхем. Создание персонального компьютера. Основные вехи развития информатики в России. Процесс информатизации общества.
реферат [28,4 K], добавлен 24.12.2009Классификация ЭВМ: по принципу действия, этапам создания, назначению, размерам и функциональным возможностям. Основные виды электронно-вычислительных машин: суперЭВМ, большие ЭВМ, малые ЭВМ, МикроЭВМ, серверы.
реферат [22,8 K], добавлен 15.03.2004