Системы счисления в компьютерной обработке информации

Характеристика систем счисления. Арифметические операции над числами, представленными в различных системах счисления. Представление чисел в компьютере. Преобразование чисел, представленных в двоичной, восьмеричной и шестнадцатеричной системах счисления.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 25.10.2017
Размер файла 995,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ГОУ ВПО

Всероссийский заочный финансово-экономический институт

Факультет Финансы и Кредит

Курсовая работа

По дисциплине «Информатика»

На тему: «Системы счисления в компьютерной обработке информации»

Выполнила: студентка 1 курса группы 1Б-ЭФ104

Прохорова Ксения Александровна

Москва 2012

Содержание

Введение

1. Теоретическая часть

1.1 Системы счисления

1.2 Арифметические операции над числами, представленными в различных системах счисления

1.3 Представление чисел в компьютере

2. Практическая часть

2.1 Общая характеристика задачи

2.2 Описание алгоритма решения задачи

Заключение

Список использованной литературы

Введение

Каждый регистр арифметического устройства ЭВМ, каждая ячейка памяти представляет собой физическую систему, состоящую из некоторого числа однородных элементов. Каждый такой элемент способен находиться в нескольких состояниях и служит для изображения одного из разрядов числа. Именно поэтому каждый элемент ячейки называют разрядом. Нумерацию разрядов в ячейке принято вести справа налево, самый левый разряд имеет порядковый номер 0. Наиболее надежным и дешевым является устройство, каждый разряд которого может принимать два состояния: намагничено - не намагничено, высокое напряжение - низкое напряжение и т.д. В современной электронике развитие аппаратной базы ЭВМ идет именно в этом направлении.

1. Теоретическая часть

1.1 Системы счисления

Для записи информации о количестве объектов материального мира используются числа, которые разделяются по определенным признакам. На рис. 1 представлена классификация чисел по групповому признаку, когда в каждую группу входят числа, обладающие определенными свойствами.

Рис. 1. Классификация чисел

Числа записываются с использованием особых знаковых систем, которые называются системами счисления, в них числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на два вида: позиционные и непозиционные. В позиционных системах счисления значение цифры зависит от ее положения в числе, в непозиционных - не зависит. Самой распространенной из непозиционных систем является римская. В качестве цифр в римской системе используются следующие символы: I (1), V (5), X (10), L (50), С (100), D (500), М (1000). Значение цифры в этой системе не зависит от ее положения в числе. Величина числа в римской системе определяется как сумма и разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется.

Например, число 1997 (десятичная позиционная система счисления) в римской системе счисления будет выглядеть следующим образом: MCMXCVII = 1000 + (1000 - 100) + (100 - 10) + 5 + 1 + 1.

Наибольшее применение при вводе, обработке и выводе информации в компьютере и компьютерных системах нашли позиционные системы счисления, при этом самыми распространенными являются десятичная, двоичная, восьмеричная и шестнадцатеричная системы. В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе. Основание системы равно количеству цифр (знаков ее алфавита) и определяет, во сколько раз различаются значения цифр соседних разрядов числа. В общем случае в позиционной системе счисления любое число, содержащее целую и дробные части, в развернутой форме может быть представлено в виде:

или в рекуррентной форме:

где K - представляемое число; h - основание системы счисления; а - разрядный коэффициент, а = 0, 1, 2, 3…, h-1, т. е. цифры, принадлежащие алфавиту данной системы счисления; i - номер разряда, позиция; n - число целых разрядов числа; m - число дробных разрядов числа.

В десятичной системе счисления формула (2.2) может быть записана следующим образом:

где а = 0, 1, 2, 3…, 9.

Например, число 827 десятичной системы счисления в соответствии с выражением (2.3) можно представить в виде: 827 = 8 · 102 + 2 · 101 + 7 · 100.

Десятичная система исчисления используется в компьютерах для ввода числовых данных и отображения полученного результата. Все внутренние, промежуточные операции компьютер производит в двоичной системе счисления и соотношение (2.2) примет вид:

где а = 0, 1.

Например, число 11001110112 двоичной системы счисления в соответствии с формулой (2.4) можно представить в виде: 1 · 29 + 1 · 28 + 0 · 27 + 0 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

Достаточно широко при компьютерной обработке информации применяются восьмеричная и шестнадцатеричная системы счисления, которые используются, например, для обозначения адресов расположения данных в памяти компьютера и т. д.

Соотношение (2.2) для восьмеричной и шестнадцатеричной системы счисления соответственно примет вид (2.5) и (2.6):

где а = 0, 1, 2, 3…, 7.

Например, число 14738 восьмеричной системы счисления в соответствии с (2.5) примет вид: 1 · 83 + 4 · 82 + 7 · 81 + 3 · 80.

где а = 0, 1, 2, 3…, 9, A, B, C, D, E, F.

В шестнадцатеричной системе счисления используется шестнадцать цифр, из которых десять цифр арабские (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а остальные цифры (10, 11, 12, 13, 14, 15) обозначаются буквами латинского алфавита (А = 10, В = 11, С = 12, D = 13, E = 14, F = 15).

Например, число 33B16 шестнадцатеричной системы счисления, в соответствии с (2.6) примет вид: 3 · 162 + 3 · 161 + В · 160 (В = 11).

При операциях с числами, представленными в различных системах счисления, необходимо указывать систему счисления числа, используя нижний индекс, например: 82710 - число 827 в десятичной системе; 11001110112 - число 1100111011 в двоичной системе; 14738 - число 1473 в восьмеричной системе; 33B16 - число 33В в шестнадцатеричной системе счисления.

Преобразование чисел, представленных в двоичной, восьмеричной и шестнадцатеричной системах счисления, в десятичную осуществляется достаточно просто. Для этого необходимо записать число в развернутой форме в соответствии с выражением (2.1) и вычислить его значение. Например:

Преобразование чисел, представленных в десятичной системе счисления, в двоичную, восьмеричную и шестнадцатеричную системы счисления - более сложная процедура, которая может осуществляться различными способами: деления, умножения, вычитания и т. д. При этом необходимо учитывать, что способы перевода целых десятичных чисел и правильных дробей будут различаться. Для перевода целого десятичного числа, например 5310, в двоичную систему можно использовать способ деления, а десятичной правильной дроби, например 0,7510, в двоичную систему - способ умножения. Результаты действий отобразим в соответствующих табл. 1 и 2.

Таблица 1

Таким образом, 5310 = 1101012.

Таблица 2

Таким образом, 0,7510 = 0,112.

1.2 Арифметические операции над числами, представленными в различных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же правилам. Для проведения арифметических операций над числами, представленными в различных системах счисления, необходимо предварительно преобразовать их в одну систему счисления и учесть то, что перенос в следующий разряд при операции сложения и заем из старшего разряда при операции вычитания определяется величиной основания системы счисления.

Арифметические операции в двоичной системе счисления основаны на таблицах сложения, вычитания и умножения одноразрядных двоичных чисел.

При сложении двух единиц происходит переполнение разряда и производится перенос единицы в старший разряд, при вычитании 0-1 производится заем из старшего разряда, в таблице «Вычитание» этот заем обозначен 1 с чертой над цифрой (Таблица 3).

Таблица 3

Ниже приведены примеры выполнения арифметических операций над числами, представленными в различных системах счисления:

Арифметические операции над целыми числами, представленными в различных системах счисления, достаточно просто реализуются с помощью программ Калькулятор и MS Excel.

1.3 Представление чисел в компьютере

Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.

Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:

Таблица 4

Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n - 1, где n - число разрядов числа. Максимальное число при этом будет равно 28 - 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.

В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то - 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:

Таблица 5

а отрицательное число -53610 = 10000010000110002 в виде:

Таблица 6

Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 - 1 = 216-1 - 1 = 215 - 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.

Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.

Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:

1) модуль числа записать прямым кодом в n (n = 16) двоичных разрядах; счисление компьютер число двоичный

2) получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули - на единицы);

3) к полученному обратному коду прибавить единицу к младшему разряду.

Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код - 1111110111100111, а дополнительный код - 1111110111101000.

Необходимо помнить, что дополнительный код положительного числа - само число.

Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел - восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(231 - 1) … + 231 - 1 и -(263-1) … + 263 - 1.

Компьютерное представление чисел в формате с фиксированной запятой имеет свои преимущества и недостатки. К преимуществам относятся простота представления чисел и алгоритмов реализации арифметических операций, к недостаткам - конечный диапазон представления чисел, который может быть недостаточным для решения многих задач практического характера (математических, экономических, физических и т. д.).

Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:

где А - мантисса числа; h - основание системы счисления; p - порядок числа.

Выражение (2.7) для десятичной системы счисления примет вид:

для двоичной --

для восьмеричной --

для шестнадцатеричной --

и т. д.

Такая форма представления числа также называется нормальной. С изменением порядка запятая в числе смещается, т. е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой. Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 · 102; 1,55 · 101; 15,5 · 100; 155,0 · 10-1; 1550,0 · 10-2 и т. д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду

где Р - порядок числа,

т. е. вместо основания системы счисления 10 пишут букву Е, вместо запятой - точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.

Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной. Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию

где |А| -- абсолютное значение мантиссы числа.

Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 · 102, т. е. нормализованная мантисса будет A = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.

Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, - точность, с которой задается число.

При выполнении арифметических операций (сложение и вычитание) над числами, представленными в формате с плавающей запятой, реализуется следующий порядок действий (алгоритм) :

1) производится выравнивание порядков чисел, над которыми совершаются арифметические операции (порядок меньшего по модулю числа увеличивается до величины порядка большего по модулю числа, мантисса при этом уменьшается в такое же количество раз);

2) выполняются арифметические операции над мантиссами чисел;

3) производится нормализация полученного результата.

2. Практическая часть

2.1 Общая характеристика задачи

В бухгалтерии предприятия ООО «Бета» производится расчет налоговых вычетов, предоставляемых сотрудникам, и формирование платежных ведомостей. Данные для выполнения расчета налоговых вычетов приведены на рис. 2.1. Стандартный налоговый вычет предоставляется каждому сотруднику в размере 400 руб. в месяц до тех пор, пока совокупный доход с начала года не превысит 40 000 руб., налоговый вычет на ребенка предоставляется в размере 1000 руб. в месяц до тех пор, пока совокупный доход с начала года не превысит 280 000 руб. НДФЛ - налог на доходы физических лиц (13%) - рассчитывается с начисленной суммы за вычетом размера налоговых вычетов.

1. Построить таблицы по приведенным ниже данным.

2. Выполнить расчет размера налогового вычета, предоставляемого сотрудникам в текущем месяце с использованием функций ВПР или ПРОСМОТР, результаты вычислений представить в виде таблицы (рис. 2.2).

3. Сформировать и заполнить форму документа «Расчетная ведомость по заработной плате» за текущий месяц (рис. 2.3).

4. Построить и проанализировать графический отчет по полученным результатам.

Рис. 2.1. Данные для расчета налоговых вычетов.

Рис. 2.2. Размер налоговых вычетов, предоставляемых сотрудникам в текущем месяце.

Рис. 2.3. Расчетная ведомость.

2.2 Описание алгоритма решения задачи

1. Запустить табличный процессор MS Excel.

2. Создать книгу с именем ООО «Бета».

3. Лист 1 переименовать в лист с названием «Данные для расчета».

4. На рабочем листе «Данные для расчета» MS Excel создать таблицу данных для расчета налоговых вычетов.

5. Заполнить таблицу «Данных для расчета налоговых вычетов» (рис.2.4.), с точностью до сотых. Для этого открыть меню Формат - Ячейки, во вкладке Число выбрать числовой формат Числовой, и указать Число десятичных знаков - 2.

Рис. 2.4. Расположение таблицы «Данные для расчета налоговых вычетов» на рабочем листе MS Excel.

6. Лист 2 переименовать в лист с названием «Размер налоговых вычетов».

7. На рабочем листе «Размер налоговых вычетов» MS Excel создать таблицу.

8. Заполнить таблицу «Размер налоговых вычетов, предоставляемых сотрудникам в текущем месяце» исходными данными (рис. 2.5.)

9. Лист 3 переименовать в лист с названием «Расчетная ведомость».

10. На рабочем листе «Расчетная ведомость» заполнить форму ведомости (рис. 2.6.).

Рис. 2.5. Расположение таблицы «Размер налоговых вычетов, предоставляемых сотрудникам в текущем месяце» на листе Размер налоговых вычетов MS Excel.

Рис. 2.6. Расположение Формы расчетной ведомости» на рабочем листе «Расчетная ведомость «» MS Excel.

11. Заполнить графу Размер налогового вычета за текущий месяц, руб. таблицы «Размер налоговых вычетов, предоставляемых сотрудникам в текущем месяце», находящейся на листе Размер налоговых вычетов следующим образом:

Занести в ячейку D3 формулу: =B3+(C3*В9). Размножить введенную в ячейку D3 формулу для остальных ячеек (с D4 по D7) данной графы (рис. 2.7).

Рис. 2.7. Формула для подсчета Размера налоговых вычетов с учетом количества детей, на которых предоставляется налоговый вычет.

12. После произведенных подсчетов данная таблица будет выглядеть, как показано на рис. 2.8.

Рис. 2.8. Расположение таблицы «Размер налоговых вычетов, предоставляемых сотрудникам в текущем месяце» на рабочем листе «Размер налоговых вычетов» MS Excel.

13. Заполнить графу Начислено за месяц, руб. формы «Расчетная ведомость», находящаяся на листе «Расчетная ведомость» следующим образом: В ячейку С7 занести формулу: = 'Данные для расчета'!В4.

Размножить введенную в ячейку C7 формулу для остальных ячеек (с C8 по C11) данной графы.

14. Заполнить графу Размер налогового вычета, руб. следующим образом: В ячейку D7 занести формулу: = 'Размер налоговых вычетов'!D3. Размножить введенную в ячейку D7 формулу для остальных ячеек (с D8 по D11) данной графы.

15. Заполнить графу НДФЛ, руб. следующим образом: В ячейку E7 занести формулу: = (C7-D7)*В14. Размножить введенную в ячейку E7 формулу для остальных ячеек (с E8 по E11) данной графы.

16. Заполнить графу К выплате, руб. следующим образом: В ячейку F7 занести формулу: = C7-E7. Размножить введенную в ячейку F7 формулу для остальных ячеек (с F8 по F11) данной графы.

17. Вычислить Итого по ведомости НДФЛ следующим образом: В ячейку Е12 занести формулу: = Е7+Е8+Е9+Е10+Е11.

18. Вычислить Итоговую сумму з/п сотрудников следующим образом:

В ячейку F12 занести формулу: = F7+F8+F9+F10+F11.

19. После всех внесений в соответствующие графы таблицы Расчетная ведомость, данная таблица будет выглядеть, как показано на рис.2.9.

Рис. 2.9. Расположение «Формы расчетной ведомости» на рабочем листе «Расчетная ведомость» MS Excel.

20. После произведенных подсчетов Расчетная ведомость будет выглядеть, как показано на рис.2.10.

Рис. 2.10. Расположение таблицы «Расчетная ведомость» на рабочем листе «Расчетная ведомость» MS Excel.

21. Лист 4 переименовать в лист с названием График.

22. На рабочем листе График MS Excel создать краткую таблицу, данные взять из формы «Расчетная ведомость» (рис. 2.11).

23. Результаты вычислений представить графически (рис. 2.12).

Рис. 2.11. Расположение краткой таблицы результатов расчета заработной платы за текущий месяц на листе График MS Excel.

Рис. 2.12. Графическое представление результатов вычислений.

Заключение

Использование двоичной системы счисления в качестве внутренней системы представления информации вызвано конструктивными особенностями элементов вычислительных машин.

Во всех современных ЭВМ для представления числовой информации используется двоичная система счисления. Это обусловлено :

· более простой реализацией алгоритмов выполнения арифметических и логических операций;

· более надежной физической реализацией основных функций, так как они имеют всего два состояния (0 и 1);

· экономичностью аппаратурной реализации всех схем ЭВМ
Представление (кодирование) информации с помощью двоичного алфавита позволило не только ввести единицы для измерения ее количества (объема).

Действительно, информация, представленная последовательностью нулей и единиц, является дискретной.

Результаты, полученные в курсовой работе - наглядно представленные результаты обработки информации. Получение навыков при работе с MS Excel и текстовым редактором MS Word.

Список использованной литературы

Учебник:

1. Информатика: аппаратные средства персонального компьютера / под ред. В.Н. Яшин. - М.: 2008.

Электронные ресурсы:

1. http://irnik.narod.ru/ - статья «Представление информации в компьютере».

Размещено на Allbest.ru

...

Подобные документы

  • Порождение целых чисел в позиционных системах счисления. Почему мы пользуемся десятичной системой, а компьютеры - двоичной (восьмеричной и шестнадцатеричной)? Перевод чисел из одной системы в другую. Математические действия в различных системах счисления.

    конспект произведения [971,1 K], добавлен 31.05.2009

  • Роль и практическое значение автоматизации вычислений и обработки данных. Представление информации в компьютере, сущность системы счисления. Перевод числа из одной системы счисления в другую. Арифметические операции в позиционных системах счисления.

    контрольная работа [1,2 M], добавлен 23.10.2009

  • Понятие и классификация систем счисления. Перевод чисел из одной системы счисления в другую. Перевод правильных и неправильных дробей. Выбор системы счисления для применения в ЭВМ. Навыки обращения с двоичными числами. Точность представления чисел в ЭВМ.

    реферат [62,0 K], добавлен 13.01.2011

  • Общее представление о системах счисления. Перевод чисел в двоичную, восьмеричную и шестнадцатеричную системы счисления. Разбивка чисел на тройки и четверки цифр. Разряды символов числа. Перевод из шестнадцатеричной системы счисления в десятичную.

    практическая работа [15,5 K], добавлен 19.04.2011

  • Определение понятия и видов систем счисления - символического метода записи чисел, представления чисел с помощью письменных знаков. Двоичные, смешанные системы счисления. Перевод из одной системы счисления в другую и простейшие арифметические операции.

    курсовая работа [232,6 K], добавлен 16.01.2012

  • Двоичный код, особенности кодирования и декодирования информации. Система счисления как совокупность правил записи чисел с помощью определенного набора символов. Классификация систем счисления, специфика перевода чисел в позиционной системе счисления.

    презентация [16,3 K], добавлен 07.06.2011

  • Арифметические операции над числами, представленными в позиционных системах счисления. Методы перевода чисел из системы остаточных классов в позиционную систему счисления. Программная реализация и анализ метода Ферма в системе компьютерной алгебры Maple.

    дипломная работа [1,7 M], добавлен 05.06.2014

  • Характеристика методов представления заданных чисел в двоичной, шестнадцатеричной, восьмеричной системе счисления. Представление указанного числа в четырехбайтовом IEEE формате. Разработка алгоритма обработки одномерных и двумерных числовых массивов.

    контрольная работа [138,9 K], добавлен 05.06.2010

  • Обработка информации и вычислений в вычислительной машине. Непозиционные и позиционные системы счисления. Примеры перевода десятичного целого и дробного числа в двоичную систему счисления. Десятично-шестнадцатеричное и обратное преобразование чисел.

    контрольная работа [41,2 K], добавлен 21.08.2010

  • Арифметические операции над числами, представленными в различных системах счисления. Представление чисел в компьютере. Элементы вычислительных машин. Информационная и аналитическая модели решения задачи. Работа с MS Excel и текстовым редактором MS Word.

    курсовая работа [1,0 M], добавлен 25.04.2013

  • Система счисления как способ записи (изображения) чисел. История появления и развития различных систем счисления: двоичная, восьмеричная, десятичная и шестнадцатеричная. Основные принципы и правила алгоритма перевода из одной системы счисления в другую.

    курсовая работа [343,1 K], добавлен 11.11.2014

  • История систем счисления, позиционные и непозиционные системы счисления. Двоичное кодирование в компьютере. Перевод чисел из одной системы счисления в другую. Запись цифр в римской нумерации. Славянская нумерация, сохранившаяся в богослужебных книгах.

    презентация [516,8 K], добавлен 23.10.2015

  • Сопоставление наиболее важных систем счисления. Перевод целых десятичных чисел в недесятичную систему и обратно. Особенности преобразования дробей. Правила выполнения арифметических действий над двоичными, восьмеричными и шестнадцатеричными числами.

    контрольная работа [824,4 K], добавлен 17.11.2010

  • Десятичная система счисления, ее происхождение и применение. Арифметические операции: сложение и вычитание, умножение и деление. Перевод чисел из одной системы счисления в другую. Применение систем: азбука Морзе, алфавитное кодирование, штрих-коды.

    курсовая работа [2,5 M], добавлен 12.01.2015

  • Разновидности систем счисления данных, особенности позиционной системы. Порядок перехода между основными системами счисления и реализации целочисленных операций. Представление отрицательных чисел. Представление отрицательных чисел в двоичном коде.

    лабораторная работа [142,3 K], добавлен 06.07.2009

  • Факты появления двоичной системы счисления - позиционной системы счисления с основанием 2. Достоинства системы: простота вычислений и организации чисел, возможность сведения всех арифметических действий к одному - сложению. Применение двоичной системы.

    презентация [1,5 M], добавлен 10.12.2014

  • Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа [37,3 K], добавлен 13.02.2009

  • Система счисления как способ записи информации с помощью заданного набора цифр. История развития различных систем счисления. Позиционные и непозиционные системы. Вавилонская, иероглифическая, римская система счисления. Система счисления майя и ацтеков.

    презентация [3,2 M], добавлен 05.05.2012

  • Основные виды программного обеспечения. Характеристика пакетов прикладных программ. Виды и группы систем счисления. Перевод целых и дробных чисел из одной системы счисления в другую. Арифметические операции в двоичной системе. Компьютерные преступления.

    шпаргалка [65,2 K], добавлен 19.01.2014

  • Целые числа в позиционных системах счисления. Недостатки двоичной системы. Разработка алгоритмов, структур данных. Программная реализация алгоритмов перевода в различные системы счисления на языке программирования С. Тестирование программного обеспечения.

    курсовая работа [593,3 K], добавлен 03.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.