Автоматизация процесса передачи информации с бортового регистратора на стационарный комплекс обработки

Характеристика основных технологий передачи информации. Особенности технологий беспроводной передачи данных. Выбор концепции, среды и языка программирования, структура регистрации. Технико-экономическое обоснование автоматизированной системы передачи.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 26.10.2017
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Автоматизация процесса передачи информации с бортового регистратора на стационарный комплекс обработки

Крутова А.А.

  • ОГЛАВЛЕНИЕ
  • Введение
  • ГЛАВА 1.Обзор основных технологий передачи информации
    • 1.1 Модель OSI
    • 1.2 Системы идентификации объектов
      • 1.2.1 Оптическая идентификация
      • 1.2.2 Радиочастотная идентификация
      • 1.3 Технологии беспроводной передачи данных
      • 1.3.1 BlueTooth
      • 1.3.2 WiFi
      • 1.3.3 ZigBee
    • 1.4 Ethernet
    • 1.5 CAN
    • 1.6 USB-интерфейс
    • 1.7 Вывод
  • ГЛАВА 2.Проектирование автоматизированной системы передачи
    • 2.1 Система управления движением поезда «Витязь»
    • 2.2 Принцип автоматизированной системы передачи и используемое оборудование
    • 2.3 ТЗ на разработку ППП передачи информации
    • 2.4 Выбор концепции программирования
    • 2.5 Выбор среды и языка программирования
    • 2.6 Структура регистрации
    • 2.7 Вывод
  • ГЛАВА 3. Разработка пакета прикладных программ для передачи информации с РПДП
    • 3.1 Организация сетевого соединения с РПДП
    • 3.2 Абстракция процесса обмена информацией
    • 3.3 Алгоритм чтения оглавления РПДП
    • 3.4 Алгоритм чтения регистрации РПДП
    • 3.5 Анализ регистрации
    • 3.6 Вывод
  • ГЛАВА 4. Тестирование системы передачи
    • 4.1 Цель тестирования
    • 4.2 Требования к ПО стенда РПДП
    • 4.3 Установление USB соединения
    • 4.4 Упаковка и отправка эталонной регистрации по USB
    • 4.5 Считывание регистрации с РПДП по Wi-Fi и сравнение.
    • 4.6 Вывод
  • ГЛАВА 5. Безопасность жизнедеятельности
    • 5.1 Безопасность условий труда инженера-программиста
      • 5.1.1 Эргономические требования к рабочему месту программиста
    • 5.2. Вредные производственные факторы в помещениях
      • 5.2.1 Уровень шума
      • 5.2.2 Освещенность рабочего места
    • 5.3 Обеспечение мер противопожарной безопасности
    • 5.4 Вывод
  • Глава 6. Технико-экономическое обоснование автоматизированной системы передачи
    • 6.1 Расчет технико-экономических показателей системы передачи информации без использования радиоканала
    • 6.2 Расчет технико-экономических показателей системы передачи информации с использованием радиоканала
    • 6.3 Расчет экономической эффективности автоматизированного процесса передачи информации с использованием радиоканала
    • 6.4 Вывод
  • ЗАКЛЮЧЕНИЕ
  • ЛИТЕРАТУРА

ВВЕДЕНИЕ

Актуальность

Начало нового столетия сопровождается урбанизацией населения, ростом требований к мобильности и сокращению сроков поездок в пределах городов. Улицы и проспекты, предназначенные для общественного и индивидуального автомобильного транспорта, уже не справляются с потоком машин, превращая в часы пик городские районы в огромные пробки. В этих условиях метрополитен становится единственным спасением для многих тысяч пассажиров каждый день. Следовательно,встает вопрос, каким образом обеспечить комфортное, скоростное, а главное, безопасное, передвижение на линиях метрополитена. Системы обеспечения безопасности движения давно стали обязательными для электроподвижного состава метрополитена и предназначены для обеспечения безопасной эксплуатации поездов.

Теоретическая и методологическая основа проектирования

Основой систем обеспечения безопасности движения является устройство автоматической локомотивной сигнализации с автоматическим регулированием скорости АЛС-АРС. В системе АЛС-АРС поезд получает значение допустимой скорости отрельсовой цепи в виде частотного кода. Данное значение действует в качестве скоростного ограничения на протяжении всего блок-участка. Выключение тяги и воздействие на тормоза электропоезда при получении менее разрешающего кода допустимой скорости должны обеспечить безопасность движения и интервальное регулирование движения поездов. Таким образом, АЛС-АРС обеспечивает следующие основные функции безопасности:

· прием и дешифрирование кодированных сигналов АЛС и формирование индикации о предельно допустимой скорости движения;

· непрерывный контроль предельно допустимой скорости движения и автоматическое торможение электропоезда при ее превышении фактической скоростью.

В настоящее время, современные достижения в науке и технике позволяют расширить функциональные возможности систем обеспечения безопасности движения электропоездов, обеспечить их более надежную работу и, как следствие, сделать эксплуатацию подвижного состава более безопасной.

В качестве примера расширения функциональных возможностей систем безопасности можно указать:

· введение функции самодиагностики устройств безопасности. В сочетании срезервированием устройств безопасности обеспечивается более высокая надежность их работы и безопасность движения;

· обеспечение функциональной безопасности устройств. Под функциональной безопасностью устройств надо понимать отсутствие возможности опасного отказа устройств, в результате которого может происходить нарушение безопасности движения. Для этого все модули, формирующие данные, непосредственно влияющие на безопасность движения, должны иметь в своем составе независимые каналы, осуществляющие параллельную обработку информации;

· выполнение функции определения местоположения подвижного состава на линии и, на ее основе, обеспечение прицельной остановки электропоезда у сигнального знака «Остановка первого вагона» (знак ОПВ);

· организация управления подвижным составом в автоматическом режиме без участия машиниста (локомотивной бригады) - режим автоведения;

· регистрация параметров движения поезда и контроль работоспособности оборудования, действий локомотивных бригад и ремонтного персонала.

Объединение и реализация перечисленных выше функцийв одной системе придает ей свойство комплексности и определяет ее как комплексную систему безопасности движения поезда (КСБДП).

Таким образом, комплексная система безопасности должна состоять из следующих основных функциональных подсистем:

- АЛС-АРС на основе рельсовых цепей;

- измерения скорости минимум двумя независимыми устройствами;

- определения местоположения поезда и автоведения;

- технической диагностики и регистрации параметров движения.

В настоящее время существует большое количество масштабируемых систем автоматического управления движением поездов. Они различаются по принципам и техническим решениям, используемым при их разработке, а также по степени автоматизации - от автоматизированного движения поезда с информационной поддержкой машиниста (режим подсказки) до полностью автоматического управления движением с максимальной эксплуатационной гибкостью. Сегодня метрополитены крупнейших городов мира осуществляют переход на микропроцессорные системы централизации и управления, в которых меняются принципы передачи данных (на радиосвязь), что является очень эффективным. Такие системы способны объединять в семе весь комплекс перечисленных выше мер по обеспечению безопасности движения.

Первая в мире система управления движением поездов на базе радиосвязи была внедрена на линии Canarise нью-йоркского метрополитена протяженностью 17 км. Это была система Trainguard MT компании Siemens. В дальнейшем такие крупные города, как Париж, Пекин, Стамбул и многие другие осознали необходимость перехода на микропроцессорные системы.

Система Trainguard MT с помощью установленного на локомотиве одометра и радара определяет направление движения, скорость и местоположение поезда, которое уточняется при проезде им контрольных точек пути. Эта информация через бортовую антенну и расположенные на участках пути точки доступа непрерывно передается на центральный пост, который определяет местоположение последнего вагона как точку прицельного торможения, производит расчет безопасных поездных интервалов и отправляет эту информацию на следующие поезд. Бортовой компьютер следующего поезда, исходя из переданной с центрального поста информации, рассчитывает кривые торможения, принимая во внимание различные параметры.

В Московском метрополитене используетсясистема управления, безопасностиитехнической диагностики «Витязь», построенная как многопроцессорная локальная вычислительная сеть. Система «Витязь» предназначенадляустановки на вагонах метро моделей 81-740/741, 81-760/761 и их модификаций.

Система «Витязь»выполняет следующие основные функции:

· обеспечениеуправления поездом и вагонным оборудованием в режиме ручного управления;

· автоматическое ограничение скорости поезда по сигналам с рельсовой линии (автоматическое регулирование скорости - АРС);

· сигнализацию о допустимой,предупредительной и текущей скоростях (автоматическая локомотивная сигнализация - АЛС);

· обеспечениетехнической диагностикии сигнализации о неисправностях вагонного оборудования и самой системы;

· обеспечение управления климатическими установками салонов вагона,переключение режимов работы кондиционеров (зима/лето);

· обеспечение обмена информации между блоками системы «Витязь»;

· ввод информации с устройства первоначального ввода ивывод информации на устройство отображения информации;

· выдачу рекомендаций машинисту по оптимальному управлению электропоездом.

Разработка системы «Витязь» началась в 1993 году. С 1998 года началась её опытная эксплуатация на Люблинской линии Мосметрополитена. В 2002 году была проведена глубокая модернизация системы с изменением её структурной схемы, принципов построения основных блоков и используемой элементной базы.

В настоящее время свыше 150 составов различной длины с системой «Витязь» эксплуатируются на Филевской, Арбатско-Покровской, Люблинской, Бутовской и Кольцевой линиях Московского метрополитена и в метрополитенах городов Казани и Софии.

Сегодня эту систему нельзя назвать комплексной, так как она не включает в себя функции централизованного автоведения по командам диспетчерского центра и функции регистрации параметров движения поезда с дальнейшей передачей этих параметров на стенд расшифровки регистратора параметров движения поезда (РПДП) по радиоканалу. В настоящее время ведется активная работа по организации разработки функциональных подсистем, которые практически реализуют данныефункции.

Цель и задачи дипломного проектирования

Данный дипломный проектобеспечивает решение задачиавтоматизации процесса передачи зарегистрированных системой «Витязь» параметров на удалённый стенд расшифровки РПДП. Производится проектирование системы и написание пакета прикладных программ для обеспечения передачи информации и тестирования отдельных элементов.

Автоматизация позволит заметно снизить скорость реакции инженеров метрополитена на возникающие в поездах неполадки и сразу их устранять, тем самым, значительно увеличивая безопасность движения. Помимо этого произойдет заметное снижение затрат на систему передачи информации, так как сейчас в каждом депо все данные переносятся вручную, отдельными людьми, что требует постоянного присутствия большого количества персонала на линии.

В дальнейшем планируется установить систему для считывания информации не только на въездах в депо, но и на станциях, а также в тоннелях. Это обеспечит максимальную скорость выявления и устранения возникающих неисправностей, оптимизацию оперативного управления, повысит гибкость системы.

Апробация результатов

Результаты данного дипломного проекта обсуждались на технической конференции в секции «Мультимедийные сети и услуги связи» и были опубликованы.

ГЛАВА 1.ОБЗОР ОСНОВНЫХ ТЕХНОЛОГИЙ ПЕРЕДАЧИ ИНФОРМАЦИИ

Проводя обзор технологий передачи информации нельзя не упомянуть о модели OSI, модели, описывающей структуру идеальной сетевой архитектуры. Каждый интерфейс и протокол передачи, о котором пойдет речь в данном дипломном проекте, занимает свой определенный уровень в данной модели.

1.1 Модель OSI

Для того чтобы различные компоненты сети могли общаться, они должны работать с использованием одного протокола обмена информацией, то есть должны «говорить» на одном языке. Протокол определяет набор правил для организации обмена информацией на всех уровнях взаимодействия сетевых объектов[11]. В качестве "линейки" для определения уровней используется модель OSI (Open System Interconnect), разработанная международной организацией по стандартам (International Standardization Organization - ISO). В модели OSI семь уровней взаимодействия для рассмотрения процесса обмена информацией между устройствами в сети. Каждый из уровней сети относительно автономен и рассматривается отдельно. Модель OSI используется для определения функций каждого уровня. Эта модель содержит в себе по сути 2 различных модели:

· горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

· вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

Рисунок 1.1.1 Модель OSI

Физический уровень (physical layer) -- нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Передача электрических или оптических сигналов в кабель или в радиоэфир осуществляется в соответствии с методами кодирования цифровых сигналов. Спецификации физического уровня определяют уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, требования к среде передачи, физические соединители и другие аналогичные характеристики.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером, обеспечивающим механический интерфейс для связи компьютера со средой передачи или последовательным портом. Физический уровень определяет такие виды сред передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных ит.п.

Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: USB, RS-232, RS-485, RJ-45, физические интерфейсы Ethernet (10BASE-T, 100BASE-T и 1000BASE-TX). Основные протоколы физического уровня: IEEE 802.15 (bluetooth), EIA RS-232, RS-485, DSL(цифровая абонентская линия), ISDN (цифровая сеть с интеграцией служб), 802.11 Wi-Fi, GSM, RFID, 802.15.4.

Канальный уровень (data link) обеспечивает надежный транзит данных через физический канал. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Выполняя эту задачу, канальный уровень решает вопросы физической адресации, топологии сети, уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации. Обычно этот уровень разбивается на два подуровня: LLC (Logical Link Control) в верхней половине, осуществляющего проверку на ошибки и обслуживание сетевого уровня, и MAC (Media Access Control) в нижней половине, отвечающего за физическую адресацию и прием/передачу пакетов на физическом уровне. На этом уровне работают коммутаторы, мосты и другие устройства, они называются устройствами второго уровня.

Протоколы канального уровня: Controller Area Network (CAN), IEEE 802.3 Ethernet, Fiber Distributed Data Interface (FDDI), Frame Relay, IEEE 802.11 wireless LAN, 802.15.4, Point-to-Point Protocol (PPP), Token ring, x.25, ATM.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS, UDI.

Сетевой уровень (session layer) обеспечивает соединение и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. Сетевой уровень отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети. Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP (Routing Information Protocol), OSPF (Open Shortest Path First).

Транспортный уровень (transport layer) - самый высокий из уровней, отвечающих за транспортировку данных, предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Например, UDP ограничивается контролем целостности данных в рамках одной дейтаграммы и не исключает возможности потери пакета целиком, или дублирования пакетов, нарушения порядка получения пакетов данных. К заголовку IP-пакета он добавляет два поля, одно из которых, поле "порт", обеспечивает мультиплексирование информации между разными прикладными процессами, а другое поле - "контрольная сумма" - позволяет поддерживать целостность данных.

Примерами сетевых приложений, использующих UDP, являются NFS и SNMP.

TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот склеивая фрагменты в один пакет.

Основные протоколы транспортного уровня: SPX (Sequenced Packet Exchange - упорядоченный обмен пакетами), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сеансовый уровень синхронизирует диалог между объектами уровня представления и управляет созданием/завершением сеанса, обменом информацией, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Сеансы состоят из диалога между двумя или более объектами представления. В качестве примера программных средств, обеспечивающих работу сеансового уровня, могут служить интерфейсы NetBIOS сетей Windows и Sockets - сокеты сетей TCP/IP.

Уровень представления (presentation layer) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. При необходимости трансформации подвергаются не только фактические данные, но и структуры данных, используемые программами. Уровень представления отвечает за возможность диалога между приложениями на разных машинах. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня. Протоколы уровня представления обычно являются составной частью функций трех верхних уровней модели.

Прикладной уровень (application layer) - верхний уровень модели OSI, обеспечивающий взаимодействие пользовательских приложений с сетью:

· позволяет приложениям использовать сетевые службы:

o удалённый доступ к файлам и базам данных,

o пересылка электронной почты;

· отвечает за передачу служебной информации;

· предоставляет приложениям информацию об ошибках;

· формирует запросы к уровню представления.

Протоколы прикладного уровня: HTTP, SMTP, SNMP, POP3, FTP, TELNET и другие [11],[12].

Изучение структуры данной модели позволяет создать более четкую картину расположения каждой сетевой технологии в сложной системе построения сетей.

1.2 Системы идентификации объектов

Сама по себе идея автоматизированного распознавания объектов не нова. Известны как минимум, пять разновидностей идентификации:

· оптическая: системы, основанные на штрих-кодах, распознавании символов;

· магнитная: магнитная полоса, распознавание меток, нанесенных магнитными носителями;

· радиочастотная идентификация (RFID) и передача данных: пластиковые смарт-карты с встроенной микросхемой, радиометки;

· биометрическая: распознавание отпечатков пальцев, сканирование рисунка радужной оболочки глаза;

· акустическая: идентификация по звуковым параметрам (голосу).

1.2.1 Оптическая идентификация

Оптическая идентификация - принцип выделения отдельных компонентов системы среди множества аналогичных с помощью точечного источника оптического излучения видимого диапазона длин волн.

Оптическая идентификация часто используется на железных дорогах.Видеоаналитическое оборудование обеспечивает автоматизированный контроль железнодорожного полотна, прилегающей территории (полосы отвода) и других инфраструктурных объектов с помощью технических средств видеонаблюдения.

Оборудование решает следующие задачи:

· регистрация, передача и аналитическая обработка видеоинформации об обстановке на охраняемых объектах;

· автоматическое формирование оперативного сигнала тревоги при возникновении нештатной (тревожной) ситуации;

· непрерывный контроль работоспособности всех компонентов комплекса и автоматическое обнаружение несанкционированных изменений его настроек.

Алгоритмы аналитической обработки видео, встроенные в оборудование, должны обеспечить:

· автоматическое детектирование, сопровождение и классификацию целей на подступах к железнодорожному полотну и к другим инфраструктурным объектам;

· классификацию целей по типам поведения, в том числе: появление в заданной зоне;

· контроль качества изображения и автоматическое формирование тревожного сообщения в случае значительной деградации качества.

Помимо этого оптическая идентификация используется для контроля передвижения объектов подвижного состава железнодорожного транспорта (ЖДТ) путем автоматического обнаружения и идентификации вагонов, цистерн и платформ по их регистрационному номеру.

Камера устанавливается на стойке, на высоте до 6 метров и направляется вдоль железнодорожного полотна. Объектами видеоанализа являются люди и транспортные средства, перемещающиеся в поле зрения камеры произвольным образом. Оборудование поддерживает различные профили стандарта ONVIF (Open Network Video Interface Forum). ONVIF-- отраслевой стандарт, определяющий протоколы взаимодействия таких устройств как IP-камеры, видеорегистраторы и системы управления видео.

Недостатком оптической идентификации является потенциальная возможность загрязнения камер, расположенных на сложных участках, влияние помех на качество изображения и, следовательно, идентификации, достаточно большая стоимость таких систем (совокупности камер и анализаторов изображения).

1.2.2 Радиочастотная идентификация

RFID (Radio Frequency IDentification)-- радиочастотная идентификация, способ автоматической идентификации объектов, в котором посредством радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках. Любая RFID-система включает в себя следующие составляющие:

· считывающее устройство (считыватель, ридер или интеррогатор);

· транспондер (RFID-метка).

Большинство RFID-меток состоит из двух частей. Первая-- интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая-- антенна для приёма и передачи сигнала.

Рисунок 1.2.2.1 RFID-антенна

Существует несколько способов систематизации RFID-меток и систем:

· По рабочей частоте

o Метки диапазона LF (125--134 кГц). Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных, людей и рыб. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

o Метки диапазона HF (13,56 МГц). Преимущества данных систем в том, что они дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). Однако существуют проблемы со считыванием на большие расстояния, в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

o Метки диапазона UHF (УВЧ, 860--960 МГц). Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы. В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования. В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне-- 863--868 МГЦ и в «американском» диапазоне ____.

· По источнику питания

o Пассивные

o Активные

o Полупассивные

· По типу памяти

o RO (Read Only) -- содержат только идентификатор. Данные записываются только один раз при изготовлении

o WORM (Write Once Read Many) -- содержат идентификатор и блок однократно записываемой памяти

o RW (Read and Write) -- содержат идентификатор и блок памяти для многократной записи информации. Данные в них могут быть перезаписаны многократно

· По дальности считывания

o Ближней идентификации (считывание на расстоянии до 20 см)

o Идентификации средней дальности (от 20см до 10 м)

o Дальней идентификации (от 5м до 300 м)

· По исполнению

Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток, индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого чипа, размещённого в метке, и передачи ответного сигнала. На практике максимальная дистанция считывания пассивных меток варьируется от 10см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. Пассивные метки (860--960 МГц) передают сигнал методом модуляции отражённого сигнала несущей частоты (модуляция обратного рассеяния). Антенна считывателя излучает сигнал несущей частоты и принимает отражённый от метки модулированный сигнал.

Активные RFID-метки обладают собственным источником питания и не зависят от энергии считывателя, вследствие чего они читаются на дальнем расстоянии (до 300 метров), имеют бомльшие размеры и могут быть оснащены дополнительной электроникой. Однако, такие метки наиболее дороги, а у батарей ограничено время работы. Активные метки в большинстве случаев более надёжны и обеспечивают самую высокую точность считывания на максимальном расстоянии. Активные метки, обладая собственным источником питания, также могут генерировать выходной сигнал большего уровня, чем пассивные, позволяя применять их в более агрессивных для радиочастотного сигнала средах: воде, на воздухе.

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батареей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

Считыватели информации - это приборы, которые читают информацию с меток и записывают в них данные. Эти устройства могут быть постоянно подключенными к учётной системе, или работать автономно. Считыватели делятся на стационарные и мобильные [13].

Рисунок 1.2.2.2 RFID-считыватель

Международные стандарты RFID, как составной части технологии автоматической идентификации, разрабатываются и принимаются международной организацией ISO совместно с IEC.

Деление меток на классы было принято задолго до появления инициативы EPCglobal упорядочить большое количество RFID-протоколов, однако не существовало общепринятого протокола обмена между считывателями и метками. Это приводило к несовместимости считывателей и меток различных производителей. В 2004г. ISO/IEC приняла единый международный стандарт ISO 18000, описывающий протоколы обмена (радиоинтерфейсы) во всех частотных диапазонах RFID от 135 кГц до 2,45 ГГц. Диапазону УВЧ (860--960) МГц соответствует стандарт ISO 18000-6А/В. В 2004г. специалисты EPCglobal создали новый протокол обмена между считывателем и меткой УВЧ диапазона-- Class 1 Generation 2. В 2006г. предложение EPC Gen2с незначительными изменениями было принято ISO/IEC в качестве дополнения С к существующим вариантам А и В стандарта ISO 18000-6, и на данный момент стандарт ISO/IEC 18000-6C является наиболее распространённым стандартом технологии RFID в УВЧ диапазоне.

Недостатками радиочастотной идентификации являются:

· работоспособность метки утрачивается при частичном механическом повреждении;

· подверженность помехам в виде электромагнитных полей;

· недостаточная открытость выработанных стандартов.

В данном разделе были рассмотрены основные технологии идентификации объектов. Среди них особое внимание было уделено радиочастотной и оптической идентификации, которые можно использовать для инициирования соединения стационарного пункта управления с регистратором параметров движения поезда (РПДР).

Далее пойдет речь о технологиях физического и канального уровня, которые применяются сегодня для построения от самых простых сетей типа точка-точка, до крупных, распределенных сетей передачи данных.

1.3 Технологии беспроводной передачи данных

Для осуществления процесса обмена информацией между ПЭВМ и РПДП было решено изучить существующие технологии беспроводной передачи данных с целью последующего выбора наиболее подходящей.

1.3.1 BlueTooth

Технология BlueTooth (стандарт IEEE 802.15) стала первой технологией, позволяющей организовать беспроводную персональную сеть передачи данных (WPAN -- Wireless Personal Network). Она позволяет осуществлять передачу данных и голоса по радиоканалу на небольшие расстояния (10-100 м) в нелицензируемом диапазоне частот 2,4 ГГц и соединять ПК, мобильные телефоны и другие устройства при отсутствии прямой видимости. При создании основной целью являлась разработка радиоинтерфейса с низким уровнем энергопотребления и невысокой стоимостью, который позволял бы устанавливать связь между сотовыми телефонами и беспроводными гарнитурами.

Стек протоколов беспроводной передачи данных BlueTooth:

Рисунок 1.3.1.1 Стек протоколов Bluetooth

Технология BlueTooth поддерживает как соединения типа «точка-точка», так и «точка-многоточка». Два или более использующих один и тот же канал устройства образуют пикосеть (piconet). Одно из устройств работает как основное (master), а остальные -- как подчиненные (slave). В одной пикосети может быть до семи активных подчиненных устройств, при этом остальные подчиненные устройства находятся в состоянии «парковки», оставаясь синхронизированными с основным устройством. Взаимодействующие пикосети образуют «распределенную сеть» (scatternet). В каждой пикосети действует только одно основное устройство, однако подчиненные устройства могут входить в различные пикосети. Кроме того, основное устройство одной пикосети может являться подчиненным в другой.

В большинстве случаев технология BlueTooth используется разработчиками для замены проводного последовательного соединения между двумя устройствами на беспроводное. Для упрощения задачи организации соединения и выполнения передачи данных был разработан вариант прошивки BlueTooth-модулей, представляющий законченную программную реализацию всего стека протокола BlueTooth (рис. 1), а также профилей SPP (Serial Port Profile) и SDP (Service Discovery Profile). Это решение дает возможность разработчику осуществлять управление модулем, устанавливать беспроводное последовательное соединение и выполнять передачу данных с помощью специальных символьных команд. Однако оно накладывает определенные ограничения на использование возможностей технологии BlueTooth. В основном это сказывается на уменьшении максимальной пропускной способности и количестве одновременных асинхронных соединений, поддерживаемых BlueTooth-модулем.

В середине 2004 года на смену спецификации BlueTooth версии 1.1, которая была опубликована в 2001 году, принята спецификация BlueTooth версии 1.2. К основным отличиям спецификации 1.2 от 1.1 относят:

1. Реализация технологии адаптивной перестройки частоты канала для избегания коллизий (Adaptive Friquency hopping, AFH).

2. Усовершенствование голосового соединения.

3. Сокращение времени, затрачиваемого на установление соединения между двумя модулями BlueTooth.

Известно, что BlueTooth и Wi-Fi используют один и тот же нелицензирумый диапазон 2,4 ГГц. Следовательно, в тех случаях, когда BlueTooth-устройства находятся в зоне действия устройств Wi-Fi и осуществляют обмен данными между собой, это может привести к коллизиям и повлиять на работоспособность устройств. Технология AFH позволяет избежать появления коллизий: во время обмена информацией для борьбы с интерференцией технология BlueTooth использует скачкообразную перестройку частоты канала, при выборе которого не учитываются частотные каналы, на которых осуществляют обмен данными устройства Wi-Fi.

Схема развития технологии BlueTooth, разработанная консорциумом SIG разработана:

Рисунок 1.3.1.2 Этапы развития технологии Bluetooth

В настоящее время на рынке работает большое количество фирм, предлагающих модули BlueTooth, а также компоненты для самостоятельной реализации аппаратной части BlueTooth-устройства. Практически все производители предлагают модули, поддерживающие спецификации BlueTooth версии 1.1 и 1.2 и соответствующие классу 2 (диапазон действия 10 м) и классу 1 (диапазон действия 100 м). Однако, несмотря на то, что версия 1.1 полностью совместима с 1.2, все рассмотренные выше усовершенствования, реализованные в версии 1.2, могут быть получены, только если оба устройства соответствуют версии 1.2.

В ноябре 2004 года была принята спецификация BlueTooth версии 2.0, поддерживающая технологию расширенной передачи данных (Enhanced Data Rate, EDR). Спецификация 2.0 с поддержкой EDR позволяет осуществлять обмен данными на скорости до 3 Мбит/с. Первые серийно изготавливаемые образцы модулей, соответствующие версии 2.0 и поддерживающие технологию расширенной передачи данных EDR, были предложены производителями в конце 2005 года. Радиус действия таких модулей составляет 10 м при отсутствии прямой видимости, что соответствует классу 2, а при наличии прямой видимости он может достигать 30 м.

Как уже отмечалось ранее, основное назначение технологии BlueTooth -- замена проводного последовательного соединения. Технологией BlueTooth определены следующие профили: профиль локальной сети (Lan Access Profile), профиль обмена данными (Generic Object Exchange), профиль передачи данных (Profile Object Push Profile), профиль обмена файлами (File Transfer Profile), профиль синхронизации (Synchronization Profile).

1.3.2 WiFi

Для функционирования беспроводной сети WiFi используются радиоволны, как и для работы сотовых телефонов, телевизоров и радиоприемников. Обмен информацией по беспроводной сети во многом похож на переговоры с использованием радиосвязи.

Большинство Wi-Fi оборудования можно разделить на две большие группы:

· WiFi роутеры (маршрутизаторы) и точки доступа

· оконечное оборудование пользователей,оснащенноеWi-Fi адаптерами.

Адаптер беспроводной связи компьютера превращает данные в радиосигнал и передает их в эфир с применением антенны. Беспроводной маршрутизатор принимает и декодирует этот сигнал. Информация с маршрутизатора направляется в Интернет по кабелю проводной сети Ethernet.

По сути, и WiFi роутеры и точки доступа WiFi выполняют одни и те же функции -- создают радиопокрытие (режим AP), находясь в котором, любое устройство, оснащенное адаптером, может подключиться к сети в режиме AP-Client. На этом сходства устройств заканчиваются. Данные устройства различаются как визуально, так и структурно. У классической точки доступа WiFi имеется только один Ethernet-порт. У классических WiFi роутеров их 5. При этом отдельно выделен WAN-порт, который служит для подключения кабеля провайдера. Остальные Ethernet-порты маркируются как LAN -- они служат для подключения по витой паре клиентов локальной сети, которую создает роутер.

В заводских настройках у точки доступа отключен DHCP-сервер и для подключения к ней по Ethernet или по WiFi, сетевому адаптеру необходимо присвоить статический IP-адрес. У роутеров DHCP-сервер в заводских настройках включен, и любой клиент роутера может получить от данного сервера IP-адрес автоматически. Для этого необходимо настроить службу DHCP-клиент адаптера, с помощью которого производится подключение к роутеру, на автоматическое получение IP-адресов. Кроме включенного в заводских настройках DHCP-сервера, роутеры оснащены программно-аппаратным файерволом, который минимизирует вероятность хакерских атак и хищения конфиденциальной информации у клиентов локальной сети, которую он создает, но не гарантирует 100% защиты.

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала.

При использовании Wi-Fi оборудования можно выделить несколько основных режимов его работы: точка-точка, инфраструктурный режим, работа в режиме моста и режим повторителя. Рассмотрим подробнее каждый из этих режимов работы.

При режиме работы точка-точка беспроводные клиенты соединяются напрямую между собой, точки доступа в данном случае не используются. Данный режим может использоваться, например, для соединения двух компьютеров, оснащенных Wi-Fi адаптерами, между собой, без каких либо дополнительных устройств.

Рисунок 1.3.2.1 Соединение точка-точка

В инфраструктурном режиме (точка-многоточка) работы, все устройства, подключаемые к беспроводной сети, связываются между собой через промежуточное устройство, называемое точкой доступа (AP, Access Point).

Рисунок 1.3.2.2 Инфраструктурныйрежим работы

Режим беспроводного моста используется в том случае если необходимо соединить две проводные локальные сети, удаленные друг от друга на небольшое расстояние (20-250 м), но нет возможности проложить кабели. В данном случае беспроводные клиенты не могут подключиться к точкам доступа, а сами точки используется только для транзита трафика из одной локальной проводной сети в другую.

Рисунок 1.3.2.3 Wi-Fi мост

Режим повторителя используется в ситуации, когда необходимо связать Wi-Fi точки доступа между собой, но их радиуса действия не хватает для этого. В таком случае между ними устанавливается еще одна или несколько точек, работающих в режиме повторителя. Такие точки доступа принимают сигнал, усиливают его и передают дальше к следующей точке.

Рисунок 1.3.2.4 Точка доступа в режиме повторителя

Используемые для работы WiFi адаптеры (приемопередатчики, трансиверы) очень похожи на устройства, применяемые в дуплексных портативных радиостанциях, сотовых телефонах и других подобных устройствах. Они могут передавать и принимать радиоволны, а также преобразовывать единицы и нули цифрового сигнала в радиоволны и наоборот. В то же время есть некоторые заметные отличия приемников и передатчиков WiFi от других похожих устройств. Наиболее существенное отличие в том, что они работают на других частотных диапазонах. Большинство современных ноутбуков и многие настольные компьютеры продают со встроенными беспроводными приемопередатчиками. Если в ноутбуке такого устройства нет, существуют адаптеры, которые подключается к слоту расширения для плат стандарта PC card или к порту USB. После установки адаптера беспроводной связи и соответствующих драйверов, обеспечивающих адаптеру возможность нормальной работы, компьютер может начать автоматический поиск имеющихся сетей.

Приемопередатчики WiFi могут работать в одном из трех частотных диапазонов. Возможен также вариант, когда осуществляется быстрое «перескакивание» из одного диапазона в другой. Такой прием позволяет уменьшить влияние помех и одновременно использовать возможности беспроводной связи многими устройствами. Большинство актуальных стандартов технологии WiFi используют частотный диапазон 2,4ГГц, а если точнее -- полосу частот 2400МГц-2483,5МГц. Кроме частотного диапазона 2,4ГГц современные актуальные стандарты WiFi используют диапазон 5ГГц в полосах частот 5,180-5,240ГГц и 5,745-5,825ГГц. Эти частоты намного выше, чем используемые в сотовых телефонах, в дуплексных портативных радиостанциях и для трансляции эфирного телевидения. На более высокой частоте можно передавать больше данных.

В WiFi используются сетевые стандарты 802.11 в нескольких разновидностях:

· По стандарту 802.11a данные передаются в диапазоне 5 ГГц со скоростью до 54 мегабит в секунду. Он предусматривает также мультиплексирование с ортогональным делением частот (orthogonal frequency-division multiplexing OFDM), более эффективную технику кодирования, предусматривающую разделение исходного сигнала на передающей стороне на несколько подсигналов. Такой подход позволяет уменьшить воздействие помех.

· 802.11b является самым медленным и наименее дорогим стандартом. На некоторое время, благодаря своей стоимости, он получил широкое распространение, но сейчас вытесняется более быстрыми стандартами по мере их удешевления. Стандарт 802.11b предназначен для работы в диапазоне 2,4 ГГц. Скорость передачи данных составляет до 11 мегабит в секунду при использовании для повышения скорости манипуляции с дополняющим кодом (complementary code keying, CCK).

· Стандарт 802.11g, как и 802.11b, предусматривает работу в диапазоне 2,4 ГГц, однако обеспечивает значительно большую скорость передачи данных - до 54 мегабит в секунду. Стандарт 802.11g быстрее, поскольку в нем используется такое же кодирование OFDM, как и в 802.11a.

· Самый новый стандарт - 802.11n. В нем существенно увеличена скорость передачи данных и расширен частотный диапазон. В то же время, хотя стандарт 802.11g теоретически способен обеспечить скорость передачи данных 54 мегабит в секунду, реальная скорость составляет приблизительно 24 мегабит в секунду, в связи с перегрузками сети. Стандарт 802.11n может обеспечить скорость передачи данных 140 мегабит в секунду. Стандарт был утверждён 11 сентября 2009 года Институтом инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers, IEEE), мировым лидером в сфере разработки и внедрения новых стандартов.

Наиболее распространенными стандартами беспроводных сетей сегодня являются IEEE 802.11 b и 802.11 g. Оборудование таких сетей, согласно IEEE, работает в диапазоне 2400-2483,5 МГц и способно передавать данные с максимальной скоростью 11 и 54 Мбит/с соответственно.

Распределение волн в рассматриваемом диапазоне имеет ряд оригинальных качеств. Несмотря на функциональное сходство беспроводного и проводного оборудования, разница в их установке, монтаже и настройке немалая. Причина -- в свойствах физических сред, используемых для передачи информации. В случае с беспроводным оборудованием нужно учитывать законы распространения радиоволн. Радиоэфир более чувствителен к различного рода помехам. Поэтому наличие перегородок, стен и железобетонных перекрытий может сказаться на скорости передачи данных. Условия приема и передачи радиосигнала ухудшают не только физические препятствия, также помехи создают и различные радиоизлучающие приборы.

В свое время стандартом для безопасности в региональных сетях связи была технология Wired Equivalency Privacy (WEP). Однако хакеры обнаружили уязвимости WEP и теперь достаточно просто найти приложения и программы, предназначенные для взлома сетей с такой защитой. В основе WEP лежит поточный шифр RC4, выбранный из-за своей высокой скорости работы и возможности использования переменной длины ключа. Для подсчета контрольных сумм используется CRC32.

На замену технологии защиты беспроводных сетей WEP пришла технология WPA. Плюсами WPA являются усиленная безопасность данных и ужесточённый контроль доступа к беспроводным сетям. Сегодня беспроводную сеть считают защищенной, если в ней функционируют три основных составляющих системы безопасности: аутентификация пользователя, конфиденциальность и целостность передачи данных.Протокол защищенного доступа WiFi (WiFi Protected Access, WPA) в настоящее время входит в протокол безопасности беспроводных сетей стандарта 802.11i. Данная технология поддерживает базовые средства аутентификации протоколов 802.1x, например протокол аутентификации Extensible Authentication Protocol (EAP), который предполагает участие в аутентификации трех сторон -- вызывающей (клиента), вызываемой (точки доступа) и сервера аутентификации, что существенно повышает безопасность соединения. Помимо этого WPA обеспечиваетконфиденциальность передачи данных посредством шифрования трафика с использованием временных ключей с помощью TKIP и целостность информации -- путем сверки контрольной суммы MIC (Message Integrity Check). Как и в случае WEP, WPA предусматривает вход в систему с использованием пароля. Большинство общественных точек доступа либо открыты, либо используют WPA или 128-битную технологию WEP, хотя в некоторых все еще используется старая уязвимая система WEP. На данный момент WPA и WPA2 разрабатываются и продвигаются организацией Wi-Fi Alliance.

Для обеспечения еще большей безопасности иногда используют фильтрацию адресов управления доступом к среде (Media Access Control, MAC). В ней для идентификации пользователей не используется пароль, для этого применяются физические аппаратные средства компьютера. Каждый компьютер обладает собственным уникальным MAC-адресом. Фильтрация MAC-адресов обеспечивает доступ к сети только машинам с определенными MAC-адресами. При настройке маршрутизатора нужно указать, каким адресам разрешается доступ в сеть. Система не обладает стопроцентной надежностью. Хакер с соответствующим уровнем знаний может подделать MAC-адрес, то есть скопировать известный разрешенный MAC-адрес и ввести систему в заблуждение, имитируя этот адрес своим компьютером, что позволит ему войти в сеть.

Преимущества Wi-Fi

· Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.

· Позволяет иметь доступ к сети мобильным устройствам.

· Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.

· В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов ит.д.

· Излучение от Wi-Fi устройств в момент передачи данных на порядок (в 10 раз) меньше, чем у сотового телефона.

1.3.3 ZigBee

Технология беспроводной передачи данных ZigBee была представлена на рынке уже после появления технологий беспроводной передачи данных BlueTooth и Wi-Fi. Появление технологии ZigBee обусловлено, прежде всего, тем, что для некоторых приложений (например, для удаленного управления освещением или гаражными воротами, либо считывания информации с датчиков) основными критериями при выборе технологии беспроводной передачи является малое энергопотребление аппаратной части и ее низкая стоимость. Из этого следует малая пропускная способность, так как в большинстве случаев электропитание датчиков осуществляется от встроенной батареи, время работы от которой должно превышать несколько месяцев и даже лет. Существующие на тот момент времени технологии беспроводной передачи данных BlueTooth и Wi-Fi не соответствовали этим критериям, обеспечивая передачу данных на высоких скоростях, с высоким уровнем энергопотребления и стоимости аппаратной части. В 2001 году рабочей группой № 4 IEEE 802.15 были начаты работы по созданию нового стандарта, который бы соответствовал следующим требованиям:

· очень малое энергопотребление аппаратной части, реализующей технологию беспроводной передачи данных (время работы от батареи должно составлять от нескольких месяцев до нескольких лет);

· передача информации должна осуществляться на не высокой скорости;

· низкая стоимость аппаратной части.

Результатом стала разработка стандарта IEEE 802.15.4. На рис. 5 приведена модель взаимодействия стандарта IEEE 802.15.4, технологии беспроводной передачи данных ZigBee и конечного пользователя.

Рисунок 1.3.3.1 Модель взаимодействия стандарта IEEE 802.15.4, технологии беспроводной передачи данных ZigBee и конечного пользователя

Стандарт IEEE 802.15.4 определяет взаимодействие только двух низших уровней модели взаимодействия: физического уровня (PHY) и уровня управления доступом к радиоканалу для трех нелицензируемых диапазонов частот: 2,4 ГГц, 868 МГц и 915 МГц.

Уровень MAC отвечает за управление доступом к радиоканалу с использованием метода множественного доступа с опознаванием несущей и устранением коллизий (Carrier Sense Multiple Access with Collision Avoidance, CSMA-CA), а также за управление подключением и отключением от сети передачи данных и обеспечение защиты передаваемой информации симметричным ключом (AES-128).

В свою очередь, технология беспроводной передачи данных ZigBee, предложенная альянсом ZigBee, определяет остальные уровни модели взаимодействия, к которым относят сетевой уровень, уровень безопасности, уровень структуры приложения и уровень профиля приложения. Сетевой уровень, технологии беспроводной передачи данных ZigBee, отвечает за обнаружение устройств и конфигурацию сети и поддерживает три варианта топологии сети.

Для обеспечения низкой стоимости интеграции технологии беспроводной передачи ZigBee в различные приложения физическая реализация аппаратной части стандарта IEEE 802.15.4 выполняется в двух исполнениях: устройства с ограниченным набором функции (RFD) и полностью функциональные устройства (FFD).

Кроме деления устройств на RFD и FFD, альянсом ZigBee определены три типа логических устройств: ZigBee-координатор (согласующее устройство), ZigBee-маршрутизатор и оконечное устройство ZigBee. Координатор осуществляет инициализацию сети, управление узлами, а также хранит информацию о настройках каждого узла, подсоединенного к сети. ZigBee-маршрутизатор отвечает за маршрутизацию сообщений, передаваемых по сети от одного узла к другому. Под оконечным устройством понимают любое оконечное устройство, подсоединенное к сети. Рассмотренные выше устройства RFD и FFD как раз и являются оконечными устройствами. Тип логического устройства при построении сети определяет конечный пользователь посредством выбора определенного профиля, предложенного альянсом ZigBee. При построении сети с топологией «каждый с каждым» передача сообщений от одного узла сети к другому может осуществляться по разным маршрутам, что позволяет строить распределенные сети (объединяющие несколько небольших сетей в одну большую -- кластерное дерево) с установкой одного узла от другого на достаточно большом расстоянии и обеспечить надежную доставку сообщений.

...

Подобные документы

  • Системы сбора и передачи информации. Обоснование выбора кода, способа передачи и синхронизации. Выбор длины посылки, формата кодового перехода. Расчет помехоустойчивости и времени запаздывания. Разработка структурной схемы передающего устройства.

    курсовая работа [412,8 K], добавлен 24.06.2013

  • Выбор беспроводной технологии передачи данных. Механизмы управления качеством передачи потоков. Программное обеспечение приемной и передающей станции. Эксперименты, направленные на изучение неравномерности передаваемого потока данных при доступе к среде.

    дипломная работа [1,1 M], добавлен 18.05.2012

  • Назначение и классификация компьютерных сетей. Распределенная обработка данных. Классификация и структура вычислительных сетей. Характеристика процесса передачи данных. Способы передачи цифровой информации. Основные формы взаимодействия абонентских ЭВМ.

    контрольная работа [36,8 K], добавлен 21.09.2011

  • Изучение понятия локальной вычислительной сети, назначения и классификации компьютерных сетей. Исследование процесса передачи данных, способов передачи цифровой информации. Анализ основных форм взаимодействия абонентских ЭВМ, управления звеньями данных.

    контрольная работа [37,0 K], добавлен 23.09.2011

  • Понятие и классификация систем передачи данных. Характеристика беспроводных систем передачи данных. Особенности проводных систем передачи данных: оптико-волоконных и волоконно-коаксиальных систем, витой пары, проводов. Оценка производителей аппаратуры.

    курсовая работа [993,0 K], добавлен 04.03.2010

  • Центральное понятие кибернетики – информация. Комплексная автоматизация процессов восприятия, преобразования, передачи, обработки и отображения информации и создание автоматизированных систем управления на различных уровнях. Система передачи информации.

    книга [663,7 K], добавлен 07.05.2009

  • Выбор и обоснование технологий построения локальных вычислительных сетей. Анализ среды передачи данных. Расчет производительности сети, планировка помещений. Выбор программного обеспечения сети. Виды стандартов беспроводного доступа в сеть Интернет.

    курсовая работа [5,3 M], добавлен 22.12.2010

  • Характеристика организации автоматизированной обработки. Схема данных и ее описание. Характеристика входной и выходной информации. Организация технологического процесса сбора, передачи, обработки и выдачи информации. Формализация автоматизируемых задач.

    курсовая работа [941,7 K], добавлен 22.11.2013

  • Понятие и структура среды передачи данных как субстанции, по которой происходит передача той или иной информации от источника к приемнику. Типы кабелей на основе витых пар. Закономерности и механизмы IP маршрутизации. Планирование и реализация веб-сайта.

    курсовая работа [49,4 K], добавлен 16.01.2017

  • Целесообразность разработки адаптивной системы передачи данных. Возможность изменения параметров помехоустойчивых кодов. Информационный подход к оценке качества функционирования систем передачи информации. Алгоритм работы передатчика и приемника.

    дипломная работа [1,7 M], добавлен 27.03.2013

  • Способы передачи данных и методы фазирования. Передача алфавитно-цифровой информации. Разработка кодирующего и декодирующего устройства. Расчет среднего времени запаздывания информации. Разработка структурных схем и алгоритмов функционирования СПД.

    курсовая работа [2,0 M], добавлен 21.12.2012

  • Изучение сущности информации - сведений, знаний, которые получаются, передаются, преобразуются, регистрируются с помощью некоторых знаков. Способы передачи информации электрическими, магнитными и световыми импульсами. Программное обеспечение компьютеров.

    контрольная работа [18,6 K], добавлен 27.02.2011

  • Понятие стандартов беспроводной передачи данных. Оборудование для работы в стандарте Wi-Fi - клиенты и точки доступа. Основные способы организации беспроводной сети – клиент-сервер и точка-точка. Конструкция и порядок изготовления Wi-Fi антенны.

    реферат [8,1 M], добавлен 03.05.2010

  • Назначение системы управления базой данных. Передача данных в сетях ЭВМ: схема передачи информации, характеристика каналов передачи информации. Информационные ресурсы, которые содержит Интернет. Электронная почта - информационная услуга компьютерной сети.

    контрольная работа [43,4 K], добавлен 26.04.2009

  • Создание цифровой сети интегрированных услуг. Организация электронной передачи данных между предприятиями. Сущность технологии открытых систем. Основные виды модуляции модемов. Цифровые технологии передачи данных. Основные характеристики сетевых карт.

    реферат [35,7 K], добавлен 26.03.2010

  • Технология построения сетей передачи данных. Правила алгоритма CSMA/CD для передающей станции. Анализ существующей сети передачи данных предприятия "Минские тепловые сети". Построение сети на основе технологии Fast Ethernet для административного здания.

    дипломная работа [2,5 M], добавлен 15.02.2013

  • Среди других беспроводных линий передачи информации инфракрасный (ИК) - открытый оптический канал является самым недорогим и удобным способом передачи данных на небольшие расстояния (до нескольких десятков метров). Физические основы и применение IrDA.

    реферат [222,2 K], добавлен 14.04.2008

  • Особенности информационных технологий - совокупности методов и средств реализации операций сбора, регистрации, передачи, накопления и обработки информации на базе программно-аппаратного обеспечения для решения управленческих задач экономического объекта.

    контрольная работа [28,4 K], добавлен 05.04.2010

  • Беспроводные и проводные системы передачи данных. Методы обеспечения безошибочности передачи данных в сетях. Оценка зависимости показателей эффективности. Снижение вероятности появления ошибки сбора данных в соответствии с предъявленными требованиями.

    дипломная работа [309,0 K], добавлен 14.10.2014

  • Механизм создания и обмена пакетами в сети передачи информации на основе стека протоколов ZigBee. Принцип действия, особенности работы и коммутации с другими протоколами, определение основных методов и способов защиты информации, передаваемой в сети.

    курсовая работа [2,6 M], добавлен 12.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.