Интегральные триггеры
Триггер – это устройство последовательного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Наибольшее распространение триггеров в цифровых устройствах. Переключение синхронного триггера в состояние Q.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 21.11.2017 |
Размер файла | 466,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лабораторная работа
Интегральные триггеры
Цель работы.
Ознакомление с основными характеристиками и испытание интегральных триггеров RS, D, T и JK.
Приборы и принадлежности.
1). ПК с становленным ПО National Instruments.
2). NI ELVIS II.
Теоретические сведения.
Триггер - это устройство последовательностного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в другое. При этом напряжение на его выходе скачкообразно изменяется с низкого уровня на высокий или наоборот.
По способу записи информации триггеры делят на асинхронные, которые переключаются в момент подачи входного сигнала, и синхронные (тактируемые), которые переключаются только при подаче синхронизирующих импульсов, а момент переключения связан с определённым уровнем синхросигнала (статические триггеры) или с моментом перепада напряжения на тактируемом входе (динамические триггеры).
Как правило, триггер имеет два выхода: прямой Q и инверсный . Число входов зависит от структуры и функций, выполняемых триггером. Например, асинхронные RS-триггеры имеют два входа: вход S установки в единичное состояние прямого выхода Q и вход R установки в нулевое состояние выхода Q. Синхронные триггеры для занесения в них информации, помимо информационных входов S (J) и R (К), имеют синхронизирующий С или счётный Т вход, а триггеры задержки информационный вход D.
Наибольшее распространение в цифровых устройствах получили триггеры RS, D, T и JK.
1. АСИНХРОННЫЙ И СИНХРОННЫЙ RS-ТРИГГЕРЫ
Простейшим триггером является асинхронный RS-триггер, условное графическое изображение которого представлено на рис. 13.1, а, а принцип его работы поясняется таблицей истинности (табл. 13.1). Триггер имеет два раздельных информационных входа: R и S и два выхода: Q и . Независимым является один (прямой) выход Q, так как инверсный сигнал можно получить с помощью внешнего инвертора.
Рассмотрим табл. 13.1. Обозначим Qt сигнал на выходе триггера до поступления сигнала 1 на его вход S. При подаче сигналов S = 1 и R = 0 триггер переходит в состояние Qt+1 = 1. При поступлении сигналов R = 1 и S = 0 на выходе устанавливается Qt+1 = 0. При отсутствии новых команд состояние триггера не изменяется: триггер сохраняет информацию о последней из поступивших команд. Естественно, что комбинация сигналов S = 1 и R = 1 относится к запрещённым, так как при её подаче на входы триггера на его выходе Qt+1 устанавливается либо 1, либо 0.
На основании табл. 13.1 запишем аналитическое выражение функционирования RS-триггера:
На рис. 13.1, в изображена временная диаграмма, иллюстрирующая его работу. В момент, когда подаётся сигнал S = 1, триггер переходит в состояние Q = 1. При отсутствии входных сигналов состояние триггера не изменяется, а в момент подачи сигнала R = 1 триггер переключается в состояние Q = 0, в котором пребывает до поступления нового единичного сигнала на S-вход.
RS-триггер может быть построен на различных логических элементах. На рис. 13.1, б показана схема реализации RS-триггера на базовых элементах И-НЕ, в которой использована положительная обратная связь (ПОС) с выходов триггера на входы логических элементов. Именно наличие ПОС отличает триггер от ранее рассмотренных комбинационных логических устройств: посредством сигналов ПОС в триггере фиксируется его предшествующее состояние.
Асинхронный RS-триггер можно преобразовать в синхронный, если добавить третий синхронизирующий вход С (рис. 13.1, г), соединенный, например, с нижними, предварительно разделёнными, входами двух левых элементов И-НЕ (см. рис. 13.1, б).
Вход С обеспечивает функционирование RS-триггера по закону
Переключение синхронного RS-триггера в состояние Q = 1 происходит при S = 1 (или в состояние Q = 0 при R = 1) в момент прихода синхроимпульса С. При С = 0 информация с S- и R-входов на триггер не передается. триггер информация цифровой
2. Т-ТРИГГЕР.
Триггер со счетным запуском (Т-триггер) должен переключаться каждым импульсом, подаваемым на единственный счётный вход Т (рис. 13.2, а). Функционирование Т-триггера определяется уравнением
Он может быть реализован, например, на базе двух синхронных RS-триггеров (рис. 13.2, б). С появлением фронта тактового импульса триггер Т 1 первой ступени переключается в состояние, противоположное состоянию триггера Т 2. Но это не вызывает изменение сигналов на выходах Q и , так как за счёт инвертора на тактовый вход С триггера Т 2 в данный момент подан логический 0. Только на срезе счетного импульса на входе Т 1 переключится триггер Т 2 и произойдёт изменение сигналов на выходах Q и , а также на S- и R-входах первой ступени.
3. D-ТРИГГЕР.
Триггер задержки (D-триггер) может быть только синхронным, так как имеет один информационный D-вход, информация с которого переписывается на выход триггера только по тактовому сигналу, подаваемому на С-вход. Условное изображение D-триггера приведено на рис. 13.3, а. Реализовать его можно на различных логических элементах, в том числе, на основе синхронного RS-триггера, дополненного инвертором (рис. 13.3, б). Из анализа табл. 13.2 переключательной функции D-триггера
следует, что при отсутствии синхроимпульса (С = 0) состояние триггера остается неизменным. При условии же С = 1 триггер передает на выход сигнал, поступивший на его вход D в предыдущем такте, т. е. выходной сигнал Qt+1 изменяется с задержкой на один период импульсов синхронизации.
Из анализа временной диаграммы D-триггера (рис. 13.3, в) также следует, что выходной сигнал Q триггера повторяет состояние D-входа с поступлением очередного тактового импульса на вход С с задержкой tз относительно сменившегося логического состояния на D-входе.
4. JК-ТРИГГЕР.
JK-триггеры обычно выполняют тактируемыми. JK-триггер имеет информационные входы J и K, которые по своему воздействию на устройство аналогичны входам S и R синхронного RS-триггера: при J = 1 и K = 0 триггер по тактовому импульсу С устанавливается в состояние Q = 1; при J = 0 и K = 1 переключается в состояние Q = 0, а при J = 0 и K = 0 хранит ранее принятую информацию.
В отличие от синхронного RS-триггера одновременное присутствие логических единиц на информационных входах не является для JK-триггера запрещенной комбинацией; при J = 1 и K = 1 триггер работает в счетном режиме, т. е. переключается каждым тактовым импульсом на входе С.
На рис. 13.4, а изображена одна из функциональных схем JK-триггера. Она отличается от схемы Т-триггера (см. рис. 13.2, б) двумя трёхвходовыми элементами И-НЕ Э 1 и Э 2 входной логики первой ступени JK-триггера. Переключающий вход С динамический (рис. 13.4, б): переключение JK-триггера происходит в момент перепада синхроимпульса с уровня С = 1 на уровень С = 0, т. е. при срезе.
При J = 0 и K = 0 на выходе элементов Э 1 и Э 2 устанавливаются логические единицы, которые для триггеров с инверсными входами являются пассивными сигналами: триггер Т 1 и, следовательно, JK-триггер в целом сохраняют прежнее состояние (см. рис. 13.4, а). Логическая 1 на одном из входов элемента И-НЕ не определяет 1 на его выходе и комбинация J = 1, K = 1 никак не влияет на входную логику первой ступени, поэтому схемы Т- и JK-триггеров (см. рис. 13.2, б и рис. 13.4, а) принципиально не отличаются: оба работают в счетном режиме.
Только при комбинации сигналов J = 1, С = 1 и = 1 на входе элемента Э 1 триггер Т 1 переключится в состояние Р = 1. Аналогично логический 0 будет на выходе элемента Э 2, когда К = 1, С = 1 и Q = 1.
Таким образом, комбинация J = 1, К = 0 обуславливает по тактовому импульсу С = 1 переключение JK-триггера в целом в состояние Q = 1, а комбинация J = 0, К = 1 в состояние Q = 0.
Из анализа табл. 13.3 переключательной функции JK-триггера
следует, что состояние триггера определяется не только уровнями сигналов на информационных входах J и К, но и состоянием Qt, в котором ранее находился JK-триггер. Так, при комбинации J = 0, K = 0 триггер сохраняет предыдущее состояние (; комбинация J = 1, К = 1 приводит к тому, что тактовым импульсом триггер переключается в состояние, противоположное предыдущему: . Комбинации J = 1, К = 0 и J = 0, К = = 1 дают разрешение триггеру переключиться соответственно в состояния Q = 1 и Q = 0.
На основе JK-триггера (рис. 13.4, б) могут быть выполнены синхронный (рис. 13.4, в) и асинхронный (рис. 13.4, г) Т-триггеры, D-триггер (рис. 13.4, д) и синхронный RS-триггер (рис. 13.4, е).
При проектировании сложных логических схем (микросхем) необходимы триггеры различных типов, которые можно было бы выполнить на основе одного универсального триггера и использовать его в разных режимах работы и модификациях. В интегральной схемотехнике наибольшее распространение получили D- и JK-триггеры.
Экспериментальная часть.
Задание 1. Запустить среду МS10. Открыть файл 32.5.ms10, размещённый в папке Circuit Design Suite 10.0 среды МS10, или собрать на рабочем поле среды MS10 схему для испытания асинхронного RS-триггера (рис. 13.5) и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему (рис. 13.5) на страницу отчёта.
Схема (рис. 13.5) собрана на четырёх логических элементах И-НЕ (NAND). На входы S и R элементов NAND1 и NAND2 через ключи 1 и 2 подаются логические сигналы 1 или 0 от источника прямоугольных импульсов Е 1 с амплитудой 5 В. К выходам Q и элементов NAND3 и NAND4, т. е. к выходам триггера, как и к его входам S и R, подключены пробники Х 1, Х 2, Х 3 и Х 4 с пороговым напряжением 5 В.
Воспользовавшись порядком засвечивания разноцветных пробников и задавая коды (00, 01, 10) состояния ключей 1 и 2 (входных сигналов), составить таблицу истинности RS-триггера. Например, сформировав с помощью ключей сигналы S = 1 и R = 0 и подав их на вход триггера, получите на его выходе сигналы Q = 1 и = 0 (см. рис. 13.5). Убедитесь, что при запрещённом коде 11 входных сигналов, на выходе RS-триггера могут засветиться оба пробника, или оба не светятся.
Подключить к входам триггера логический генератор (генератор слова) XWG1 (рис. 13.6), запрограммировав его первые три ячейки кодами 00, 10 и 01 и соединив входы и выходы триггера с входами логического анализатора XLA2.
В диалоговом окне генератора слова XWG1 задать частоту fг = 10 кГц и два цикла моделирования сигналов (в режиме Burst), а в окне анализатора XLA2 частоту fа = 0,1 МГц таймера, уровень высокого напряжении Um = 5 В, число импульсов Clocks/div = 8 таймера, приходящихся на одно деление.
Получить на экране анализатора XLA2 временную диаграмму состояний RS-триггера (см. рис. 13.6, внизу). Скопировать схему испытания и временную диаграмму состояния RS-триггера на страницу отчёта.
Задание 3. Открыть файл 32.7.ms10, размещённый в папке Circuit Design Suite 10.0 среды МS10, или собрать на рабочем поле среды MS10 схему для испытания триггеров JK, Т и D (рис. 13.7) и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему (рис. 13.7) на страницу отчёта.
В схему (рис. 13.7) включены: генератор XWG1 (частота fг = 500 кГц); логический анализатор XLA1; триггеры в интегральном исполнении: универсальный JK, счётный Т и задержки D.
На - и -входы триггеров подаётся постоянное напряжение 5 В (имитирующее сигнал 1) источника VCC, а на 1С-входы триггеров и на вход 20 анализатора XLA1 поступают тактовые импульсы с амплитудой 5 В и частотой 500 кГц, сформированные генератором Е 1.
С выходов 1 и 2 генератора XWG1 сигналы подаются на управляющие входы 1J и 1К JK-триггера, с выхода 3 на вход 1D Т-триггера, а с выхода 4 на вход 1D D-триггера.
Для формирования выходных сигналов генератор XWG1 нужно запрограммировать, т. е. ввести в ячейки памяти кодовые комбинации из единиц и нулей согласно варианту (табл. 13.4).
В качестве примера введём в первые восемь ячеек памяти генератора четырехразрядные кодовые комбинации (см. рис. 13.8, а):
0000, 0101, 1010, 1111, 1001, 1001, 1111, 1100.
При моделировании генератор последовательно и циклично выводит содержимое каждой ячейки памяти (от начальной до конечной) на выходы 1, 2, 3 и 4, формируя на них следующие коды сигналов: 01011110, 00110010, 01010011 и 00111111 (см. сигналы на каналах 1, 2, 3 и 4 логического анализатора XLA1 (рис. 13.8, б)). Перед моделированием выделите в окне генератора XWG1 ячейку с адресом 0 начала счёта и вывода сигналов.
Таблица 13.4
Вариант |
Содержимое ячеек памяти генератора слова XWG1 |
|
1, 6, 11, 16, 21, 26 |
0000, 1010, 1111, 1001, 1001, 1101, 1100, 0000 |
|
2, 7, 12, 17, 22, 27 |
0000, 1100, 1010, 1011, 1001, 1111, 1110, 0000 |
|
3, 8, 13, 18, 23, 28 |
0000, 1010, 1011, 1001, 1001, 1111, 1101, 0000 |
|
4, 9, 14, 19, 24, 29 |
0000, 1111, 1101, 1001, 1011, 1011, 1100, 0000 |
|
5, 10, 15, 20, 25, 30 |
0000, 1011, 1101, 1001, 1100, 1111, 1010, 0000 |
Провести моделирование работы триггеров в режимах Step или Burst генератора XWG1, скопировать в отчёт временные диаграммы, составить и заполнить таблицы истинности работы триггеров JK, T и D при заданном в табл. 13.4 варианте входных кодовых комбинаций. В частности, описать состояния JK-триггера с приходом тактового сигнала C = 1, когда сигналы J = 1 и К = 1, а Q = 0 или Q = 1.
Примечание. Таблицы истинности для рассмотренных библиотечных триггеров можно вызвать нажатием клавиши помощи F1 после выделения на схеме триггера.
Размещено на Allbest.ru
...Подобные документы
Триггер — логическое устройство, способное хранить 1 бит данных. В основе любого триггера находится кольцо из двух инверторов. Определение типа триггера по его характеристическому уравнению. Временные диаграммы наблюдаемые на экране осциллографа.
лекция [88,1 K], добавлен 05.02.2009Дисковод (FDD) - это устройство, предназначенное для чтения информации с гибких магнитных дисков, а также записи на них (как правило, используется для переноса информации с одного компьютера на другой). Информация записывается на гибкий магнитный диск.
контрольная работа [502,1 K], добавлен 28.02.2004Схема и программное обеспечение модуля генератора последовательностей на шине ISA IBM PС AT. Операция "Запись в 16-и разрядное устройство ввода-вывода". Использование триггера для хранения информации в селекторе адреса. Увеличения разрядности счетчика.
контрольная работа [363,3 K], добавлен 05.01.2013Изучение структуры и алгоритмов работы асинхронных и синхронных триггеров в счетном режиме. Исследование функций переходов и возбуждения основных типов триггеров. Рассмотрение взаимозаменяемости функциональных электронных устройств различных типов.
лабораторная работа [394,7 K], добавлен 19.01.2015Обработка курсора в PL/SQL. Объявление курсора и атрибуты курсора. Использование команд OPEN, FETCH и CLOSE. Исключительные ситуации в PL/SQL. Стандартные исключительные ситуации. Различные ситуации срабатывания триггера. Порядок активизации триггеров.
презентация [307,9 K], добавлен 14.02.2014Сущность аналого-цифровых преобразователей, их достоинства и недостатки. Технологии цифровых интегральных микросхем, их параметры. Логические элементы с открытым коллектором и эмиттером. Понятие микропроцессорных систем, компараторов и триггеров.
курс лекций [293,1 K], добавлен 01.03.2011Характеристика и классификация устройств долговременного хранения данных; их возможности, достоинства и недостатки. Типы и способы хранения и записи информации. Построение сводных таблиц и гистограмм по имеющимся данным, создание межтабличных связей.
курсовая работа [1,6 M], добавлен 27.04.2013Значения выходных сигналов последовательностных схем. Особое значение элементов памяти – триггеров. Простейшие запоминающие ячейки как основа триггеров. Двоичный асинхронный счётчик (с последовательным переносом). Назначение регистров – хранение чисел.
курс лекций [616,6 K], добавлен 28.04.2009Понятие и функциональные особенности триггера как важнейшей структурной единицы оперативной памяти компьютера, а также внутренних регистров процессора. Оценка возможностей и сферы практического применения RS-триггера, его назначение, типы и формы.
презентация [402,5 K], добавлен 31.01.2015Выбор принципов проектирования устройства записи, хранения и передачи чисел. Разработка алгоритма выполнения операций, необходимых для обработки информации. Структурная схема устройства. Элементарная база, необходимая для разработки принципиальной схемы.
курсовая работа [1,3 M], добавлен 16.08.2012Методика и основные этапы, принципы построения логических схем в Electronic Workbench. Генерирование значений, снятие и анализ показаний анализаторов. Формирование временных диаграмм. Создание и основное содержание таблиц истинности для каждого триггера.
лабораторная работа [274,8 K], добавлен 18.06.2014Последовательность выполнения задания и рекомендации по проектированию. Проектирование несложных дискретных устройств (цифрового автомата), структурная схема и алгоритм функционирования. Применение синхронного триггера и его отличия от асинхронного.
методичка [258,6 K], добавлен 28.04.2009Устройство для хранения информации. Оперативное запоминающее устройство компьютера. Постоянное запоминающее устройство. Составные части основной памяти. Энергозависимость, устройство регистра и назначение памяти. Выполнение операций записи и считывания.
презентация [285,9 K], добавлен 14.10.2013Создание баз данных с помощью Transact-SQL. Специализированные типы данных. Обеспечение целостности ссылок. Преимущества хранимых процедур. Синтаксис запроса на создания триггера. Фиксированные серверные роли. Предоставление прав на объекты в базе данных.
лабораторная работа [2,2 M], добавлен 12.09.2012Устройство управления и синхронизации в структуре микропроцессора. Порядок синтеза конечного автомата (КА) для устройства управления ЭВМ. Алгоритм функционирования КА, заданный с помощью графа, функции переходов. Состояние триггеров в микросхеме.
методичка [1019,0 K], добавлен 28.04.2009Разработка устройства сопряжения с объектом управления, в состав которого входят датчик, усилитель, АЦП последовательного приближения, ОЗУ, ЦАП, устройство управления. Предусмотрены ручной и автоматический режимы записи и считывания информации из ОЗУ.
курсовая работа [633,2 K], добавлен 01.12.2011Приборы, предназначенные для записи, хранения и воспроизведения информации, их устройство и классификация. Достоинства и недостатки статической памяти, ее структурная схема. Режим чтения с одиночной скоростью. Статические оперативные устройства.
реферат [223,6 K], добавлен 08.01.2012Процесс разработки базы данных для хранения и обработки информации. Ключи, индексы, триггеры, хранимые процедуры. Разработка пользовательского интерфейса и базы данных. Основные инструментальные средства для разработки клиентской и серверной частей.
дипломная работа [225,0 K], добавлен 18.05.2013Строение и принцип действия упрощенной модели автоматического вычислителя типа программируемого микрокалькулятора. Составление блок-схемы алгоритма вычисления. Синтез счетчика с параллельным переносов на основе JK-триггеров; схема запуска устройства.
курсовая работа [590,4 K], добавлен 04.08.2014Принципы построения, действия и проектирования средств автоматизации математических вычислений и обработки информации. Моделирование работы принципиальной цифровой схемы "Тринадцатиразрядный логический регистр со сдвигом влево на базе D-триггера".
курсовая работа [278,4 K], добавлен 03.06.2017