Применение корреляционного анализа для исследования данных спортивных показателей студентов в среде SPSS
Анализ примера применения программы SPSS для обработки полученных результатов сдачи нормативов студентов вузов. Основные положительные и отрицательные корреляционные зависимости между видами нормативов: кросс 1000 м, 100 м и прыжок в длину с места.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 19.12.2017 |
Размер файла | 80,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Приамурский государственный университет им. Шолом-Алейхема Биробиджан, Россия
Применение корреляционного анализа для исследования данных спортивных показателей студентов в среде SPSS
Широкова Надежда Алексеевна
студент 3 курса факультета математики, информационных технологий и техники
Баженов Руслан Иванович
к.п.н., доцент, зав.кафедрой информатики и вычислительной техники факультет математики, информационных технологий и техники
Аннотация
В статье рассматривается пример применения программы SPSS для обработки полученных результатов сдачи нормативов студентов. В качестве переменных выделены три вида: кросс 1000 м., 100 м. и прыжок в длину с места. В результате исследования выявлены положительные и отрицательные корреляционные зависимости между видами нормативов.
Ключевые слова: спортивные показатели, корреляционный анализ, критерий Колмогорова-Смирнова, SPSS
Обработка данных, полученных в ходе эксперимента или исследований, интерпретации выводов, имеющих прикладную роль для всевозможных сфер человеческой деятельности, в том числе и в области физической культуры и спорта не возможна без применения методов математической статистики. В нашем случае, для проведения корреляционного анализа, будем использовать среду SPSS и с ее помощью найдем взаимосвязи отдельных признаков. Например, как один спортивный результат может зависеть от другого?
Задачами корреляционного анализа в физической культуре и спорте занимались и занимаются многие ученые. В своей работе В.В.Афанасьев и И.Н.Непряев провели исследование о наиболее тесной связи между результатами чемпионата мира по хоккею 2001 и 2002 годами [1]. На основе своих исследований И.А.Осетров и И.Н.Непряев обнаружили тесную взаимосвязь между переменными, подтверждающую возможность применения в спортивно-педагогической практике коэффициента корреляции знаков Фехнера как альтернативы коэффициенту Пирсона и ранговому коэффициенту корреляции Спирмена [9]. И.И.Наявко [8] в своей работе с использованием корреляции выявил критерии определения спортивно - технической подготовленности юных прыгунов в воду. В работе А.Дьяченко, Е.Лысенко, В.Виноградова [2] использование множественного корреляционного анализа позволило определить наиболее важные характеристики реакций метаболических и кардиореспираторной системы, которые способствуют проявлению специальной выносливости спортсменов на разных отрезках соревновательной дистанции. Проведённые исследования В.В.Меренковым, А.А.Шаховым, Е.Н.Карасёвой, Е.В.Карташовой [5] показали незначительное влияние на соревновательный результат в ветеранском дзюдо травм и спортивной квалификации спортсменов (по ЕВСК). Расчеты В.В Усыченко [17] выявили существование прямой взаимосвязи между обхватом бицепсов спортсменов - бодибилдеров высокой квалификации и его весом. Зарубежные ученые так же исследуют зависимости в физической культуре и спорте при помощи корреляционного анализа [20, 21].
Объектом исследования стали результаты сдачи нормативов студентов Приамурского государственного университета им. Шолом-Алейхема девушки (n=77) и юноши (n=16) за три года. Были выбраны следующие переменные: 1000 м., 100 м., прыжок в длину с места (ПвД).
Целью исследования является нахождение каких-либо зависимостей между переменными.
В результате обработки данных для переменной 1000 м. (1 курс) определилось 53 показателя, для 1000 м. (2 курс) и 1000 м. (3 курс) по 82 показателя. Для 100 м. (1 курс) 66 показателей, для 100 м. (2 курс) 92 показателя, для 100 м. (3 курс) количество выборки равно 76. Для переменных прыжок в длину (1 курс), (2 курс), (3 курс) соответственно число показателей равняется 91, 87, 90.
Для анализа данных, переходим к решению поставленных задач в среде SPSS. студент норматив кросс программа
Ученые достаточно широко используют в исследованиях среду SPSS. Р.И.Остапенко показал особенности анализа лонгитюдных данных в психолого-педагогических исследованиях с помощью AMOS SPSS [10, 11]. Основы проведения факторного анализа социально-экономического развития региона с использованием программного комплекса SPSS (на примере Алтайского края) выделил А.А.Попов [13]. Применение задач оптимизации в кластерном анализе исследовал О.А.Сдвижков [15]. А.А.Серов изучал скоринг экспериментальных данных с применением прогнозных моделей в среде пакета SPSS [16]. Р.И.Баженов и др. применяли различные виды анализа данных [3, 4, 6, 7, 12, 14, 17, 19, 20].
Проведем корреляционное исследование, а именно подтвердим или опровергнем гипотезу о статистической связи между исследуемыми переменными.
1. Проверка на формы распределения.
При помощи теста Колмогорова - Смирнова проверим, соответствует ли реальное распределение переменной нормальному, равномерному, экспоненциальному распределению или распределению Пуассона. Для этого воспользуемся компьютерной программой для статистической обработки данных SPSS (Анализ > Непараметрические критерии > Одновыборочный Колмогорова-Смирнова). Распределение является нормальным, если асимптотическая значимость превышает значение р=0,05.
Анализируя результаты (рис.1) можно увидеть, что асимптотическая значимость переменных 1000 м (2 курс) и 100 м. (2 курс) соответственно равны 0,331 и 0,137, что превышает значение p=0,05, то есть можно сказать, что эти распределения нормальные, что нельзя сказать об остальных переменных (рис.1).
Рис. 1. Отчет проверки на формы распределения
2. Нахождение корреляции между переменными.
Теперь, когда распределения известны, можно найти корреляции. Для переменных 1000 м. (2 курс) и 100 м.(2 курс) распределения нормальные, т.е. корреляцию будем искать по Пирсону (Анализ > Корреляции> Парные) (рис.2). Так же найдем корреляции остальных переменных, но уже по Спирмену, т.к. форма распределения не нормальное (рис. 3).
Анализировать данные результаты будем по следующему принципу: коэффициент корреляции, может принимать значения между -1 и +1, причём если значение находится ближе к 1, то это означает наличие сильной связи, а если ближе к 0, то слабой. Точнее, если коэффициент корреляции находится на интервале от 0 до 0,2, то корреляция считается очень слабой; от 0,2 до 0,5 - корреляция слабая; от 0,5 до 0,7 - корреляция средняя; от 0,7 до 0,9 - корреляция высокая; от 0,9 и выше - корреляция считается очень высокой.
Рис. 2. Корреляции для переменных 1000 м. (2 курс) и 100 м. (2 курс)
Рис. 3. Корреляции для переменных, не имеющих нормального распределения
Опишем исследование корреляционных зависимостей между переменными показателей. Рассмотрим полученные коэффициенты корреляции для переменных 1000 м. (2 курс) и 100 м. (2 курс). Как видно из таблицы, коэффициент корреляции r=0,434 (рис. 2). На основе вышеизложенного, можно увидеть, что корреляция (связь) между переменными слабая.
Проанализируем корреляции для переменных, не имеющих нормальное распределение (рис.3):
· слабая положительная связь между 1000 м. (1 курс) и 1000 м. (3 курс);
· слабая положительная связь между 1000 м. (1 курс) и 100 м. (1 курс);
· очень слабая положительная связь между 1000 м. (1 курс) и 100 м. (3 курс);
· средняя отрицательная связь между 1000 м. (1 курс) и ПвД (1 курс);
· средняя отрицательная связь между 1000 м. (1 курс) и ПвД (2 курс);
· средняя отрицательная связь между 1000 м. (1 курс) и ПвД (3 курс);
· средняя положительная связь между 1000 м. (3 курс) и 100 (1 курс);
· очень слабая положительная связь между 1000 м. (3 курс) и 100 (3 курс);
· слабая отрицательная связь между 1000 м. (3 курс) и ПвД (1 курс);
· слабая отрицательная связь между 1000 м. (3 курс) и ПвД (2 курс);
· слабая отрицательная связь между 1000 м. (3 курс) и ПвД (3 курс);
· средняя отрицательная связь между 100 м. (1 курс) и ПвД (1 курс);
· средняя отрицательная связь между 100 м. (1 курс) и ПвД (2 курс);
· средняя отрицательная связь между 100 м. (1 курс) и ПвД (3 курс);
· слабая отрицательная связь между 100 м. (3 курс) и ПвД (1 курс);
· слабая отрицательная связь между 100 м. (3 курс) и ПвД (2 курс);
· слабая отрицательная связь между 100 м. (3 курс) и ПвД (3 курс);
· высокая положительная связь между ПвД (1 курс) и ПвД (2 курс);
· высокая положительная связь между ПвД (1 курс) и ПвД (3 курс);
· высокая положительная связь между ПвД (2 курс) и ПвД (3 курс);
Заметим, что связь у нас как положительная, так и отрицательная. Сила связи не зависит от направления и определяется абсолютной величиной коэффициента корреляции r. При r = 1 наблюдается жесткая положительная связь, то есть при увеличении одного признака обязательно увеличится второй признак; при значении r = -1 - гарантированно уменьшится; при значении r = 0 - изменение одного гарантированно никоим образом не повлечет за собой изменения второго.
Можно увидеть среднюю отрицательную связь между переменными 1000 м. (1, 2 курса) и ПвД (1, 2, 3 курс). Данное наблюдение можно интерпретировать следующим образом: чем хуже прыгает студент, тем больше времени он тратит для того, чтобы пробежать 1000 м.
Так же обратим внимание на среднюю положительную связь между переменными 1000 м. (1курс) и 100 м. (3 курс). Так как коэффициент корреляции положительный, то можно сказать, что при увеличении одного из показателей, видно увеличение другого показателя.
Между показателями прыжки в длину обнаруживается достаточно высокая положительная корреляция, что говорит о значительном изменении одной переменной в результате изменения другой.
Таким образом, в результате обработки данных были найдены различные зависимости между показателями и их можно использовать преподавателями физической культуры вуза для планирования нагрузки студентов.
Список литературы
1. Афанасьев В.В., Непряев И.Н. Математическая статистика в спорте // Ярославский педагогический вестник. 2005. № 2. С. 108-113.
2. Дьяченко А., Лысенко Е., Виноградов В. Функциональное обеспечение специальной выносливости в циклических видах спорта (на материале академической гребли) // Наука в олимпийском спорте. 2014. № 3. С. 38-44.
3. Лагунова А.А., Баженов Р.И. Разработка в среде gretl регрессионной модели рынка вторичного жилья г. Биробиджана // Nauka-Rastudent.ru. 2015. № 1 (13). С. 40.
4. Лагунова А.А., Муллинов Д.О., Баженов Р.И. Применение программной среды SPSS для исследования данных психологических методик // Психология, социология и педагогика. 2015. № 6 [Электронный ресурс]. URL: http://psychology.snauka.ru/2015/06/5446 (дата обращения: 14.06.2015).
5. Меренков В.В., Шахов А.А., Карасёва Е.Н., Карташова Е.В. Влияние различных аспектов жизнедеятельности высококвалифицированных дзюдоистов-ветеранов на их соревновательный результат // Ученые записки университета им. П.Ф. Лесгафта. 2014. № 1 (107). С. 114-116.
6. Муллинов Д.О., Баженов Р.И. Разработка в среде eviews регрессионной модели рынка гаражных помещений г. Биробиджана // Nauka-Rastudent.ru. 2015. № 1 (13). С. 43.
7. Муллинов Д.О., Винокуров А.С., Баженов Р.И. Разработка в среде SPSS регрессионной модели рынка автомобилей // Nauka-Rastudent.ru. 2015. №6.
8. Наявко И.И. Критерии определения спортивно-технической подготовленности юных прыгунов в воду // Слобожанський науково-спортивний вісник. 2014. № 2 (40). С. 99-103.
9. Осетров И.А., Непряев И.Н. Сравнительные показатели корреляции в спорте // Ярославский педагогический вестник. 2009. № 4. С. 60-64.
10. Остапенко Р.И. Особенности моделирования латентных изменений с помощью AMOS SPSS // Перспективы науки и образования. 2014. № 1 (7). С. 89-95.
11. Остапенко Р.И. Особенности анализа лонгитюдных данных в психолого-педагогических исследованиях с помощью AMOS SPSS // Современные научные исследования и инновации. 2014. № 4 (36). С. 74.
12. Пивенко К.А., Баженов Р.И. Построение регрессионной модели в среде Gretl на примере рынка поддержанных автомобилей г. Биробиджана и г. Хабаровска // Экономика и менеджмент инновационных технологий. 2015. № 4 [Электронный ресурс]. URL: http://ekonomika.snauka.ru/2015/04/8362 (дата обращения: 14.06.2015).
13. Попов А.А. Основы проведения факторного анализа социально-экономического развития региона с использованием программного комплекса SPSS (на примере Алтайского края) // Вестник Российского экономического университета им. Г.В. Плеханова. 2010. № 5. С. 81-88.
14. Пронина О.Ю., Баженов Р.И. Исследование методов регрессионного анализа программной среды eviews // Nauka-Rastudent.ru. 2015. № 1 (13). С. 45.
15. Сдвижков О.А. Применение задач оптимизации в кластерном анализе // Сервис в России и за рубежом. 2014. Т. 8. № 7 (54). С. 219-228.
16. Серов А.А. Скоринг экспериментальных данных с применением прогнозных моделей в среде пакета SPSS // Традиции и новации в профессиональной подготовке и деятельности педагога. Материалы Всероссийской научно-практической конференции преподавателей и студентов. Ответственный редактор В.П.Анисимов. Тверь: Тверской государственный университет, 2013. С. 53-54.
17. Сизых А.Ф., Баженов Р.И. Разработка программной системы поиска ассоциативных правил на основе алгоритма apriori // Современные научные исследования и инновации. 2014. № 10-1 (42). С. 52-59.
18. Усыченко В.В. К вопросу использования методов математической статистики в спортивно-педагогической практике // Педагогика, психология и медико-биологические проблемы физического воспитания и спорта. 2007. № 5. С. 155-162.
19. Эм А.А., Баженов Р.И. Разработка в среде Eviews регрессионной модели реализации продукции компании по производству резинометаллических изделий // Экономика и менеджмент инновационных технологий. 2015. №4 [Электронный ресурс]. URL: http://ekonomika.snauka.ru/2015/04/8673 (дата обращения: 14.06.2015).
20. Якимов А.С., Баженов Р.И. Сегментация клиентов с помощью rfm-анализа // Экономика и менеджмент инновационных технологий. 2015. № 1 (40). С. 55-61.
21. Carraro N., Gaudreau P. Corrigendum to “Spontaneous and experimentally induced action planning and coping planning for physical activity: A meta-analysis” //Psychology of Sport & Exercise. 2014. Т. 3. №. 15. С. 311-318.
22. Fan Q., Li D. Multifractal Сross-correlation analysis in electricity spot market // Physica A: Statistical Mechanics and its Applications. 2015. № 429. С. 17-27.
Размещено на Allbest.ru
...Подобные документы
Рассмотрение основ проведения корреляционного анализа по исходным данным группы студентов. Построение теоретической и эмпирической линий регрессии; проведение анализа с помощью программы "regres.exe". Представление копий экрана зависимости показателей.
контрольная работа [2,8 M], добавлен 07.06.2014Статистическая обработка первичной маркетинговой информации. Определение общих параметров выборки. Составление схемы кодировки анкеты. Способы формирования базы данных в формате SPSS. Ввод данных в компьютер. Кодирование переменных. Модификация данных.
презентация [533,9 K], добавлен 24.02.2015Общедоступные электронные архивы данных социологических опросов: характеристика основных разделов и география пользователей. Сущность методов социологических исследований, описание необходимых процедур и их реализация в программном пакете SPSS 17.0.
курс лекций [9,0 M], добавлен 05.11.2013Создание интерфейса программы "База данных студентов", которая позволит преподавателям осуществлять поиск студентов по различным критериям. Исследование удобства пользования данным программным продуктом на этапе реализации промежуточных результатов.
курсовая работа [25,5 K], добавлен 25.11.2010Общее описание программы Statistica. Архитектура и интерфейс системы. Регрессионный анализ в Statistica. Решение задачи регрессионного анализа с помощью пакета анализа данных табличного процессора MS Excel. Многомерный дисперсионный анализ в SPSS.
курсовая работа [2,4 M], добавлен 22.01.2013Комбинированный тип данных для хранения входных данных о студентах и информация, содержащаяся в полях. Пример структуры входных и выходных данных. Алгоритм работы и программный код программы по успеваемости студентов, описание используемых функций.
курсовая работа [135,9 K], добавлен 28.12.2012Основные свойства информационно-справочной системы для обработки результатов сдачи сессии, ее функциональное назначение и логическая структура. Выбор языка и среды программирования. Описание алгоритмов сортировки и поиска, входных и выходных данных.
курсовая работа [742,8 K], добавлен 23.01.2014Концептуальный анализ предметной области с точки выбранных функций и трансформация полученных результатов в объектную модель. Реализация разрабатываемой программы в среде VisualAge Smalltalk. Практическое тестирование работоспособности программы.
курсовая работа [3,8 M], добавлен 14.10.2012Проектирование программы в среде Delphi для тестирования знаний студентов по программированию, с выводом оценки по окончанию тестирования. Разработка экранных форм и алгоритма программы. Описание программных модулей. Алгоритм процедуры BitBtn1Click.
курсовая работа [365,0 K], добавлен 18.05.2013Выбор типа программного обеспечения, к которому относится оцениваемый программный продукт. Выбор весовых коэффициентов и базовых значений. Восстановление программы после системного сбоя. Схема базы данных "Учет посещаемости студентов" в MS Access.
контрольная работа [52,8 K], добавлен 22.12.2011Создание файла со списком студентов. Реализация программы для работы с "базой данных", которая позволяет добавить, удалить, редактировать, сохранять информацию о студентах. Упорядочивание списка студентов методом прямого слияния и поиск по базе.
курсовая работа [299,8 K], добавлен 27.06.2014Постановка задачи, основные требования к системе. Обоснование принимаемых решений по выбору технических и программных средств реализации. Функциональное и информационное моделирование базы данных студентов. Описание руководства пользователя, тестирование.
курсовая работа [476,6 K], добавлен 25.11.2013Создание нескольких таблиц для нашей базы данных "Деканат студентов". Проектирование межтабличных связей. Создание формы в режиме "Мастера создания форм". Запросы при помощи мастера. Запрос "Выбор студентов по успеваемости". Установка порядка сортировки.
лабораторная работа [124,5 K], добавлен 01.05.2014Клиент-серверная архитектура проектируемой программы по проверке знаний студентов, структура базы данных. Разработка ее программно-интерфейсной реализации в среде Delphi. Установка и запуск приложения, информация для пользователя, листинг программы.
дипломная работа [2,1 M], добавлен 20.06.2011Состав и принцип работы аппаратуры. Выбор параметров корреляционного анализа и Фурье-анализа. Разработка и применение алгоритма корреляционного анализа. Реализация алгоритма Фурье-анализа на языке С++ и алгоритма корреляционного анализа на языке С#.
дипломная работа [4,6 M], добавлен 30.11.2016Система компьютерной обработки данных для сбора, систематизации, статистической обработки, анализа результатов учебного процесса за четверть, полугодие, год. Модуль обработки данных о качестве обучения, итогов успеваемости и данных о движении учащихся.
реферат [22,5 K], добавлен 05.02.2011Обзор и анализ программных технологий создания WEB-приложений для аналитической обработки данных. Разработка многомерных моделей данных для построения OLAP-кубов по международному научно-техническому и образовательному сотрудничеству вузов России.
дипломная работа [3,8 M], добавлен 16.05.2013Разработка проектных решений по созданию подсистемы учета студентов в деканате различных форм и видов обучения, диагностический анализ системы управления. Проектирование информационной базы данных, построение инфологической и датологической модели.
дипломная работа [1,1 M], добавлен 24.06.2011Анализ процесса взаимодействия студентов и работодателей при поиске вакансий. Преимущества трудоустройства студентов во время учебы в ВУЗе, методы поиска работы. Проектирование базы данных и разработка веб-сайта для поиска предложений работы студентам.
курсовая работа [3,3 M], добавлен 03.07.2017Обеспечение универсальности функций тестирования при разработке программы для тестирования студентов. Бесплатное программное обеспечение. Анализ выбора среды программирования. Особенности среды Delphi и СУБД MySQL. Описание алгоритма и блок-схемы.
курсовая работа [1,6 M], добавлен 01.02.2013