Алгоритмизация решения задач
Рассмотрение основных структурных элементов персонального компьютера. Алгоритм расчета максимальной мощности двигателя автомобиля и внешней характеристики двигателя. Применение метода деления отрезка пополам. Рассмотрение алгоритма метода трапеций.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.01.2018 |
Размер файла | 273,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Вычислительная машина, счётная машина -- механизм, электромеханическое или электронное устройство, предназначенное для автоматического выполнения математических операций.
В последнее время, это понятие чаще всего ассоциируется с различными видами компьютерных систем. Тем не менее, вычислительные механизмы появились задолго до того, как заработал первый компьютер.
Ещё в 1623 году немец Вильгельм Шиккард (нем. Wilhelm Schickard) создал так называемые «Считающие часы», которые сегодня принято считать первым автоматическим калькулятором. В письмах к Иоганну Кеплеру Шикард объяснял, как можно использовать его машину для расчёта астрономических таблиц. Машина Шикарда умела складывать и вычитать шестизначные числа, оповещая звонком о переполнении. Более сложные вычисления выполнялись с помощью набора костяшек Непера, установленного на корпусе механизма. Оригинал машины был потерян при пожаре ещё до начала двадцатого столетия. В 1960 году на основе сохранившихся чертежей была построена копия этого вычислителя, подтвердившая его существование и работоспособность.
В 1642 году машину, помогающую в сложении чисел, изобрёл французский учёный Блез Паскаль. «Паскалина», как назвал свою конструкцию изобретатель, представляла собой механическое устройство в виде ящичка, наполненного многочисленными шестерёнками. Складываемые числа вводились в машину за счёт соответствующего поворота наборных колёсиков. На каждом из этих колёсиков, соответствовавших одному десятичному разряду, были нанесены деления с цифрами от 0 до 9. При вводе числа колёсики прокручивались до соответствующей цифры.
Теоретическая часть
Основными компонентами компьютера являются процессор, память, устройства ввода и вывода. С помощью устройства ввода программа и исходные данные попадают в память. Программа содержит последовательность инструкций, которую выполняет процессор. Результаты выполнения программы поступают в устройства вывода. В качестве устройства ввода, как правило, используется клавиатура, в качестве устройства вывода - дисплей, на котором высвечиваются результаты выполнения программ, или принтер.
Наряду с клавиатурой, дисплеем и принтером используются дисководы и накопители на жестких дисках - устройства, осуществляющие запись и чтение информации. Это означает, что результаты, полученные на некотором этапе выполнения программы и записанные на магнитный диск, могут быть использованы на последующих этапах выполнения программы как исходные данные.
Структурная схема ПЭВМ
На рисунке изображена структурная схема ПЭВМ, которая содержит следующие основные компоненты:
1) ЦП - центральный процессор, который управляет работой ПЭВМ а и выполняет все вычисления;
2) ОЗУ - оперативное запоминающее устройство, в котором располагаются программы, выполняемые ПЭВМ, используемые программами данные.
3) ПЗУ - постоянное запоминающее устройство, в котором располагаются программы, выполняемые ПЭВМ при своём включении.
Схема содержит следующие компоненты, которые предназначены для связи ПЭВМ с внешними устройствами:
1) Контроллер дисплея - позволяет подключить процессор к видео контрольному устройству, обеспечивает передачу видеоинформации и переключение видеорежимов дисплея;
2) Контроллер клавиатуры - позволяет подключить процессор к устройству ручного ввода информации, обеспечивает опрос каждой клавиши и передаёт процессору код нажатой клавиши;
3) Порты ввода - вывода, через которые процессор обменивается данными с внешними устройствами, предназначены для подключения к ним внешних устройств, таких как принтер, динамик, внешние устройства памяти;
4) Контроллер накопителя на диске - связывает накопители внешней оперативной памяти с ОЗУ, обеспечивает приём, передачу информации от носителя;
На схеме показаны следующие внешние устройства ПЭВМ:
1) Дисплей - основное средство оперативного вывода информации, предназначен для вывода текстовой или графической информации на экран.
2) Клавиатура - стандартное устройство ввода информации, основное средство взаимодействия пользователя с ПЭВМ.
3) Принтер - устройство печати текстовой и графической информации.
Принтеры бывают 3х типов - матричные, струйные и лазерные.
4) Накопитель на гибких магнитных дисках - устройство внешней памяти - служит для долговременного хранения информации - программ, архивных данных и т.д. Ёмкость носителя и скорость передачи данных незначительная.
5) Накопитель на жёстких магнитных дисках - устройство внешней памяти - служит для долговременного хранения информации - программ, архивных данных и т.д. Ёмкость носителя и скорость передачи данных высокая.
Задача 1
Выполнить расчет максимальной мощности двигателя автомобиля и расчет внешней характеристики двигателя при следующих начальных условиях:
mo, кг |
Vmax, км/ч |
Kв кг/м3 |
F, м2 |
Шv |
nN мин-1 |
Kv |
зтр |
|
8000 |
100 |
0,62 |
3,9 |
0,021 |
3000 |
1,2 |
0,88 |
РЕШЕНИЕ.
Максимальная мощность двигателя тягача по условию обеспечения заданной максимальной скорости рассчитывается по формуле:
, (1)
где Nemax- искомая максимальная мощность, кВт;
Nv - мощность на режиме максимальной скорости, кВт;
Kv - отношение частоты вращения коленчатого вала двигателя при максимальной скорости движения тягача к номинальной частоте вращения:
,
nN- частота вращения коленчатого вала двигателя на режиме максимальной мощности (номинальная), мин-1
nv- частота вращения коленчатого вала двигателя при максимальной скорости автомобиля, мин-1.
Мощность на режиме максимальной скорости определяется по формуле (3):
, (2)
где m0 - масса тягача, кг;
Шv - суммарный коэффициент сопротивления дороги;
V max - заданная максимальная скорость тягача;
зтр - КПД трансмиссии;
Kв - коэффициент сопротивления воздуха, кг/м3;
F - лобовая площадь тягача, м2.
Внешняя характеристика двигателя представляет собой зависимость мощности, крутящего момента от частоты вращения коленчатого вала двигателя при полном открытии заслонки карбюратора.
При известном значении максимальной мощности Nemax мощность в любой другой точке характеристики может быть найдена по формуле Лейдермана:
, (3)
где Ne - мощность двигателя при произвольном значении частоты вращения коленчатого вала, кВт;
Nemax - максимальная мощность двигателя, кВт;
n - заданная частота вращения коленчатого вала, мин-1;
nN - частота вращения коленчатого вала на режиме максимальной мощности, мин-1;
a,b,c - коэффициенты, принимаемые для бензиновых двигателей, равны 1.
Крутящий момент в любой точке характеристики определяется по формуле:
Me=9549 (Ne/ n). (5)
Составим схему алгоритма. В алгоритме будет три блока: ввод исходных данных, расчет по формулам(1)-(5) и вывод результата.
Размещено на http://www.allbest.ru/
По приведенной блок-схеме была составлена программа, листинг которой приведен ниже.
program lab1;
var m0,vmax,Ke,F,Fv,nN,Ky,n_tr:real; {peremennye - ishodnye dannye}
Nv,Ne_max,n_v,Ne,Me:real; {peremennye - rezultaty}
BEGIN
{-----------VVOD ISHODNYH DANNYH-----}
writeln ('Vvedite ishodnye dannye:');
write ('m0=');readln(m0);
write ('Vmax=');readln(Vmax);
write ('Ke=');readln(Ke);
write ('F=');readln(F);
write ('Fv=');readln(Fv);
write ('nN=');readln(nN);
write ('Ky=');readln(Ky);
write ('n_tr=');readln(n_tr);
{----------RASCHET-------------------}
Nv:=2.725E-03*m0*Fv*Vmax/n_tr+2.14e-05*Ke*F*sqr(Vmax)*Vmax/n_tr;
Ne_max:=Nv/(Ky*(1+Ky*(1+Ky)));
n_v:=Ky*nN;
Ne:=Ne_max*(n_v/nN+sqr(n_v/nN)-sqr(n_v/nN)*n_v/nN);
Me:=9549*(Ne/n_v);
{----------VIVOD REZULTATA-----------}
writeln('Nv=',Nv);
writeln('Ne_max=',Ne_max);
writeln('n_v=',n_v);
writeln('Ne=',Ne);
writeln('Me=',Me);
End.
Решение этой же задачи было проведено в ЭТ Excel. Ниже представлен лист с решением и результатами.
Задача 2
Вычислить функцию , для с шагом .
№ |
a |
b |
h |
f(x) |
|
Начало отрезка |
Конец отрезка |
Шаг по отрезку |
|||
9 |
-8 |
0 |
1 |
РЕШЕНИЕ
Выполним схему алгоритма.
Размещено на http://www.allbest.ru/
Эта схема была реализована на языке Паскаль в трех вариантах: были задействованы циклы с предусловием, с постусловием и с параметром. Листинги программ приведены ниже.
а) Цикл с постусловием
program lab21;
var x,f:real;
begin
x:=-7;
repeat
if x<-7 then f:=sin((3.14/12)*x)
else
if x<=-3 then f:=2*cos((3.14/6)*x+(3.14/12))
else
f:=5* sin((3.14/12)*x);
writeln('f(',x:3:1,')=',f:6:2);
x:=x+1;
until x>0;
readln;
end.
б) Цикл с предусловием
program lab22;
var x,y:real;
begin
x:=-7;
while x<=0 do
begin
if x<-7 then y:= sin((3.14/12)*x)
else
if x<=-3 then y:= 2*cos((3.14/6)*x+(3.14/12))
else
y:= 5* sin((3.14/12)*x);
writeln('f(',x:3:1,')=',y:6:2);
x:=x+1;
end;
readln;
end.
в) Цикл с параметром
program lab23;
var
x,y,a,b,h,n1: real;
n,i : integer;
begin
x:=-7;
a:=-7;b:=0;h:= 1;
n1:=(b-a)/h; n:=round(n1);
for i:=0 to n do
begin
if x<-7 then y:= sin((3.14/12)*x)
else
if x<=-3 then y:= 2*cos((3.14/6)*x+(3.14/12))
else
y:= 5* sin((3.14/12)*x);
writeln('f(',x:3:1,')=',y:6:2);
x:=x+1;
end;
readln;
end.
Решение этой же задачи было проведено в Excel. При вычислении функции использовалась логическая функция ЕСЛИ. Лист с решением задачи размещен ниже.
Задача 3
Применить метод деления отрезка пополам на интервале и найти с точностью корни уравнения .
№ |
||||
9 |
8 |
2 |
РЕШЕНИЕ
Алгоритм метода половинного деления заключается в следующем:
1. Выбрать нулевое приближение x0=(a+b)/2.
2. Если f(x0)=0, то x0 очевидно является корнем уравнения.
3. Если f(x0)?0, то проверить условия f(x0)Чf(a)<0 и f(x0)Чf(b)<0 и выбрать тот из отрезков [a, х0], [х0, b], на границах которого выполнено одно из этих условий (т.е. функция f(х) имеет на концах отрезка противоположные знаки).
4. Выбранный отрезок вновь разделить пополам и вычислить значение x1.
5. Для х1 проверить условие f(х1)=0 и, если оно не выполняется, вернуться к п. 4.
6. Процесс деления отрезков пополам продолжить до тех пор, пока длина отрезка, на концах которого функция имеет противоположные знаки, не будет меньше .
7. Принять, что условие f(xk)= 0 выполнено, если
Ниже приведены блок-схема алгоритма и листинг программы на языке Паскаль.
Размещено на http://www.allbest.ru/
Program lab3;
function f1 (x: real): real;
begin
f1:=cos(0.2*x*x-2);
end;
var
x,a,b,e: real;
iteraz: integer;
begin
write ('Input a = '); readln (a);
write ('Input b = '); readln (b);
write ('Input e = '); readln (e);
iteraz:=0;
x:=(a+b)/2;
while (f1(x)<>0) and (abs(a-b)>e) do
begin
x:=(a+b)/2;
iteraz:=iteraz+1;
if (f1(a)*f1(x))<0 then b:=x
else a:=x;
writeln ('n=', iteraz,' x=', x:3:6,' f(x)=', f1(x):3:6);
end;
readln;
end.
Решение этой задаче было проведено и в MS Excel. Лист с решением задачи и ответом приведен ниже.
Задача 4
Вычислить определенный интеграл методом прямоугольников: или трапеций, на выбор.
, , , ,
с точностью .Формула метода прямоугольников:
Формула метода трапеций:
.
№ |
||||
9 |
-8р |
0 |
алгоритм персональный компьютер трапеция
РЕШЕНИЕ
Алгоритм метода трапеций заключается в следующем:
1. Отрезок [a,b] разбивается на n равных частей.
2. Интеграл представляет собой площадь криволинейной трапеции, ограниченной осью OX, прямыми x=a и x=b и графиком функции. Очевидно, что интеграл от функции на отрезке равен сумме интегралов от этой же функции на каждом из маленьких отрезков, полученных в результате разбиения. Но на каждом из маленьких отрезков мы приближенно заменяем площадь криволинейной трапеции на площадь прямолинейной трапеции с основанием (высотой), равным длине маленького отрезка, и высотами (основаниями) f(xn) и f(xn+1), где xn - левая граница отрезка, xn+1 - правая граница отрезка. Основание (высота трапеции) равно
(b-a)/n, и таким образом площадь трапеции равна
(f(xn)+f(xn+1))(b-a)/2n. У нас всего n трапеций, причем каждые две соседние трапеции имеют одинаковые высоты (основания). Таким образом, в сумму каждое из f(xn) кроме f(a) и f(b) войдет дважды, и таким образом весь интеграл вычисляется как , где .
3. В методе трапеций не определен шаг (количество отрезков разбиения). Очевидно, что чем больше количество отрезков, тем более точным будет результат. Поэтому, задаем начальное значение n (например n=10) и вычисляем интеграл.
4. После этого удваиваем n и снова вычисляем интеграл (п. 2). Сравнивая полученные результаты, делаем вывод, достигнута ли требуемая точность.
5. Если результаты отличаются друг от друга меньше чем на е, то требуемая точность достигнута. Если нет, то снова удваиваем n и вычисляем интеграл еще раз (возвращаемся к п. 4).
Ниже представлена блок-схема алгоритма и листинг программы.
Размещено на http://www.allbest.ru/
program pr4;
uses crt;
var
h,a,b,S,dS,P,x,eps:real;
n,i:integer;
function f(x:real): real;
begin
f:=0,1*sin(0.1*x+0.0025*x*x)/cos(0.1*x+0.0025*x*x);
end;
begin
clrscr;
writeln('input a,b,n,eps, please');
write('a');
readln(a);
write('b');
readln(b);
write('n');
readln(n);
write('eps');
readln(eps);
s:=0;
repeat P:=S;
h:=(b-a)/2;
S:=0;
x:=a;
for i:= 1 to n do
begin
x:=x+h;
S:=S+f(x);
end;
S:= S*h;
write('n=',n:3,' h=',h:12:9);
n:=n*2;
until abs(P-S)/(s*100)<eps;
writeln;
writeln('Result S=',S:10:6,' dS=',dS:12:9);
writeln;
writeln('Process ended');
writeln('Press any key to exit');
repeat until keypressed;
end.
Данная задача была решена также в MS Excel. Лист с решением задачи приведен ниже. Требуемая точность была достигнута при n=10.
Программа выполненная на языке Microsoft Visual Basic 6.0
Private Sub Command1_Click()
Dim i As Integer
Dim x(1 To 40) As Double
Dim f(1 To 40) As Double
Dim f1(1 To 40) As Double
Dim s(1 To 40) As Double
a = -6 * 3.14
b = 0
e = 0.1
n = 40
h = (b - a) / n
i = 1
x(i) = a
f(i) = 0.1 * Tan(0.1 * x(i) + 0.025 * x(i) ^ 2)
f1(i) = f(i)
s(i) = h * f(i)
For i = 2 To n
x(i) = x(i - 1) + h
f(i) = 0.1 * Tan(0.1 * x(i) + 0.025 * x(i) ^ 2)
f1(i) = f1(i - 1) + f(i)
s(i) = h * f1(i)
Next
For i = 1 To n
Print " s="; s(i)
Next
If Abs(s(n) - s(n - 1)) < e Then Print "удвойте n"
End Sub
Private Sub Form_Load()
End Sub
Задача 5
Дана прямоугольная матрица Ci,j,, размером 5*5. Если данная матрица является квадратной, найти сумму элементов главной диагонали, в противном случае найти сумму всех членов матрицы.
РЕШЕНИЕ
Составим схему алгоритма.
Program Lab_5;
uses crt;
var
i,j,5,5:integer;
b,a : array[1..10,1..10] of real;
s : real;
begin
clrscr;
write ('chislo stolbcov 5='); Readln(5);
write ('chislo strok 5='); readln (5);
begin
if 5=5 then
s:=0;
for i:= 1 to 5 do
begin
for j:= 1 to 5 do
begin
write('a[',i,',',j,']='); readln(a[i,j]);
end;
writeln;
end;
begin
if i=j then s:=s+a[i,j];
writeln(s:6:3);
end;
if i<>j then
begin
s:=0;
for i:= 1 to 5 do
begin
for j:= 1 to 5 do
begin
s:=s+a[i,j];
end;
writeln(s:6:3);
end;
end;
readln;
end;
end.
Данная задача была решена также в MS Excel. Лист с решением задачи приведен ниже.
Программа выполненная на языке Microsoft Visual Basic 6.0
Private Sub Command1_Click()
Dim i, j, 5, 5 As Integer
Dim s As Double
Dim c(1 To 50, 1 To 50) As Double
For i = 1 To 5
For j = 1 To 5
c(i, j) = 7 * i - j
Next
Next
s = 0
For i = 1 To 5
For j = 1 To 5
If 5= 5 Then s = s + c(i, i) Else s = s + c(i, j)
Next
Next
Print s
End Sub
Private Sub Form_Load()
End Sub
Заключение
В курсовой работе решены задачи по определению мощности двигателя автомобиля, вычислению функции, нахождению корней уравнения, вычислению определённого интеграла и решению матрицы.
Разработаны алгоритмы решения поставленных задач, составлены программы на языке С++., реализующие указанные алгоритмы. С её помощью проведены расчёты, проанализированы полученные результаты. Анализ результатов показал, что поставленные задачи успешно решены.
Список литературы
1. Информатика: Базовый курс. / С. В. Симонович и др. СПб.: Питер, 2005.
2. Острейковский В. А. Информатика: Учеб. для вузов. М.: Высш. шк., 2000. 511 с.: ил.
3. Алексеев Е. В. и др. Вычислительная техника и программирование. Практикум по программированию: Практ. пособие / В. Е. Алексеев, А. С. Ваулин, Г. Б. Петрова; Под ред. А. В. Петрова. М.: Высш. шк., 1991. 400 с.: ил.
4. Глушаков С. В., Мельников И. В. Персональный компьютер: Учебный курс / Худож. оформитель А. С. Юхтман. Харьков: Фолио; М.: ООО «Издательство АСТ», 2001. 520 с. (Домашняя б-ка).
5. Леонтьев В. Новейшая энциклопедия персонального компьютера. М.: ОЛМА-ПРЕСС, 1999. 640 с.
6. Козлов В.В., Можаева Н.А., Зуева Н.Г. Информатика. Алгоритмизация и программирование. Мет. Указания и задания к курсовой работе, 2006. 32 с.
Размещено на Allbest.ru
...Подобные документы
Расчет максимальной мощности двигателя автомобиля и расчет внешней характеристики двигателя. Вычислить функцию. Метод деления отрезка пополам на данном интервале и найти с точностью корни уравнения. Вычислить определенный интеграл методом прямоугольников.
курсовая работа [233,8 K], добавлен 13.02.2007Разработка программного обеспечения для решения нелинейного уравнения методом деления отрезка пополам, методом деления Гаусса. Алгоритм определения и методика уточнения корней. Составление и тестирование программы, ее листинг и оценка эффективности.
контрольная работа [638,0 K], добавлен 16.12.2013Сравнение методов деления отрезка пополам, хорд, касательных и итераций, поочередно используя их для решения одного и того же уравнения. Построение диаграммы и графика изменения числа. Исследование алгоритма работы программы, перечня идентификаторов.
курсовая работа [1,3 M], добавлен 06.08.2013Решение системы линейных уравнений методами деления отрезка пополам, Гаусса и подбора параметров. Формализация задач при моделировании; построение математических, алгоритмических и программных моделей задач с помощью электронных таблиц Microsoft Excel.
лабораторная работа [1,4 M], добавлен 21.07.2012Особенности метода неопределенных множителей Лагранжа, градиентного метода и метода перебора и динамического программирования. Конструирование алгоритма решения задачи. Структурная схема алгоритма сценария диалога и описание его программной реализации.
курсовая работа [1010,4 K], добавлен 10.08.2014Основные принципы функционирования ПК. Определение конфигурации компьютера с требуемыми характеристиками. Характеристики основных компонентов современного ПК. Описание алгоритма решения задачи с использованием MS Excel. Блок-схема алгоритма решения задач.
курсовая работа [3,5 M], добавлен 20.12.2010Основные особенности создания работоспособных программ по решению математических задач. Рассмотрение и характеристика типовых структурных элементов схемы алгоритма: внутренний цикл, ветвление. Анализ результатов машинного тестирования программы.
контрольная работа [502,8 K], добавлен 07.01.2013Определение понятия алгоритмов, принципы их решения людьми и всевозможными техническими устройствами. Применение компьютера для решения задач. Особенности использования метода последовательного укрупнения при создании шахматной доски по алгоритму.
презентация [1,1 M], добавлен 06.02.2012Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа [3,0 M], добавлен 21.05.2013Реализация интегрирования функции методами прямоугольников, трапеций, Симпсона. Построение графика сравнения точности решения методов интегрирования в зависимости от количества разбиений. Алгоритм расчета энтропии файлов с заданным расширением.
контрольная работа [1011,0 K], добавлен 04.05.2015Общие задачи линейного программирования. Описание алгоритма симплекс-метода, записанного в канонической форме с односторонними ограничениями. Алгоритм построения начального опорного плана для решения задачи. Расширенный алгоритм искусственного базиса.
курсовая работа [142,9 K], добавлен 24.10.2012Характеристика параметрических методов решения задач линейного программирования: методы внутренней и внешней точки, комбинированные методы. Алгоритм метода барьерных поверхностей и штрафных функций, применяемых для решения задач большой размерности.
контрольная работа [59,8 K], добавлен 30.10.2014Конструкция системного блока, монитора, клавиатуры и мыши персонального компьютера, как элементов его минимальной комплектации, а также их назначение, особенности работы и современные тенденции развития. Отрывки статей о новинках архитектуры компьютера.
реферат [43,4 K], добавлен 25.11.2009Определение наиболее выгодного соотношения сортов сырой нефти, используемой для производства бензина. Математическая постановка задачи. Выбор метода решения задачи. Описание алгоритма решения задачи (симплекс-метода) и вычислительного эксперимента.
курсовая работа [1,1 M], добавлен 08.12.2010Определение понятия "алгоритм". Изображение схемы алгоритма. Разработка схемы действий и этапы решения задач. Рассмотрение функции разрабатываемого приложения. Распределение исходного кода по файлам проекта. Контрольный пример и описание результатов.
реферат [695,9 K], добавлен 28.09.2014Роль информационных систем и технологий в жизни современного общества. Назначение и состав программного обеспечения персональных компьютеров. Использование технологий OLE. Операционные среды для решения основных классов инженерных и экономических задач.
практическая работа [1,2 M], добавлен 27.02.2009Структура языка Паскаль, встроенные процедуры и функции. Составление алгоритма решения уравнения, описывающего работу кривошипно-шатунного механизма, с помошью метода итерации, метода Гаусса и метода Зейделя. Блок-схемы алгоритмов и текст программы.
курсовая работа [64,6 K], добавлен 07.05.2011Средства формализации процесса определения спецификаций. Назначение языка (PSL) и анализатора определения задач (PSA). Разработка алгоритма решения задачи, критерии оценки его сложности. Локальный и глобальный уровни повышения эффективности алгоритмов.
контрольная работа [144,9 K], добавлен 26.10.2010Определение с помощью симплекс-метода плана выпуска продукции для получения максимальной прибыли, чтобы сырьё II вида было израсходовано полностью. Решение задач линейного программирования средствами табличного процессора Excel, составление алгоритма.
курсовая работа [53,2 K], добавлен 30.09.2013Сущность линейного программирования. Математическая формулировка задачи ЛП и алгоритм ее решения с помощью симплекс-метода. Разработка программы для планирования производства с целью обеспечения максимальной прибыли: блок-схема, листинг, результаты.
курсовая работа [88,9 K], добавлен 11.02.2011